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FORMALIZATION OF A KNOWLEDGE BASE
USING NON-MONOTONIC REASONING (in English)

Ben-Hui HOU Atsushi TOGASHIand Shoichi NOGUCHI
Research Institute of Electrical Communication — TOHOUKU UNIV.
2—1—1,KATAHIRA SENDAI 980 JAPAN

In this paper we shall give the formal definition of a knowledge base with non-monotonic reasoning
called non-monotonic knowledge base, denoted by NMKB, such that it becomes possible to theoretically
consider the knowledge base containing incomplete information with non-monotonic reasoning
mechanism,

A default theory is the theory in the first-order language with a special operator M which
means ‘consistency’, informally. The algorithm to construct the pseudo-model for the default theory is
given. The correctness and the completeness of the pseudo-model for the default theory is shown when the
related default theory is assumed to be in the normal form and there is no cycle in it.

The formalization of the NMKB shall be carried out using the concept of a pseudo-model. The
meaning of a given formula in the NMKB is assigned to believable or doubt instead of true or false.



1. Introduction and motivations

The motivation of this paper is shown in the
following example[5].

(Vx)Bird(x)/A—1Penguin(x)/A— Ostrich(x)A. . .

D Fly(x) (1)

Bird(Tweety) (2)
(1) means that ‘Most birds fly except for penguins,
ostrich, the Maltese falcon etc’ and (2) means
that’Tweety is a kind of bird.’.

{(), @}-Fly(Tweety) 3)
(3) could not be concluded because we cannot make
certain that —Penguin(Tweety)  and
—1Ostrich{Tweety) etc. hold. However (3) is expected
to hold, that is Fly(Tweety) is expected to be
deduced from (1) and (2). Obviously the concept of
deduction has been changed. The method [5] to
treat this problem is to modify (1) and (2) as

Bird(x): MFly(x)/Fly(x) (1%)
(Vx) Penguin(x) > —Fly(x) (1.1%)
(Vx) Ostrich(x) D—Fly(x) (1.2%)

The intuitive explanation of the operator M is
that ‘it is consistent to assume . .. .

{(1%), (1.1%), (1.2%), . . ., (2)}*Fly(Tweety) (3%)
(3*) holds if nothing has been known further, while
it would be destroyed by the addition of
Penguin(Tweety). However how to define K*
appropriately for the above situation is still yet to
be explained.

‘We would like to clarify in the above example:

@Using operator M to represent the incomplete
knowledge such asin(1);
@Using closed world assumption to deal with
negative information such as that
—1Penguin(Tweety) holds if there no
Penguin(Tweety).

This paper is motivated by the consideration of
* from the model-theoretic viewpoint and the
formalization of the knowledge base with the kind
of reasoning such as %,

The contents of this paper, in brief, enclude: an
algorithm by which a pseudo-model is generated
for a set of sentences in the first-order language
with operator M; the proof of some relative
theorems about the algorithm; the formal
definition of the NMKB using earlier results;
explanation of the intuitive meaning of the NMKB.

is

2. Pseudo-model

To begin with we propose an algorithm to
construct a pseudo-model for a default theory in the
EFO-language detailed later. The pseudo-model
for a default theory is a Herbrand model for the
extension of the default theory instead of the
default theory itself. The model-theoretical
explanation for the believability of a formula in
default theory [27] is given by the concept of the

pseudo-model. A formula in the £¢1, is believable in
the default theor'y if there is a pseudo-model for the
default theory, instead of an extension for the
default theory, such that the formula is true in the
pseudo-model.

2.1 Preliminaries
Now we shall go to the details of the EFO-
language. The EFO-language, the short of
Extended First-Order language, denoted by the
notation £ef,, consists of non-monotonic connective
M in addition to the symbols contained in the
function-free first-order language.
Symbols in £ef
(1) Constant symbols denoted by italics a, b,c,...;
(2) Variable symbols denoted by small letters such
as X,Y,%Z,...;
(3) n-ary predicate symbols denoted by capital
letters such as P, Q for each integer n;
(4) Connectives are
N (and)
v (or)
= (not)
D (implies)
M (consistent)
Terminologies in £qy
The definitions of terminologies such as term,
formula etc. are the same as those the first-order
and logic are omitted here. We shall only define the
special terminologies occurring in this paper, in the
following.
Defintionl
Let F be a formula in £ef,.
1) The formula F is called M-free formula if there
is no occurrence of a connective M in F. Otherwise,
called a default;
2) The standard form of a default is F1:MFo/F3,
where ¥i, Fo and F3 are M-free formulas. It
represents the formula F1/AM FgDF3.
3) CON(8)=F3,
NM(§)=—Fqg ,
PRE(8)=F; where6=F1:MFy/F3.
4) Default § is called in normal form if
CON(8)=—"NM(8)
5) Default 8 is said to be a closed default if there
are no occurrences of free variable in it.
6) The default theory DT in £¢f, is a set of defaults
denoted by DT*™ and M-free formulas denoted by
DTMP which is designated as
DT=DT® Uy DTMP
7) DT is called a standard closed normal default
theory when every default in DT is in the standard
closed normal form.
Extension of default theory DT
An extension for a default theory is the set of M-
free formulas, some of them are generated by the
reasoning in formal logic and the rest of them are
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obtained by the common reasoning based upon * in
the absence of any information to the contrary,
assume . . . ’. The definition of extension for a
default theory is given below. The generation of an
extension can be show, asin Fig.1, intuitively.

reasoning

i i {common | {common i
e ! r reasoning : : reasoning
E©@ [—’ EO | - |_’ E®
— ™
J-—»ldefaultl | |defaultn
if—|E -~
Fig.1

Definition2
(1) E®(DT) =Th(DTMP)
(2) E4+HI(DT)=EYDT)U{Folif there is a default
F1:MFo/F2 such that F1 € E®(DT), ~Fo¢ E(DT)}
E(DT)=U ;> E?(DT)
E(DT) is the extension for the default theory DT.
Definition3
Suppose E is an extension for the defauit theory DT’

GD® = {F|:MFg/Fo|where Fo€E,

and F1:MFo/Fo€ DT®},

Remark Let 81 and 89 be two defaults.

F1:MFy/F3 61)
Fi":MF2/Fg (82)
which are combined into one default § in the
normal default theory
F1vF1:MF2/Fg ()
Definitiond

A default theory DT is consistent if and only if
there is a consistent extension E for DT.

By definition a default theory DT is consistent if
and only if D'I'™P js consistent if DT is in the
normal form. Of course the consistent extension is
not unique. ‘

The default theory in £ef, is a set of M-free
formulas and defaults in the £¢f,. Defaults play a
role in completing the world incompletely
perceived by M-free formulas. Thus it seems
impossible to define a model for the default theory.
However the extensions for the default theory are
the theory completed and closed by defaults. We
can see the possibility of establishing a model for
the extension of a default theory. In this section we
shall give an algorithm to construct a model for a
consistent extension and prove that: a model for the
extension can be generated by the algorithm if a set
of M-free formulas is a consistent extension for a

consistent default theory; A default theory is
consistent if a model can be generated from the set
of M-free formulas and defaults by the algorithm
when some conditions are satisfied by the default
theory.

Before presenting the algorithm we shall state
some notations and definitions. The Herbrand
interpretation I is simply a set of ground positive
atomic formulas.

Herbrand interpretations are denoted by I or I
with a subscript such as I, I;, formulas by F or Fj,
Fj, etc., and ground atomic formula by a or aj, gj,
etc.. Polarity(a)=+ if a is positive and
Polarity(a)= =~ if a is negative.

Definition5

(1) I=F if Fel;

(2) I=~F if FéI;

(3) I=F if IE—-FrorI=F; and I=Fg

where F=F{DF

I=F  if and only if (1) or (2) or (3) can be
satisfied by I and F. We say that the Herbrand
interpretation Iis a Herbrand model for F.
Definition6
Li=Iiff Sy (1)) =S, (Ij), whereS, )={F|I = F}
= is called the identity relation among Herbrand
interpretations.
Remark SyW(D={1} when I=0.
Definition7
I L iff SyICSuJ). # is called the ordering
relation among Herbrand interpretations.
Definition8
I; is a Herbrand minimal model for F
(1) F€S,(1;) and
(2) there is no such an interpretation I; in which
FeSyI), Li~=]; and L1,

If there is only one minimal model for F, this
minimal model is called a unique minimal model
forF.
Lemmal

# is a partial ordering relation among Herbrand
interpretations.

[PROOF] LetI;, I and Iy be three Herbrand
interpretations.

(1) Transitivity: L < Ix if X I ¥ I |
IfI; # Ij according to the definition of #, S, (I;) C
Sy (I; ) . In the same way, if I; ~ Iy then S, (Ij) C S,
(Ix) . Thatis, from Ij # Ij # Ix we can get Sy (I)) C
Sy ({j) C Sy (I) . According to the transitivity of C,
Sy ;) C€ Sy (k) . Thus, by the definition of #~, there
is I ~ Ik

(2) Antisymmetry: I; =L if I; ¥ Ij and Ij # Ij.
By the definition of #, from I; # Ij, there is Sy (Iy)
C Sy () fromI; # Ij, thereis S, (I}) € S, (I;) .By
the antisymmetry of C , Sy (I) = Sy (I ) .
According to the definition of = ,I; =1I;;

(3) Reflexity : I; ~ I;.

if
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By the reflexity of C, S, (;) C Sy (I; ). By the
definitionof # I; # I; | [ ]
Lemma2

(1) There is not always a Herbrand model for any

well-formed formula F;

(2) There are always Herbrand minimal models for

F if there are Herbrand models for F;

(3) There is not always unique minimal model for

any well-formed formulaF.

[ PROOF'}

(1) can be proved by the following example :
F=-F1AF; where F is a formula.There is no

model for F;

(2) LetIy,Io,..., I, be Herbrand models for formula

F, and I;~=I]; for any I, I; ¢ { I1, Ig,..., In }. Prove (2)

by refutation. Suppose there is no minimal model

for F. For any Iij€{11, Iy,...In}, according to the

definition of minimal model, there must be an

E 8 +1€1I1, Ig,....In} such that Lj,, #Ij; Similarly,

we can get a chain By Lemmal, /# has transitivity,

thus Ij; /I and as shown in the chain I ~#I;, #

has antisymmetry. Thus I =L . Ij

contradicts the supposition that Ij~=I; for any

Ii ,Ije{Il, IZ,'--’In};

Q e ™
‘——’F-/

(3) can be proved by the following example.
F=F1vF:CQ
I;={F1}
Ip={Fa}
I3={F1,F2}
I3, I, I3 are Herbrand models for F and Ij, I3 are
two minimal models forF. W
Lemma3
If F is in a definite clausal form and there are
Herbrand models for F, then there is a unique
minimal model for F.
[PROOF] Let F be a definite clause. Py A Pg
N...ANP,DQ
Firstly, we can construct an interpretation I; for F,
I;={ Q } . Now, we shall prove I; is the unique
minimal model for F.
® Ijis a model for F;
® 1;is a minimal model for F.
For any model Jj for F, Ii~=Ij, SvIy={F, Q,
—Py,..., 1Py,..}. If j# I then Sy(I)CSy(1i) because
of I;~=I; that means there must be an element s,
s€Sy(I;) but s€S,(I;). However F€S,(Ij)
(1) if there is an —Pk, 7P €S,(I;) but
1P €Sy(;) then Py €S,(I;) which contradicts
Su(I)CSu(Is);
(2) if Q€S,(j) then I;=J, it contradicts with the

= Iin

assumption that]; is a model for F.
Therefore we can say that
I;={Q}is aminimal model for F';
® Ii={Q} is a unique minimal model for F.
This is trivial by the above proof. M

2.2 Algorithm to construct pseudo-model

The purpose of this section is to establish an
algorithm to construct an interpretation for the
standard closed normal default theory, which is
actually a model for its consistent extension shown
in the theoreml. Preparatory to the presentation of
the main algorithm, the algorithm to generate an
interpretation for a set of M—free formulas is
proposed firstly.

Some of the notations used are explained below.
Char(Algo-Name, Sin, Sout) means that the set of
Sout is the output, set obtained by applying the
algorithm Algo-Name on the input set of Sjp,.
Output(Algo —Name(Sin)) =Sout
Im(F)=A, ., Pi
Imd(F) =V, ., Qj where F=A, _;_ PiOV, ;.. Q.

Algorithm to generate an interpretation for a
set of M-free formulas:

The operator Generator1 generates the ground
instances of the non-—ground atomic formula.
Generator1(P) is the set of the ground atomic
formulas obtained by applying Generator1 on the
non-ground atomic formula P, We shall not enter
into the details of Generator1.

We shall present the generator21 — Algorithm
shorted by G21 - A, Firstly we shall define a table
called search table.

F=P1,P2,...,Py S={aj, dz,...,0n}
FAS | P, P, L. P; coo | Pasy P.
ay 0y Py, . Pjeu oo [Pamt | PuBu

Oy
ag 6y, P28y - | PjOn oo | Pacy | PuByy
82
e Pjekl s Py Pp6yy
Qe 6 | Pabu O
Apy |Bn-1i | P2 P_] | Pay | Pn
On_1,1 On-1,1 61,1 | -1
[ [ Py - | PiOas P,y | Pn
6,1 On1  [Oms

‘Where the Pj are atomic formula and S is the set
of ground atomic formulas. 0k is the unifier of Py
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and q,. PjBk1 is the result obtained by applying 6x1
on P;.

The first column in the table is called base
column and the second row in the table is called
the base row; FAS is a search table with the base
column S and base row F. The first element in the
base row is called the current element and is
denoted by CurrE(FAS). The column headed by
CurrE(FA'S) is called substitution column denoted
by Sub(FAS); The column headed by Pj is denoted
by Col(P;j), the row haded by a; Row(a;) and the ith
row in the table FAS by the notation Row(FAS, i);
The ith element in a set of S is denoted by Ele(S, i).
Generator21 - Algorithm

Char(G21 - A, Sin, Sout)

Sin=<F, 8>
F=A1=<i<rPj, Pjis an atomic formula
Polarity(P;) = +
S={a;| Polarity(a;)= +}
Sout={0|if P;0€S, for all P;in F }
Stepl F1<={@, @}U{Pj[for all P; in F and P;¢S,i=3}
S1<S
goto Step2;
Step2 If || Col(G - T(F1, S1)) | =2
then we={Sub(G - T(F1, S))}U{¥}
Cancel Row(G - T(F1, Sy), k)
else if Ele(Row(G - T(S;, F1), k), j) is ground
and Ele(Row(G -T(Sy, F1), k), )¢S
then Cancel Row(G - T(S1,F1),k)
else if [Row(G - T(Sy, F1))|>2
then £&G -T(S;, F)UfE
goto Step3
else goto Siep3;
Step3 If £+ and Table € £
then for each Row(Table,i) do
F1 &< Row(Table, i)
Si<S
goto Step2
else goto End;
End A

In this algorithm G-T is an operator to
generate the new search table when the current
element is unifiable with each element in the base
column. G - T(F, S) is a search table that consists of
the rows Row(a;) , for each q;, a;€S.

Row(a;) ={a;,Ele(F,2)0; 1,Ele(F,4)0; 1,...,Ele(F,n)0; 1}
Lemma4

For any 0, 0€Output(G21-A(F, S)) iff PO€S,
1=i=r, where F=N\,_,_ P;.

[ PROOF] Firstly, the only—if—half of the
lemma, if 6€Output(G21 -A(F, S)) then P;0€S,
which is trivial by algorithm itself; Next, we shall
prove the if — half of the lemma for any P;, if P;0€S
then 0€Output(G21 - A(F,S)).

@ When i=1, thatis F=P;, F1=<9, J, P>,
S1=S by Stepl. The table has been created by

G -T(F1, S1) in Step2, |ICol(G -T(Fi1, S1))|=2 and
Output(G21 - A(Fq, S1)) can be returned only from
one step. Thus the if—half of the lemma is true
according to the generation methodin G ~T,;
® Let F be P1/A\P2. We shall prove
Output(G21 - A(F;, S))=Output(G21-A(Fz, S)),
where Fi=<P;, P2> and Fg=<Pg, P;>. Both
Output(G21 - A(Fq, S)) and Output(G21 - A(Fg, S))
are obtained from {wo steps in Step2. Now we
assume that the substitutions obtained by the first
step and the second step are 81V, 812 and 021, 6@
for F1, and Fg respectively. We shall prove
012=02. For any 0;€61?, there are P10;€S and
P20i€S. For any 0;€02?, there are P16;¢S and
P20;€8. If there is an 0, 0€61? but 6€62?, then
there must be P10¢S or P20¢S. It contradicts the
previous conclusion. Thus 8;¥C02?. The converse
can be proved in the same way. Therefore
01@=09"2; :
@ Now we suppose that the if—half of the lemma
is true when F=<P1,Pg,..., Pr>;
@ We shall prove the if — half of the lemma is also
true for F= <Py, Pg,..., Pp, Pn+1>. By the result
proven in @ the order F can be changed into the
form of F=<Pp4+1, P1, Po, . . ., Ph> without
affecting the results obtained by the algorithm. For
the sake of convenience, we assume F’'= <P, Py,..
., Pn>. Then for any P; in F*0€Output(G21 - A(F",
S)) if P;0€S . Therefore it is impossible that there is
an 0, such that for any P;, 1=i=n+1, P;0€S but
0¢0utput(G21 - A(F, S)) by ® Together with @,
the if—half of the lemma has been proven. W
Generator2 - Algorithm
Char(G2 - A, Sin, Sout)
Sin=<F,S>
F=A<i=nPi D Vigizm
where P;and Q; are atomic formulas;
Polarity(Py) = +
Polarity(Qj)= +.
S={q; | Polarity(a;)= +}
Sout={8Si | Si={q;| Polarity(a;)= +}}
Stepl Q <= Output(G21 - A(Im(F), 8));
Step2 Choose one Qjin\/, <j<m Q;j do
Step2.1 if there is a 8, S1€S such that Q;6x€S),
forallj, 1=j=m, for any 6, €Q
then Spew < {S|}USnew
S&S-5
ifS=02
then goto End
else goto Step2
else goto Step2.2;
Step2.2 for all Q0 ¢S] do
S1 ¢ (Qj6K)* U S
Snew < {S1} U Spew
S«&S-5;
goto Step2;

End A
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Lemmab
Siis a Herbrand model for F if
S;€Output(G2 - A(F, S)), where F is the set of
formulas with the form A\, _,_ P; DV, i<m Qj, and
Sis the set of positive ground atomic formulas.
S =Generator1(Im(F))

[ PROOF] Itis trivial from algorithm. W
Lemma6
Siis a minimal Herbrand model for F iff

Si€Output(G2 - A(F, S)), where
F=N\; i, PiOQ,
S =Generator1(Im(F))

[ PROOF] The proof of the if—half of the lemma,
similar to the proof @ of the lemma3, is omitted
here; The only—if—half of the lemma can be
proved by the uniqueness of the minimal model for
the set of the definite clauses according to the
lemma3. W
Definition9
Let P and Q be two atomic formulas. P and Q are
called polymorphic iff there are occurrences of the
same predicate symbolsin P and Q.

Definition10

Nizit=m Py 2 V) <jl=ml QY

1=izzn2 Pia” 2 Visjpems Qj,”

/\1 <ir<nr Pir(r) 2 vl Sjr<nr er(r)
is a cycle iff for each
Vi sjkskajk(k) and /\; Sig 4150 1Pik+ l(kﬂ)’ 1=k=r,
there is at least one Q;® in Vv, _;, ., Qj, "> at least
one Pi®in A i) cmes 1Py, 57V is polymorphic,
1=s=n,, 1=t=ny; and at least one Py'¥ in

NcieaPiy? 1=u=nj, at least one Qv® in
Vi <jrzme@r 1=v=m,, Py and Q. are
polymorphic.

K . (k
_/\1 <ik=akPic PV, sijmk.Q.lk( " .
if there is no polymorphic atomic
formulasin A _,, ., Pi® and
Visjt <m @y foreacht, 1 =t=r;

Selector(S)=
&, otherwise.

- . (k
where S={/\, siks.akf’lk =)
Vi sjk=mk Qi |1=k=r}

Lemma 7
Selector(S)# @ if thereisnocyclein S and S* Q.

Sub-Algorithm:
Char(S = A, Sin, Sout)
Sin=<Aj,Ag,R>
Aj={qa;|Polarity(aj) =+ }
A2 is the set of non-ground atomic formulas.
R is the set of formulas of the form
Ni<i=nPi D Vigjzm Qj and
Polarity(P;) = +, Polarity(Q)= +
Sout={Ij | Ij={a; | Polarity(a;)= + } }
Stepl 1Ay

goto Step2
Step2 for all a€Ag do

I < 1U (Generator1(a)—I)
Age=Ag—a
if Ag# @ then goto Step2
else goto Step3
Step3 F<Selector(R)
if F=0
then return Fail
else do
for any I;€I, 1=i=(I|
for each S € Output(Q2 -~ A(F,{I;})),
1=k=[Output(Q2 - A(F,{L}))]
L% & {Sk —I;} U {1; }
Ie=Uy,  {Ii%}

R&R-F
if R#Q
then goto Step3
else goto End
End A
Lemma8

For any I;, I;€ Output(S - A(V)), and I; is a minimal
Herbrand model for V, where V=AjUA3UR, if
there is no cycle in V and R is a set of definite
clauses.

[ PROOF] It follows Lemma6 and Lemma?7. W

Restrictor — Algorithm
Char(R - A, Sin, Sout)
Sin=<F,S>
F=A,<,Pi0Q
where P; and Q are atomic formulas;
Polarity(P;) = +, Polarity(Q)= —.
S={aj|Polarity(a;)= +}
Sout=" or Fail
Stepl Q < Output(G21 - AN, ;. Pi, 8));
Step2 ForeachPj,1=i=n,0€Q
if P;0€S
then if (- Q)0€S
then return Fail
else S&SUQO
goto Step3

Step3 Q&< Q-6
if QO+
then goto Step2
else goto End
else goto Step3
End Return S A

Lemma9
Output(R-A(F,S)) is a Herbrand model for F.

OPm(S, F)=T if Output(G2 - A(F, S)=
1 otherwise.
OPnm(S, F)=T if Output(G2 - A(F,S)ZS
L otherwise. Where F is a M-free
formula and S is a set of ground atomic formulas.



ALGORITHM
Char(A’ Sin, Sout)
Sin= <W,W', 5>
Wis the set of formulas of the form A\, _,_ PiD—Q}
W is the set of formulas of the form
N <i<a PiDV, <sjsm Qj}
§is the set of defaults of the form
F1:MF9/F3 where F1, Fg and F3 are of the form
Nzi=aFiDV, SjSmQj }
Sout={ M; | Mj is a set of ground positive atomic
formulas }
Stepl M@ & Output(R -~ A(W’, Output(S - A(W)))
R©® &= 8;
Step2 For each M;€M® do
Begin
Step2.1 Mj® & M;U(Sk — M;)** where
1=k=|Output(Q2 - A(CON(5; + 1), My))|
Sk €Output(Q2 - A(CON(8;+1), M)
if there is a default §; 1 in R®
such that
OPm(Mj, PRE(5i+1))
AOPNM(M;, NM(5;+1))
AOPnm(M;, CON(5;+1))
M;j & U, Mo
Step2.2 Mj < M
if OPm(M;, PRE(S; 1 1))
AOPnm(M;, NM(8; + 1))
AOPmM(M;j, CON(S; + 1))
Step2.3 Cancel M;
if OPm(Mj, PRE(8;+1))
AOPM(M;, NM(8; +1))
ME+D &= U; Mj
Ri+D&RO_81;  End
Step3 Return M if R"=@ A
The following theorem shows that the model
for the consistent extension can be generated by the
above algorithm.
Lemma
If DT is a consistent default theory and E is a
consistent extension for DT, then MI=E, where
MeOutputtA(DT™F) | GD®)) and there is no cycle
in DT
[PROOF] Assume that
W=DTMP,
8§=GD® in the algorithm .
Forany F¢E
(1) If FETh(W)
by the step (1) in the algorithm
M©OEF  then
MEF;
(2) Suppose for all FEE;
M®P=F then
MEF;
(3) Ej +1=E;iU{F9|F1:MFg/Fg, where F1€E;
and —Fo¢E}
forall F€Ej+;

i

if FEE; by (2) MP=F
if F¢E; by the definition of Ej4+1
there is a default § in the GD® Fi:MF/F where
F1€E; means that MP=F;; - F¢E means that
there is no i, such that MP=—F, thus M@= -F,
Therefore by algorithm we get
M+ De=MOUS,
Sk €Output(G2 —- A(CON(8), M1))
RG+DeRO_§
SxEF by lemma5
Thus MU+Vi=F, n

W is a subset of the DTMP) and D is a subset of the
DTD,
S(O’(W, D)= DTMP) ;
SE+D(W, D) =SDU{CON(8)|if there is a default §
in D such that SYI-PRE(8), and S%~HNM(8)}
SWP=Ug<j< o SYW, D).
Theorem
DT is a consistent normal default theory ifandonly
if thereisa S™-D)such that
E=Th(SV:D) and
Sr€Output(A(W,D)), Sp=E
where E is a consistent extension for DT and there is
no cycle in DT.

[ PROOF ] The if—half is trivial by the definition
of the consistency from the default theory; The
only —if—half follows the above lemma. |
Definitionll
Let DT be a consistent normal default theory. Sy is
called a pseudo - model for DT, denoted by the
notation Mps(DT), where Sk € Output(A(W, D)).

Suppose DT is a default theory, in which all

defaults in D'T™ are of the form:
:M—P/-P,
This is called the closed world assumption.

Now we can reason out a conclusion from the
theorem that the model for a set W of M—free
formulas is identical to the pseudo—model for the
default theory composed of W and DT® in which
each default is a closed world assumption. This is
stated in the following corollary.

Corollary
The model for a set W of M-free formulas is a
pseudo—model for DT, where

DTMP) =W

DT™® ={:M—F/—F|F is any M-free formula}

[ PROOF] Itis trivial by the algorithm, |

3. Formal definition of the NMKB
An NMKB can be informally defined as a set of
default theories which are changing with the
knowledge assimilation. The formal definition of
NMKB will be given as follows:
NMKB= <U, TRG, E>
U={DTy,DTy,...,DTj,...}

If



U is called the universe of the NMKB;
TRG={<i, j> | where DTj, DT;€U and for
any formulaF,if DT{EF then DT =F}
TRG describes the relationships among all
elements DT; in the universe U.
E represents for any pseudo-model Mps(D'T}) for
DT;,DT;€U.
Mps(DTHYEF iff FEMps(DT);
Mps(DTi)E—'F iff Mps(DTi)“’EF;

Mps(DTHEF1VF2  iff Mps(DTYEF1 or
Mps(DT)EFy;

Mps(DTYEF1AF2  iff Mps(DT))EF1 and
Mps(DT)=F2;

Mps(DT DEF1OF2  iff Mps(DT VEF) or
Mps(DT)EFg;

Mps(DT)EIxF(x) iff thereisaconstantc
such thatMps(DT)EF(c);

Mps(DTy)=VxF(x) iff for all constantsc;,

i=1,...,n, Mps(DTHEF(c;);

Where U is a set of default theories and TRG is
a transformation graph among the default theories
in U. In other words, the set of pairs <i,
j>indicates that DT} is a default theory accessible
from DT;. That is , DT; and DTj are two default
theories in the U, Mps(DT;) and Mps(DT)) are two
pseudo-models for DT; and DT respectively such
thatif Mps(D'T}} EF then Mps(DTi) EF.

F is believable in the NMKB, denoted by
NMEKB)F if and only if there is a DT;€U such that
Mps(DTY)EF, or there is a pair <i, j> €TRG such
that Mps(DT))EF. Otherwise F is doubtful in the
NMKB. The elements occurring in the universe U
of NMKB could be explained as the contexts
varying with the change of the time. As shown in
the Fig.2 the original context of the given
knowledge base KB is KB, U=<KBy, KBy,
KBy,,...,KBy,...>, where KBy, is the context of the
KB at the time point t;.

b

It is reasonable to explain the elements of the
universe U in NMKB as different databases or
knowledge bases in different frameworks such as
relation, first-order logic etc., when we assume the
derivation relation ) as a set of derivation relations
corresponding to each element in U in spite of that
the definition of NMKB has been given under the
hypotheses that each element in U is a default
theory and the derivation relation » is defined
based upon the pseudo-model.

I

4. Conclusion

The problem of non-monotonic reasoning in the
deductive knowledge bases is caused by the
incompletely perceived properties used to classify
the concepts. Furthermore knowledge assimilation
is difficult when some new discoveries have been
made. It seems that an object-oriented language is
appropriate for the knowledge representation in
order to solve this problem.

. . in object- concept-
in logic . . .
Iangugl e oriented relationship
9 language model
method attribute or
predicate selector or concept name
class name
argument concept or
class relationship
predicate class name concept BIRD
bird Bird
predicate class name concept
penguin Penguin PENGUIN
predicate method seletor attribute
canFly CANFLY canFly
the instance of | entity of the
variable *x Birdor concepts BIRD
Penguin or PENGUIN
Bird superclass
canFly(*x)« Object Thereisais-a
bird(*x). CANFLY 1 true | relationship
—1canFly(*x)« Penguin from PENGUIN
penguin(*x) | superclass Bird to BIRD.
CANFLY 1 false

REFERENCES

[1] CHIN-LIANG CHANG, RICHARD
CHAR-TUNG LEE Symbolic Logic and
Mechanical Theorem Proving. ACADEMIC PRESS
New York and London.

[2] Drew McDermott, Jon Doyle Non-monotonic
Logic 1 Artificial Intelligence 13 (1980), 41 —72.
[3] Joseph R. SHOENFIELD Mathematical Logic.
[4] Keith L. Clark [1978] Negation As Failure. In
logic and Databases, H.Gallaire and J. Minker,
Eds. Plenum, New York, PP 293 —322.

{5] REITER R. [1980] A Logic for Default
Reasoning Artificial Intelligence 13, 1, 2 (1980),
81-132.



