HBTFEEALTE 59 —6
(1988 7 7)

R EHEEMAICET 2EF 7L o) X A4

E% B, FHEER, REZEM
EHFAL T~ ¥ 2 — & BB 54848

BN & 5 LEHACHL TEH T TRL BIHIRFSNTELN, 2ROIZY ¥ o HdhEEESEIZEST
EHLDLEZXTVE, LL, BN ERPEMEER LIS L4210, 2R RIS TH 2, =
I L, B OBMEEER Ay bV — 2 ICBMAT A LAY TH D, T2, HMTIERT 2755 T1
L, HERLIBRABILEDVLETH B,

ARLTHBEABEBA Y b7 — 2 RURTEREBE L v b7 — 2 1200w T2k, BEIHT 28
SIHERR T L) X h kR L, BFIREEEEGHC I X 2EH T 2w T3, Zhix, Touretzky & O RE
BT ELNLRBOIOE KDL LDOWETH 5,

A Parallel Algorithm for Inheritance Hierarchies
with Constraints

Satoshi Menju, Hidenori Itoh and Yukihiro Morita

ICOT Research Center
21F, Mita Kokusai Bldg.,
1-4-28, Mita, Minato-ku, Tokyo, 108, Japan

This paper introduces the concept of constraints in multiple inheritance hierarchies with exceptions. We add
constraints to the links of inheritance networks, then consider links with satisfied constraints only, ignoring links
with unsatisfied constraints. This method can increase the expressive power.

This paper also describes a parallel algorithm for inheritance hierarchies with constraints. It terminates in O(n)-
time, where n is the length of the longest path of an inheritance network including constraints. The algorithm
obtains one of the solutions produced by the credulous reasoners of Touretzky and Etherington. We also implement

the algorithm in a parallel logic programming language, Guarded Horn Clauses (GHO).

1. Introduction

Algorithms to process multiple inheritance with ex-
ceptions have been discussed in [1,2,3,4]. In these algo-
rithms, the property inheritance between two objects is
represented statically by a link. This paper introduces
the idea of constraint attachment to properties in the
representation of more complex multipie inheritance
problems. The idea of constraints has been argued in
logic programming languages [5,6] to solve more com-
plex logical problems. This also seems to be a kind of
knowledge representation language using constraints.
From the point of view of constraints and their pro-
cessing in parallel, the parallel processing algorithm
presented in this paper is more powerful than the pre-
vious ones. It is expected to make a new paradigm
of knowledge representation or knowledge management
language.

In this research, not only representation power but
also processing efficiency are important. This paper
first explains the inheritance network model whose link
contains added constraint information, and gives ef-
ficient parallel algorithms to process it. These algo-
rithms are written in Guarded Horn Clauses (GHC)
[7], a parallel logic programming language defined as
the kernel language of the Fifth Generation Computer
System.

2. Inheritance Network

This section lists some basic preparations for the fol-
lowing discussion. First, a multiple inheritance net-
work is defined. An inheritance network is composed
of a set of individuals and predicates and a set of links.

< p,+q > and < p,—q > are reasoning links (or,
more simply, links), where p is an individual or a pred-
icate and ¢ is a predicate. < p,+¢ > is called an is-a
link and < p,—g > is called an is-not-a link. The
< p,+q > link exists in an inheritance network iff p is
reasoned to be ¢, and the < p,—¢ > link exists iff p is
reasoned to be not g. When a link exists from p to g,
it is said that p is a parent of ¢ and ¢ is a child of p.

Graphically, an individual is denoted by a white

node, a predicate is denoted by a black node, an is-
o link is denoted by an arrow and an is-not-a link is
denoted by a crosshatched arrow.

A reasoning path, P(pi, p), from node p; to node p,
is composéd of links < b,-, apit1 >, where1 <i<n—1
and « is + or —. The logical length of path P(p1,pn)
isn—1

An 1s-a link is a positive path, and an is-not-a link
is a negative path. If a positive path, P(z1,2.), and
an is-a link, < z,,+y >, exist, then path P(z;,y) is
a positive path. If a positive path, P(z1,2,), and an
is-not-a link, < ,,—y >, exist, then path P(z,y) is
a negative path. All paths which do not fulfil these
conditions are called meaningless paths. For example,
a path, (< a,+b >,< b,—¢ >,< ¢, +d >), is a mean-
ingless path.

Now we assume a few restrictions on our model as

follows.

(1) Every pair of nodes has at most one link, and

(2) no paths make a loop.

Here, a positive node set, a negative node set and a

non-conclusion node set are defined. A positive node

"set of the starting node, s, is a set of nodes which

can be reached through the positive path from s. A
negative node set of s is a set of nodes which can be
reached through the negative path from s. If anode has
both positive and negative paths from s, then the node
should be decided by the path length and starting node
priorify rules, which are given in section 4, showing
whether it belongs to the positive or negative node set.
A non-conclusion node set of s is a set of nodes which
can be reached through a meaningless path from s.

A triplet of these sets is a resolution of the inheri-
tance network. There are two ways of finding the res-
olutions. One is credulous reasoning, and the other is
sceptical reasoning, whose definitions are given in [1,2].

Credulous reasoning gathers all nodes which can be
drawn through positive and/or negative paths in an in-
heritance network. Sceptical reasoning does not gather

nodes which can be drawn through both positive and

Figure 1

negative paths in an inheritance network. It gathers
only nodes which can be drawn exclusively through
positive or negative paths.

We have already shown a parallel reasoning algo-
rithm to find one of the resolutions using credulous
reasoning {1], and have also shown that the processing
time of order O(n) is C X n, that is, linearly, where n
is the length of the longest path in the multiple inher-

itance network [4].

The following sections expand the parallel reasoning
algorithm for the inheritance network whose link has

constraints.

3. Inheritance Network with Constraints

This section discusses an inheritance network with
constraints.

A link with an added constraint is defined as follows.

< p,aq,C > is a link with an added constraint, C,
where a is + or —. If a is +, then it is called an is-a
link with constraint C, and if « is —, then it is called
an is-not-a link with constraint C. When C fulfils all
conditions, p can be reasoned ag, and when C does not
fulfil at least one of them, p cannot be reasoned ag. C
is a set of conditions, that is, C = {as(z;)|[1 £ : < n}.
Each node, z;, has a condition as.

Now, constraint C = {as(z)} and link < p, ag > are
given, where link < p, ag > is connected by a positive
constraint link (denoted — — — >) from node z, as

a :August

b :Summer

¢ :Winter

d :Japan

e :Northernhemisphere
f :Australia

g :Southernhemisphere

Simple example

1s +s, and condition +s is true iff C' acts on link <
p,aq > as a positive constraint. Moreover, constraint
C = {as(z)} and link < p,aq > are given, where link
< p,aq > is connected by a negative constraint link
(denoted +++ >) from node z, as is —s, and condition
—s is true iff C acts on link < p,ag > as a negative
constraint. In these two cases only, constraint C is said
to fulfil the conditions.

A condition, as, at node z is given from outside
initially of is an intermediate result of its reasoning.

Briefly, a link, < p,ag >, with constraint C' exists,
C fulfils the positive or negative condition and link
< p,aq > is connected by the positive or negative con-

straint link iff p is reasoned to be ag under C.
Here, a simple example is shown.

<August, +Summer, + Northernhemisphere> means
that it is summer in August in the northern
hemisphere, and <August, + Winter, +Southern-
hemisphere> means that it is winter in August
in the southern hemisphere. In this example,
+Northernhemisphere and +Southernhemisphere are
the constraints of each link. Fig. 1 shows this.

Next, more examples are given.

(1) Priority

A link, < a,+c,—b(b) >, where constraint —b(b) is
predicate b is not true at node b, means that if a is
reasoned not to be b, then a is reasoned to be c¢. This

is shown in Fig. 2.

b.-l-.,.* @®c

Figure 2 Priority

b .-I--p;(f)""'l-.c

a

Figure 3 Exclusive

(2) Exclusive

< a,+b,—c(c) > and < a,+c¢,—b(b) > mean that a
can be reasoned +b or @ can be reasoned +c exclusively.
This is also shown in Fig. 3.

(3) Default (Etherington and Reiter [3])
The example of Etherington and Reiter [3] is written
in the following links with added constraints (Fig. 4).

< a,+d, >,< a,+b, >, < b,+e¢, >,
< b,—d,—a(a) >, < c,+d,—b(b) >

d
Shell-bearer
Mollusc [
Cephalopod :
K
Nautilus X
a
Figure 4 Default

4. Parallel Algorithm

This section shows a parallel algorithm to find one of
the resolutions by credulous reasoning. Before showing
it, we impose the following restriction on the inheri-
tance network.

No cycle of the reasoning paths through the con-
straint links may exist in an inheritance network. The
example in Fig. 3 has a cycle of reasoning paths
through constraint links. Our parallel algorithm treats
only acyclic inheritance networks.

Definitions are given.

n is a node and s is a starting node in an inheritance
network. A triplet, (mark(s),i(s),p(s)), on n is de-
fined as follows. mark(s) is tm (truth mark), fm (false
mark) or mm (meaningless mark). One of these marks
is propagated from starting node s. i(s) is the logical
path length from s to n. p(s) is the priority of starting
node s.

Next, the mark propagation rule is defined as follows.
Node b is assumed to have a triplet, (tm(s),(s), p(s)),
and node c is connected with b by a reasoning link. If a
constraint, C, of link < b,+¢ > / < b, —c > fulfils the
conditions, node ¢ receives the (tm(s),i + 1(s),p(s))
/ (fm(s),i + 1(s),p(s)) triplet from node b, and if a
constraint, C, of link < b, ac > does not fulfil the con-
ditions, node ¢ receives the (mm(s), 0o, 00) triplet from
node b.)

Here, a constraint, C, from node z fulfils the condi-
tions iff node z has a tm and link < b, @c > is counected
by a positive constraint link from node z (Fig. 5 (a)),
or node z has fm or mm and link < b, ac > is connected
by a negative constraint link from node z (Fig. 5 (b)).
C does not fulfil the conditions in any other case.

Node c always receives the (mm(s),00,00) triplet
from node b, whose mark is fm or mm. In this way,
these triplets are propagated to every child of node b
in parallel. Note that if a triplet has an mm, then both
the logical length and the priority are oco.

Next, if node ¢ receives many triplets, (mark, L, P),
from parent nodes, then one triplet of node ¢ from

them must be defined by using the logical path length,

im
a l¢———-@
b4
b
(a)

¢
fm/mm
a [¢+++1@
X
b
(b)

Figure 5 Satisfiability of constraints

L, from the starting node and the priority, P, of the
starting node.

If (mark(sk),i(sx),p(sk))s are received triplets at
node ¢, 1 < k < [and [is the number of parents of
node ¢, then triplet (M, L, P) of node c is defined as

follows.

P = p(sx), where p'(s;) is a minimum value among

every priority, p(sk).

L = ¢'(s;), where #'(sy) is a maximum value of i(sg)

whose priority is p'(sk).

M = mark (s;), where the (mark(sx), "(sx), p'(sx))
triplet exists, and :”(sx) is a minimum value of
1(sx) whose priority is p'(sx). mark(sy) is propa-
gated along the path of the shortest logical path
length.

Note that M cannot decide the tm or fm definitely.
In credulous reasoning, both ¢m and fm are resolutions.
However, for the simplicity of the algorithm and pro-
cessing efficiency, the user decides at the beginning of
processing which mark, ¢m or fm, is to be used, ac-
cording to the property of the given problem. Then
our parallel algorithm is defined for one of the resolu-
tions in credulous reasoning.

Because our inheritance network is restricted to be
acyclic and the number of nodes is finite, the termina-
tion and soundness of this parallel algorithm are clear.

This parallel algorithm stops at a time in the linear

order of n, where n is the maximum length of the rea-
soning paths connected by constraint links which do
not form any cycle.

Initially, a question node, a, is assigned and some
constraint nodes, ¢(3), of a are chosen, then these nodes
work as the starting nodes under the above parallel
algorithm. Generally, the highest priority is assigned
to a question node a, that is to say, p(a) = 0.

When this algorithm stops, then the attached nodes,
tm(a), are collected as the answers of the question to
the inheritance network with constraints.

The simple example explained in section 3 is shown
in Fig. 6 again. Here, we want to find an answer to the
following question. Is it summer in August in Japan?
In this example, August is assigned as a question node
and Japan is assigned as a constraint node. Initially,
the August node has a triplet, (tm(August),0,0), and
Japan has also a triplet, (tm(Japan),0,1). Using the
parallel algorithm, we can find the answer node, Sum-

mer, with tm(August) attached.

5. Programs in Parallel Logic Programming
Language GHC

This section shows programs in parallel logic pro-
gramming language Guarded Horn Clauses (GHC) [7]
to find the resolution of a given inheritance network
with constraints according to the parallel algorithm
given in the previous section.

The logical structure of Fig. 1 is written as shown in

Fig. 7 (b) in GHC. For comparison, a program with-

b(tm(a),1,0)

R —-."‘-.~
c(mm(a),®) // © e(tm(d),1,1) SO gm(d),1,1)
N
N | P a :August
/ / b :Summer
I ¢ :Winter
/ d :Japan
~7 e :Northernhemisphere
f :Australia
g :Southernhemisphere
a(tm(a),0,0) d(tm(d),0,1) fmm(),)

Figure 6 Example of a ﬁarallél algorithm

gen(Ms,N) :- true |
node(a,Ms,Na, [] ,TMa,_),
node(b,Ms,Nb, [TMa] [IS
node(c,Ms,Nc, [TMa] e s)

node(d,Ms,Nd, [] ,TMd,FMd),
node(e,Ms,Ne, [TMd,FMf],_ ,_),
node(f ,Ms,Nf, [] ,TME ,FMf),

node(g,Ms,Ng, [TME,FMd],_ ,_),
N=[Na,Nb,Nc,Nd,Ne,Nf, Ng].

(a) Program for Fig. 1 without constraints

gen(Ms,N) :- true |
node(a,Ms,Na,Pa,[] ,TMa,_),
node(b,Ms,Nb,Pb, [(TMa, [(+,Ne)])] e e),
node(c,Ms,Nc,Pc, [(TMa, [(+,Ng)1)] D I

node(d,Ms,Nd,Pd, [] ,TMd,FMd) ,
node(e,Ms,Ne,Pe, [(TMd, [1),(FM£,[1)],_ ,_),
node(f,Ms,Nf,P£, [] ,TMf ,FM£),

node(g,Ms,Ng,Pg, [(TMf, [1),(FMd, D], ,_),
N=[(Na,Pa), (Nb,Pb), (Nc,Pc),(Nd,Pd), (Ne,Pe), (Nf,Pf), (Ng,Pg)].

(b) Program for Fig. 1

Figure 7 Sample program in GHC

out both constraints and priorities for the structure
is shown in Fig. 7 (a). It cannot find a correct solu-
tion in this case. gen and node are processes defined in
GHC. Ms is the input of the gen process, and N = [(V-
node, P-node)|node= a,b,c,d, e, f,g] is the output of
the gen process. Here, Ms is a list of the triplets and
(N-node, P-node) is a pair of the mark and priority of
each node.

The first argument of the node process is the name
of the node in Fig. 1. The second argument is an in-
put list of the gen process. The third argument is the
mark given at the node. The fourth argument is the
priority given at the node. The fifth argument is marks
and constraints at the node. The sixth argument is a
common variable defined in GHC, and it is used for
the communication with the nodes connected by the
1s-a link from its node. The seventh argument is also
a common variable and it is used for communication
with the nodes connected by the is-not-a link from its
node.

Each process node receives Ms from the process node
connected with the common variable, calculates the
mark, the logical length and the priority of its node,
and then sends them through the common variable in
the sixth and the seventh arguments.

The appendix gives the whole program in GHC.

6. Conclusion

This paper introduced the idea of inheritance net-
work with constraints and a method of representation.
This method of representation is expected to become
a useful knowledge representation language, because,
in many cases, the relations among objects represent
constraints.

A parallel algorithm for inheritance networks with
constraints is also shown. This algorithm seems to be
an expansion of Touretzky’s algorithm for static mul-
tiple inheritance without constraints.

This algorithm terminates at time O(n) in linear or-
der where n is the maximum length of the reasoning

paths connected by constraint links, because our inher-

itance network has no cycle of reasoning paths through
the constraint links.

The discussions in this paper dealt with the model
and approaches to parallel processing, co-operative
problem solving and logic programming with con-
straints. The feasibility and flexibility of the parallel
algorithm must be verified by applying it to the larger

real applications.

References

[1] Touretzky, D. S., The Mathematics of Inheritance
Systems, Morgan Kaufmann Publishers, Los Altos,
CA, 1986.

=

Horty, J. F., Thomason, R. H. and Touretzky, D. S.,
A Skeptical Theory of Inheritance in Nonmonotonic
Semantic Networks, Proceedings of AAAI-87, 1987,
pp-358-363.

3

—_—

Etherington, D. W. and Reiter, R., On Inheritance
Hierarchies With Exceptions, Proceedings of AAAI-
83, 1983, pp.104-108.

[4] Menju, S., Morita, Y. and Itoh, H., A Parallel Al-
gorithm for Inheritance Network with Exceptions,
Proceedings of 86th IPSJ Conference 6P-8, 1988,
pp.1491-1492 (in Japanese).

[5] Colmerauer, A., Opening the Prolog III Universe:
A New Generation of Prolog Promises Some Power-
ful Capabilities, BYTE, August 1987, pp.177-182.

[6] Jaffar, J. and Lassez, J-L., Constraint Logic Pro-
gramming, In fth IEEE Symposium on Logic Pro-
grammang, 1987.

[7

—

Ueda, K., Guarded Horn Clauses, Proceedings of
Logic Programming ’85, Lecture Notes in Com-
puter Science 221, Springer-Verlag, Berlin Heidel-
berg, 1986, pp.168-179.

APPENDICES
A. GHC Program

The GHC program of our algorithm is represented below. The initial goal of the program is go(Ms), where Ms
is a stream variable of lists of triplets, (NodeName, Mark, Priority). In this program, the priority of the mm is 0

for convenience.

% gen(Ms,N) represents the structure of a network.
% Ms is the input, a list of triplets, (NodeName, Mark, Priority).
% N is the output, a list of pairs, (Mark, Priority), of each node.

gen(Ms,N) :- true |

node(a,Ms,Na,Pa,[] ,TMa,_),
node(b,Ms,Nb,Pb, [(TMa, [(+,Ne)])] ,_ ,.),
node(c,Ms,Nc,Pc, [(TMa, [(+,Ng)])] ,_ ,_),
node(d,Ms,Nd,Pd,] ,TMd,FMd) ,
node(e,Ms,Ne,Pe, [(TMd, [1), (FM£,[D]1,_ ,_),
node(f,Ms,Nf,P£, [] ,TM£ ,FM£) ,

node(g,Ms,Ng,Pg, [(TME, [1), (FMd, DI, ,_),
N=[(Na,Pa), (Nb,Pb), (Nc,Pc), (Nd,Pd) , (Ne,Pe) , (N£,P£) , (Ng,Pg)] .

% go(Ms) is the initial goal of the program.
% Ms is the input, a stream of lists of triplets, (NodeName, Mark, Priority).

go(Ms) :- true | go1(Ms,0s) , outstream(0s).

go1([M1|Ms],0s) :- true | gen(M1,N) , Os=[nl,write(M1),nl,write(N),nl|0st],
gol(Ms,0s1).

gol1([] ,08) :- true | Os=[write(’terminated.’),nl].

% node(Name,Ms,N,P,Xs,TM,FM) computes a mark, N, and a priority, P, of a

% node corresponding to Name, and marks propagated from the node, using

% input Ms, which is a list of triplets, (NodeName, Mark, Priority), and

% Xs, which is a 1list of links to the node. TM (FM) is a mark to be

% propagated through is-a links (is-not-a links, respectively) from the node.

node(Name, [(Nt,_,_)1Cs],N,P,Xs,TM,FM) :- Ni\=Name | node(Name,Cs,H,P,Xs,TM,FM).‘

node(Name, [J,N,P,Xs,TM,FM) :- true |
search(mm,0,1,1,Xs,N,P,MaxC) , prop(N,TM1,FM1) , C:=MaxC+1 , TM=(TM1,P,C),
FM=(FM1,P,C).

node(Namg,[(Name,M,P)l_],N,Pl,Xs,TM.FH) :- true | search(M,P,0,0,Xs,N,P1,),
prop(N,TM1,FM1) , TM=(TM1,P1,0) , FM=(FM1,P1,0).

% prop(M,TM,FM) chooses the types of marks which a node with mark M
% propagates.

prop(tm,TM,FM) :- true | TM=tm , FM=fm.
prop(M ,TM,FM) :- M\=tm | TM=mm , FM=mm.

% search(TM,TP,TMax,TMin,Xs,N,P,C) computes a mark, N, a priority, P,

% and a logical path length, C. TM, TP, TMax and TMin are a temporary

% mark, a temporary priority, a temporary maximum logical path length, and
% a temporary minimum logical path length, respectively. Xs is a list of

% ((mark, priority, logical path length),constraint).

search(TM, TP, TMax,TMin, [((mm,_,_),_) |Xs],N,P,C) :- true |
search(TM,TP,TMax,TMin,Xs,N,P,C).

search(mm,_ ,. ,_ ,[((M1,P1,C1),Cons)|Xs],N,P,C) :- true | con(Cons,CM),
check(CM,mm,M1,NM,C1,C1,_,C1,61,_,P1,P1,_) , search(NM,P1,C1,C1,Xs,N,P,C).

search(TM, TP, TMax,TMin, [((_ ,P1,_),Cons) |Xs],N,P,C) :- TM\=mm,TP<P1 |
search(TM,TP,TMax,TMin,Xs,N,P,C).

search(TM,TP,TMax,TMin, [((M1,P1,C1),Cons) |Xs],N,P,C) :- M1\=mm,Pi<TP |
con(Cons,CM) , check(CM,TM,M1,NM,TMin,C1,NMin, TMax,C1,NMax,TP,P1,NP),
search(NM,NP,NMax ,NMin,Xs,N,P,C).

search(TM,TP,TMax,TMin, [((M1,P1,C1),Cons) |Xs],N,P,C) :- TM\=mm,P1=TP,TMin=<C1
max(TMax,C1,NMax) , search(TM,TP,NMax,TMin,Xs,N,P,C).

search(TM,TP,TMax,TMin, [((M1,P1,C1) ,Cons) |Xs],N,P,C) :- Mi\=mm,P1=TP,TMin>C1 |
con(Cons,CM) , check(CM,TM,Mi,NM,TMin,C1,NMin,TMax,C1,_,TP,P1,.),
search(NM,TP,TMax,NMin,Xs,N,P,C).

search(TM,TP,TMax,_, [1,N,P,C) :~ true | C=TMax , N=TM , P=TP.

max(X,Y,Z2) :- X>=Y | Z=X.
max(X,Y,Z) :- X<Y | Z=sY.

% con(Cons,CM) checks whether the constraint, Cons, is satisfied.

con([] ,CM) :- true | CM=tm.
con([(+,N)I1Xs],CM) :- N=tm | con(Xs,CM).
con([(-,N) IXs],CM) :- N\=tm | con(Xs,CM).
con([(+,N) |Xs],CM) :- N\=tm | CM=fm.
con([(-,N)1Xs],CM) :- N=tm | CM=fm.

% check(CM,...) chooses a temporary mark, a temporary minimum logical path
% length, a temporary maximum logical path length and a temporary priority.

check(tm,_ ,M2,M3,_ ,MinC2,MinC3, _ ,MaxC2,MaxC3,_ ,P2,P3) :- true |
M3=M2 , MinC3=MinC2 , MaxC3=MaxC2 , P3=P2.

check(fm,M1,_ ,M3,MinCi1,_ ,MinC3,MaxC1,_ ,MaxC3,P1,_ ,P3) :~ true |
M3=M1 , MinC3=MinC1 , MaxC3=MaxCi , P3=P1.

B. Example

Suppose that we want to know, first, whether August is summer or winter in Japan, and second, whether it is
summer or winter in Australia. For the first question, we set a mark, ¢m, with priority 0 on node a, corresponding
to August, a mark, tm, with priority 1 on node d, corresponding to Japan. For the second question, we set a
mark, m, with priority 0 on node a, a mark, tm, with priority 1 on node f, corresponding to Australia. Then our

program runs as follows. Note that the two questions are also processed in parallel.

| 7- ghc go([[(a,tm,0),(d,tm,1)],[(a,tm,0), (f,tm,1)]]).

[(a,tm,0),(d,tm,1)]
[(tm,0),(tm,0), (mm,0), (tm,1), (tm,1), (mm,0) , (fm,1)]

[(a,tm,0),(f,tm,1)]
[(tm,0),(mm,0),(tm,0), (mm,0), (fm,1), (tm,1), (tm,1)]

terminated.
yes

| 7=

Since, in the first solution list, the second pair is (¢m,0) and the second node, b, means summer, August is
summer in Japan. Similarly, since, in the second solution list, the third pair is (¢m,0) and the third node, ¢, means

winter, August is winter in Australia.

