HBmIS¥E ATHRE 52-8
(1987 5 7)

A—FABHEELCLLAMBERER &
TDUE L AT LDER

®oOW—mt HA HE®t E BET F5 E-—+
PRIERYE T T RRAT LT A

REAFALALOHABRB L LTIR—VBHEESPERETHA LV IBELRDL VWS, x
FEHBEONBEI R - HESTHRBTELZWVWHARL, F—U BT TERT L LA AEREC
LEABENFEETLINDLIEINLEETHS. I THEMETE,. —RO-EWREHREAIFIRH
JETH), POFR—CHABOEFERLENLELARALLTAHA-FHHBRERET S .

H—PFEHEBANCE ARG R - BOERTHY, 4. G FEPLRERE, B
MMM O—BALTHS. ZHHEBFTHIZSWTE., KB4, VWEEA-E58OB S
BRIZAHL, AL BERP2BOFARLEXMLTEI DN, A—-—FEHFOFEIZZ DM
MINLBERE RV TERIALERAN: —-BALT S .

DEDNBEICER DO HERYATLA (EHAAE) AERL . BHMERBoRE L LTHS
AL 2 —=NNALFPDAF 4 — L0 —F—HWHEONFFAZBLTIH - HFEEOEIEL T

KNOWLEDGE REPRESENTATION AND [NFERENCE SYSTEM
Basep oN GuARDED CLAUSE SET

Seiichiro DAN*, Naoaki AOKT*, Tadahiro KITAHASHI**, and Yoshikazu TEZUKA*

*Faculty of Engineering
**The Institute of Scientific and Industrial Research

Osaka University

The set of Horn clauses is one of the most available knowledge representation methods on
practical knowledge based systems. However it is also true that the domain knowledge is not always
naturally represented as a set of Horn clauses. In this paper, we propose an extended clause form
called guarded clause form (GCF) to represent full flrst order logical expressions and make use of
the availability of Horn clauses at the same time.

GCF is an extended form of the guarded Horn clause for representing non-Horn clause as well
as Horn clause, and its calculus is a generalized version of many-sorted calculus. In many-sorted
calculus, the sort relations (instance-set, subset-superset) are dealt with in different way from other
relations. Instead of these relations, the relations which are defined by only Horn clauses are
specially processed in guarded clause calculus.

We kdemonstrate the availability of GCF -and its calculus through the proof of Schubert's
steamroller by an inference system implemented based on this proposal.

1. Introduction

This research is concerned with the
knowledge representation and the reasoning sys-
tem based on logic. Logic has been used to
explain the structure of human thinking.
Specially, the first-order predicate logic is one
of the most powerful knowledge representation
methods in the artificial intelligence field.

While the theoretical reseaches have been
made for full first-order predicate logic, almost
all practical logic based reasoning systems
adopt mere Horn clause logic or its exteusions.
This is caused by so much complexity of full
first-order calculus and relatively rich repre-
sentability of Horn clauses. However, it is also
true that Horn clauses do not always provide
natural representation for the domain
knowledge. Sometimes the knowledge cannot be
represented without non-Horn clauses, and
sometimes it can be represented without them
but in unnatural way.

In this paper, we investigate the
availability of an extended clause form called
GCF: guarded clause form, which we propose
as a knowledge representation method to
express full first-order predicate logical
formulas.

GCF is an extended form of the guarded
Horn clause so as to be able to represent non-
Horn clauses. A guarded clause has a guard
part which is the precondition for the clause
to be used. To make a resolvent from two
parent clauses, it must be made sure that the
conjunctive condition of the guard parts of
both parents is satisfiable. By pruning the pairs
whose conjunctive guard cannot be shown to be
satisfiable, the search space is effectively
limited. If the pruning cost could be kept
small, the calculus of guarded clauses would be
performed efficiently.

In order to keep the overhead of guard
check relatively small, we define the well-
defined guarded clause set (WGCS). A guard
predicate is well-defined when it is defined by
a set of Horn clauses. Under this condition, a
guard check becomes a proof on a set of Horn

clauses, so its cost becomes relatively small.

Specially, when we use only sort predi-
cates as the guard part predicates in WGCS,
the calculus is like a many-sorted calculus.
Namely, it can be said that the calculus on
WGCS is a generalized version of many-sorted
calculus. In calculus on WGCS, the well-defined
relations are specially processed iustead of the
sort relations in many-sorted calculus.

As the resolution methods for WGCS,
GL-resolution and OGL-resolution are proposed.
The GL-resolution is a sort of linear resolution
for the set of guarded clauses and OGL-
resolution is its ordered version. Both resolution
methods are shown to be complete for WGCS.

Finally, a theorem proving system for
WGCS is implemented based on the above
proposals. With this system, the availability of
the guarded clause calculus is demonstrated in
proving Schubert's steamroller problem compared
with the many—soried calculus. The problem is
a challenge problem for the mechanical
theorem proving systems and it has been
reported that the many-sorted calculus success-

fully proves this problem.

2. Guarded Clause Form

Any first-order formula can be expressed
as a set of clauses which are of the form

{ H1,H2,...,Hm, "Bl, “B2,...,”Bn } (m,u>=0). (1)
Here, "P means the negation of P. This is
sometimes described as the following implica-
tion form,

H1,H2,...,Hm <- B1,B2,...,Bn (m,n>=0), (2)
which means "if Bl & B2 &...& Bn then H1 or
H2 or...or Hm"

This standard form has made a great
contribution to theoretical discussions and easy
construction of theorem provers or logic
programming environments. However it will be
true that there is some information dropped in
transforming into the standard form. The
dropped information is not what we call seman-
tics of formulas in the model theory but higher
level information such as what roles the predi- .
cates play in the formula or how we use the
rules in problem solving. Such information is
so-called the meta-level knowledge.

The guarded clause form (abbreviated to
GCF) is an extended clause form which reflects
such information. The form is

Hl,..,Hm<- Bl,..,Bn|Gl,..,Gk (m,n,k>=0), (3)
which means "when Gl & ... & Gk is true, the

clause, H1 & ... & Hm <- Bl or ... or Bn, is
available. The part HI,.,Hm , BI,.,Bn and
Gl,..,Gk are called head, body and guard

respectively. The left side part of the clause
divided by '|' is called non-guard part and the
this

literals, while the literals in the opposite side

literals in side. are called noun-guard

are called guard literals.

Expression (3) can be transformed into
standard form,

Hl,...,Hm <- BI,...,Bn,Gl,...,Gk. (4)
Expressions (3) and (4) have the same
semantics, namely, the one is true (false) in
some interpretation M iff the other is true

M.

each other in their way of use. Now, we con-

(false) in However they are different from

sider linear resolution. As for standard form,
any clause may be used if a literal in the
clause is unifiable with a literal of center
clause. While for GCF, it is required for a

clause to be used that the guard part of the

resolvent from this clause and the center
clause is holding besides the unifiability.

A guarded clause whose guard part holds
is said to be meaningful, otherwise meaningless.
The guard part of a clause holds if every
literals in it are logical consequence of axioms.
When it contains variables, they are interpreted
as being existentially quantified.

The

clauses

resolvent of two parent guarded

is made in the same way as that of
standard clauses except the additional condition
that the guard literals of both parents must be

placed at the guard part of their resolvent.

3. Linear Resolution for Guarded Clause Set
As checking a clause being meaningful is
also just a proof, so it must be easy enough in

comparison with the whole proof. In this

chapter, we define some concepts for the cal-
culus of guarded clauses to be available, and

propose linear resolution methods with com-

pleteness for the guarded clause set.

It is known that Horn clause set has
good property to deal with. But it is also
known that knowledge for problem solving is

not always described naturally as a Horn clause
set. Here, for the guarded clause set to have

richer ability of representation than Horn
clause set and to make use of its efficiency at

the same time, we define the following notions.

Definition 1
Let S be a P be a

predicate appearing in S, and Sp be a set of
all

(well-defined)
set of clauses,

clauses each of

whose head contains at
least one literal having predicate symbol P.
Predicate P is well-defined in S if the
following conditions hold. And then the set Sp
is called the defimition clause set of P on S.
1) All clauses in Sp are Horn clauses.
defined

whose head part contains at most one literal.

Horn clause is

as the clause

2) All clauses in Sp satisfy one of the fol-
lowing conditions.

2-1) The clause contains no literal
having predicate symbol except P.
2-2) Otherwise, let S' be the set of

clauses made by deleting all literals that
have predicate symbol P from every clause

in the set S-Sp. After this operation, every

predicate except P in the clause is well-
defined in S'.
Definition 2 (WGCS)
Let S and S' be a set of guarded
clauses and its corresponding set of standard
clauses made by replacing 'I' with ','.

The set S of guarded clauses is said to
be a well-defined guarded clause set (WGCS) if
every guard predicate of every guarded clause
in § is well-defined in S'.

Now, we are ready to discuss the linear
resolution methods for the guarded clause set,
specially for WGCS. The
its as

linear resolution and
OL-
resolution, SNL-resolution, etc. are widely used

variations such input resolution,

in theorem proving and logic programming

non-guard
deduction

guard ‘///////
deduction ‘
Cn~1/Bn—1
Cn
Fig. 1 Guarded linear resolution.

fields because they are relatively efficient and

easy to implement on machine.

Definition 3

Given a set S of guarded clauses ard a

(GL-resolution)

guarded clause CO which is not a guard defini-
tion in S. A guarded linear (abbreviated to GL
below) deduction of Cn from S with top clause
CO0 is a deduction of the form shown in Fig. 1
where

1) Ci+l

(called a center clause)

is a resolvent of
and Bi

for i=0,1,...,0-1,
Ci
side clause),

2) each Bi

some j, j < i,

(called a

is either in S, or is a Cj for

3) for i=0,1,..,n-1, if the non-guard part of

Ci is not empty, then the literal resolved upon
in Ci
literal, only otherwise it is a guard literal, and
4)
tree are always meaningful.
A GL-deduction of

clause (<-1) is called a GL-refutation.

for deduction of Ci+l is a non-guard

the guarded clauses in the deduction

the empty guarded

A GL-refutation tree T is composed of

upper subtree and lower subtree. The upper one
is a deduction tree of the clause Ck which is
the first center

clause having mno non-guard

literal in T, namely,

Ck: G1,G2,...,Gn (n>=0).

lower subtree

(5)

is a refutation tree from

<-
The
the top clause Ck, where all clauses are Horn
clauses. When the fourth condition is kept hold-

ing in the course of a resolution, we get

success in refutation as soon as a center

clause formed (5) is deduced. Because the fact

that the clause formed (5) is meaningful is ex-

actly the fact that there 1is at least one
refutation from it.
Just like OL-resolution to linear

resolution, by introducing the notion of the or-
der of literals in a guarded' clause into GL-
resolution, we present the guarded linear
resolution for ordered guarded clause set, OGL-

resolution as follows.

Definition 4

Given a guarded clause C. A literal L in

(the largest literal)

C is the largest literal of C when
1) L is the
part of C, or
2)

L is the left most literal in guard part of C.

left most literal in non-guard

C has no literal in non-guard part and

Definition 5 (OGL-resolution)

An OGL-deduction
GL-deduction that the third condition in Defini-

is such a restricted
tion 3 is replaced by

3') for each i=0,1,...,n-1, the literal resolved
in Ci

largest literal in Ci.

upon for the deduction of Ci+! is the

An OGL-deduction of the empty guarded
clause is also called an OGL-refutation.

Specially, if a WGCS S is composed of
then the OGLU-deduction
like a SNL-deduction, if all
in S have empty guard then it is an
OL-deduction.

only guard definitions,

on S is just and

clauses

In definition 4 and 5, the concepts, fac-

toring or framed literal are omitted for
simplicity.

Finally in this chapter, we refer to
completeness. Completeness is an important

property of proof method. The GL- and OGL-

resolution have completeness for WGCS. Here,

Inference
Selection
Knowledge

Data

Table

Dependency

9

TR

Connection
Graph Table

inference
Selector

Clause
Set

Inference
Controller

1
i Current Clause !J
I —— |

DependtzncyW
Manager

@

Prover

Inference
Process
Modules

Checker

AN
[T
Guarded | Guard Good/
™~ Clauses ! Definitions No-good
L——‘_"‘/. ;i Table

\ Guarded Clause Set

Fig. 2 System module structure.

the proofs are omitted because of the page
limitation, but on the insight over the discus-
sions of completeness of linear resolution and
some other restricted linear resolutions, it will

be easy to guess their completeness for WGCS.

4. Implementation

This chapter preseuts a brief description
of a prototype system for mechanical theorem
proving based on GCF. The module - structure of
this system is shown in Fig. 2. The software
of this system is written in Prolog language on
Toshiba AS3000 {Sun-3).

The user puts a problem described as a
set of standard formed clauses to the system.
The preprocessor transforms it into a guarded
clause set{GCS), which is divided into a set of
the guard definitions(GD) and the rest set
simply called the guarded clauses(GC). Iu this
transformation, the user can select one of the
following three modes:

1) PURE:

namely each clause of the form (1) is trans-

no predicate is used as guard,
formed into a guarded clause of the form
HI,...,Hm <- Bl,..,.Bn | (m,n>=0),
2) MSL: type,
unary well-defined predicate is used as guard,

(6)

many-sorted logic every

and

3) GCF: every well-defined predicate is

used as guard.

After this preprocess, the control of the
proof is handed to the inference controller. It
selects a guarded clause among the subset of
guarded clauses which represents the negation
of the theorem to be proved. Below, the term
‘clause' will be used for guarded clause unless
otherwise mentioned. This selected clause is the
first current clause, namely, the top clause of
a linear resolution. The current clause is the
center clause to be processed at each time.

The inference controller performs the fol-
lowing processes until the non-guard part cf
the current clause becomes empty.

Stepl: let each inference process module
propose all possible deductions for current

clause with their resuiting clauses. These are
recorded in the comnection graph table.
One is provided

for one independent primitive inference such as

inference process module

resolution and factoring. Each possible deduction
the
literals which are used in the deduction.

is characterized by the

primitive .and

Step 2: for each proposed deduction, consult
the guard checker about whether its resulting
clause is meaningful or not. If not, delete the
deduction from the connection graph table.

The guard check is performed by invoking
the guard prover based on SNL-resolution. To
check the guard efficiently, the literals in the
guard part are clustered into some independent
in SNL-

group of

groups and each group is

this

proved

resolution. In process, if a
literals is made sure to be provable, the group
is recorded as good in the good/mo-good table,
otherwise as no-good. This information is used
to cut the proof of the same group of literals.

Step 3: at this point, while there is no
possible deduction left for the current clause,
perform the following processes: by using the
dependency manager, decide where to backtrack
among center clauses, let the decided clause be
new current clause and delete the deduction
which made old current clause from the con-
nection graph table.

If there are some deductions left, proceed

to the following steps.

Step 4: determine one deduction to be per-
formed among the possible deductions by invok-
ing the inference selector. The current clause
is updated by replacing the old one with the
resulting clause of the selected deducticn.

Step 5: perform some checks for new cur-
rent clause: subsumption check, tautology check
If

clause has bad properties,

and so on. it is shown that new current

then abandon this
clause with deletion of its deduction from the
connection graph table, reset the current clause
to the last center clause and back to step 3.
When no problem is found with new current
clause, remove all redundant literals and all
such guard literals that have no common vari-
able with non-guard part from this clause.
case heuristics,

As a special if a guard

literal has only one set of solutions for its

variables then substitute them over the current
clause and remove that literal from this clause.
After these processes, new current clause is
recorded in GC and the information of data
dependency made in performing the deduction is
recorded in the data dependency table.

To make determination of next deduction
at step 4, the inference selector refers to the
inference selection knowledge written in Prolog
code provided by the wuser. If no selection
knowledge is given, then the first deduction is
selected as default. It
knowledge so as for each selection to be made
by the user. Then the prover can be considered

as an interactive prover.

5. Experiments and Results

In order to demonstrate the availability
of the guarded clause calculus, we tried to
prove Schubert's steamroller problem by the
system illustrated in the previous chapter.

Schubert's steamroller is a challenge
problem for mechanical theorem proving“). The
problem of standard clause form and of
guarded clause form (GCF mode) are shown in
Fig. 3 énd Fig. 4 respectively. This problem is
hard to prove becaivse of the rapidly spréading
search space. Some solution methods have been

reported. At present, the many-sorted resolution

is possible to make the:"

<<< Schubert's Steamroller >>>

Wolves, foxes, birds, caterpillars, and snails
are animals (7-11), and there are some of each of
them (1-5). Also there are some grains, and grains
are plants (6,12). Every animal either likes to eat
all plants or all animals much smaller than itself
that like to eat some plants (13). Caterpillars and
snails are much smaller than birds (14,15), which
are smaller than foxes (16), which in turn are
much smaller than wolves (17). Wolves do not like
to eat foxes and grains (18,19), while birds like to
eat caterpillars (20), but not snails (21). Caterpil-
lars and snails like to eat some plants (22-25).

Therefore there is an animal that likes to
eat a grain-eating animal (26,27),

<< Predicate Abbreviations >

w(X): X is a wolf f(X): X is a fox
b(X): X is a bird c(X): X is a caterpillar
s(X): X is a snail g(X): X is a grain
a(X): X is an animal p(X): X is a plant
m(X,Y): X is much smaller than Y
e(X,Y): X likes to eat Y
h(X),i(X),j(X,Y): Skolem functions
(1) w(w) <-. (2) f(£) <-. (3) b(b) <-.
(4) c(e) <-. (5) s(s) <-. (6) g(g) <-.
(7) a(X) <= w(X). (8) a(X) <= £(X).
(9) a(X) <= b(X). (10) a(X) <= c(X).
(11) a(X) <- s(X). (12) p(X) <~ g(X).
(13) e(X,Y),e(X,Z) <~
a(X),p(¥),a(Z),p(W),m(Z,X),e(Z,W).
(14) m(X,Y) <~ c(X),b(Y).
(15) m(X,Y) <~ s(X),b(Y).
(16) m(X,Y) <~ b(X),£f(Y).
(17) m(X,Y) <= £(X),w(Y).
(18) <~ £(X),w(Y),e(Y,X).
(19) <- g(X),w(Y),e(Y,X).
(20) e(X,Y) <~ b(X),c(Y).
(21) <= b(X),s(Y),e(X,Y).
(22) p(h(X)) <~ c(X). (23) e(X,h(X)) <= c(X).
(24) p(i(X)) <= s(X). (25) e(X,i(X)) <~ s(X).
(26) g(j(X,Y)) <= a(X),a(Y).
(27) <= a(X),a(¥),e(X,Y),e(Y, j(X,Y)).
Fig. 3 Schubert's steamroller of
standard clause form.
————————————— << Guard Definitions >>-——m—m————a
(1) w(w) <. (2) £(£) <-y. (3) b(b) <-‘.
(4) c(e) <~|. (5) s(s) <. (6) g(g) <.
(7) a(X) <=|w(X). (8) a(X) <-|£(X).
(9) a(X) <-{b(X). (10) a(X) <-lc(X).
(11) a(X) <~|s(X). (12) p(X) <-|g(X).
(14) m(X,Y) <~lc(X),b(Y).
(15) m(X,Y) <-|s(X),b(Y).
(16) m(X,Y) <~|b(X),£(Y).

m(X,Y) <-|£(X),w(Y).
p(h(X)) <=le(X). (24) p(i(X)) <-|s(X).
g(J(X, 1)) <~[a(X),a(Y).
<< Guarded Clauses >)——————————eu—u
e(X,Y),e(X,2) <~ e(Z,W)

| a(X),p(Y),a(2),p(W),m(Z,X).
<= e(Y,X)|£(X),w(Y).
<~ e(Y,X)|g(X),w(Y).
e(X,Y) <~|b(X),c(Y).
<= e(X,Y)[b(X),s(Y).
e(X,h(X)) <=|c(X). (25) e(X,i(X)) <-|s(X).
<~ e(X,Y),e(Y,i(X,Y)) |a(X),a(Y).

Schubert's steamroller of
guarded clause form.

Fig. 4

Table 1 Results of proving Schubert's steamroller.

INTERACTIVE* AUTOMATIC
MODE PUREI MSL| GCF MSL GCF
ntrol USER DEPTH | META | DEPTH | META
Contro CONTROL FIRST | SEARCH| FIRST |SEARCH
Generated 25 10 7 23 9 9
Clauses
Proof :) .
Depth 25 10 7 failed 10 8 7
CPU Time 202 247 94
(sec.)

* The results of INTERACTIVE are for the optimum selection.

(27) <= e(X,Y),e(Y,§(X,Y)) | a(X),a(Y).

is the best solution among them. (13) e(X,Y),e(X,2) <~ e(Z,W)
The fundamental results of the proof of | a(X),p(Y),a(2),p(W),m(Z,X).
Schubert's steamroller are given in Table 1. (287 e(X,Y1) <= e(Y,i(X,Y)),e(Y,W)
Here, PURE, MSL and GCF are those described [a(X),a(Y),p(Y1),p(W),m(Y,X).
. : ' factoring .
in the previous chapter. For each of them, the /
number of generated clauses, the depth of (29) ﬂﬁgﬂ%}. <~ e(Y,j(X,Y))
X),a(Y Y1), p(j(X, , ,X).
deduction for the refutation and CPU time are (1931((_)_ :EY%’%)IZ&S(W(Q; (¥, %)
. - O ’ .

shown with the three different inference selec-
(30)7 <~ e(f, j(w,£)) |

tion knowledges. (29) e(X,¥1) <~ e(Y,j(X,Y))

The first one, INTERACTIVE, is for the | a(X),a(¥),p(Y1),p(3(X,Y)),m(¥,X).
interactive prover mentioned above. As for this, (3157 <~ e(b, i(£,b)) I
the numbers shown in the Table 1 are of the (13) e(X,Y),e(X,Z) <~ e(Z,W)

case of the optimum selection. So the proof (%), p(1),a(2),p(W),m(Z,%).
depth equals to the number of generated (32) e(b,2) <~ e(Z,W) | a(Z),p(W),m(Z,b).
clauses. In this case, the differences among the (20) e(X.¥) <= | B(X),e().

three modes are merely caused by the fact (33)7 <~ e(c,W) | p(wW).

(23) e(X,h(X)) <= | ¢(X).

are not taken into account. However, the facts (34)7 <~ |

that the steps of the proof for the guard part

should be noted that each number reflects how . .
. Fig. 5 A refutation tree of
many times the user must be answered during Schubert's steamroller.

the proof and that the n;esult 25 for PURE

could be gained only after the user had learned ing are applicable to the current clause, then
~enough by the proof of MSL or GCF, factoring is selected and the first candidate

As an instance, the refutation tree of among the possible factoring is tried. In case
GCF mode is shown in Fig. 5, which. is also of resolution, the following three selections are
the tree of GCF with ‘inference selection Sequentially performed: the literal resolved upon
knowledge METASEARCH discussed below. in the center clause, the side clause and the

The other selection knowledges are for literal resolved upon in it. Fi‘rs‘t, és the literal
the automatic prover. DEPTHFIRST is the in the center clause, the literal which has the
default selection, namely, simple left-to-right fewest number of variables is selected. Second,
depth-first search and METASEARCH is the fol- the clause which has the fewest number of
lowing selection. If both resolution and factor- literals is preferred as the side clause. Finally,

if there are many candidates for the literal
resolved upon in the selected side clause, the
first one is tried first.

As

calculus have been reported as the best solu-

mentioned above, the many-sorted

tion method for Schubert's steamroller.

However, it from the results of

DEPTHFIRST
(simple) control cannot reach the empty clause
(MSL),

in case of full

seems

that linear resolution with no

in case of many-sorted calculus while

the refutation is completed
(GCF). This

whether the predicate m(X,Y) (X is much smal-

guard difference is caused by

ler than Y) is used as guard or not. This fact
in GCF

generalization of the many-sorted calculus but

shows that the calculus is not mere
has higher ability of proof under appropriate
selection of the guard predicates.

From the results of METASEARCH,

councluded that the selection of guard predicates

it is

influences the efficiency of the proof, and

meta-level knowledge 1is available in solving

hard problem such as Schubert's steamroller.

" Appropriate selection of guard predicates
will be a difficult task if knowledge is already
transformed into standard form. However it
should be noted that the difficulty
to GCF. in GCF with

appropriate guard predicates rather

is not due
Knowledge represented
seems

natural than in standard form.

6. Concluding Remarks
In this paper, an extended clause form,
This

presentation is intended to provide both more

guarded clause form was presented.

powerful knowledge representation and ef-

ficiency to practical logic based reasoning
system.

The guarded clause is an extension of
guarded Horn clause from the view of clause
form and its calculus is an extension of many-
sorted calculus. The guarded clause form has
richer representability than Horn clause form
and at least same ability as the many-sorted
form or the standard form.
be

available, the concepts 'WGCS' and 'meaningful

For the guarded clause form to

guarded clause' were defined. GL-resolution and
OGL-resolution were presented as resolution
WGCS. GL-

resolution is such restricted linear resolution in

methods with completeness for
whose deduction tree every clause is meaningful

and non-guard literals precede guard literals as

literals resolved upon. OGL-resolution is GL-
resolution with the order of literals in a clause.
To verify the availability of guarded

clause form and its resolution methods, a prov-
ing system was implemented. From the proof
results of Schubert's steamroller on this system,
the following facts were obtained,

1) the guarded clause form may be used as
a method of task partition between human and
machine in interactive proving environment, and

2)
possibility and could gain higher efficiency than

the many-sorted calculus in practical use. The

the guarded clause calculus has more

success depends on appropriate selection of

guard predicates.
The idea of literal separation in a clause
according to their roles may be also used for

extended logical reasoning such as non-
monotonic reasoning and default reasoning. Be-
cause beliefs, assumptions or defaults should be
treated in different way from ordinary true-or-
false predicates. We are going to make inves-

tigation in this direction.

Reference
(1) C. Walther " A Mechanical Solution of
Schubert's Steamroller by iiany-Sorted

Resolution", Artificial Intelligence, Vol. 26, pp-
217-224 (1985).

(2) C. Chang and R.C.
Logic

”

Lee Symbolic

and Mechanical "
Academic (1973).
(3) B. Silver :
Holland (1986).
(4) J. de Kleer
TMS '} Artificial Intelligence, Vol. 28, pp. 127-
162 (1986).
(5) H.J. Levesque :
tional Approach to Xnowledge Representation "
Artificial Intelligence, Vol.23, pp.155-212 (1984).

Theorem Proving
" Meta-Level inference " North

" An Assumption-based

" Foundations of a Func-

