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In this paper, we shall search out some relationship between default logic and circumseription, two
kinds of important logic frameworks to formalize non-monotonic reasoning encountered in the incomplete
knowledge processing, and then connect the concept of believability in default logic with minimal
entailment in our way.

To begin with, we shall define a model Mg of W restricted by T [Mg] wrt a default theory (D, W) as
the model of (D, W), in which Mg is the minimal model of a consistent extension for (D, W); and conversely,
any consistent extension for (D, W) will be the set of wffs satisfied by some models of (D, W). Then, it is
shown that a wff w believable in a default theory (D, W) is true in a model Mg of (D, W). Next, we state
that through certain transformation of defaults, it is possible to associate 'believability' in default logic
with 'eircumscriptive inference' in first-order logic. At last, based on all of those stated previously, our
paper is ended with a conclusion that believability in default logic could be explained by minimal
entailment in a different viewpoint of eircumseription.



1. Introduction

In order to deal with so-called commonsense
knowledge, or incomplete knowledge, default logic
] and circumseription ¥ have been proposed to
formalize non-monotonic reasoning specifying how
to make commonsense knowledge into use. Default
logic is based on the modal symbol M (roughly
meaning ‘consistent’ ) which is beyond the
framework of first-order logic and the semantics of
M has not been considered. Circumscription is
reasonable to be considered as some restriction
posed on theories of first-order logic, in which no
symbols like M in default logic are introduced, and
it has a semantic counterpart, a minimal model. In
this paper, we shall try to discover some
relationship between two issues through
transforming defaults into wffs in first-order
language. Then the modal symbol M in default
logic could be explained model-theoretically based
on circumscription which is entirely corresponding
to the minimal entailment.

1.1. Incomplete Khowledge and
Non-Monotonic Reasoning

As we know, logical theories could been seen
as collections of some represented and compact
knowledge concerning certain perceived real
worlds. They are assumed to be complete in
classical logic, that is, no more knowledge could be
relative to the real worlds except for those
described by the theories. Then expanding those
compact representations of knowledge causes a
kind of monotonic reasoning. It suggests that those
locally derivable still remain to be derivable
globally when that described by theories are
integrated themselves (i.e., theories are consistent
in logic meaning). However, it seems impossible to
completely perceive real worlds and then it may be
more natural to treat those theories wrt
incompletely perceived worlds as open than to treat
them as closed, such that they can be strengthened
by discovering more about the real worlds.
However, in this case, what received previously
may be ruined later by new discoveries. Then the
reasoning relative to this kind of open theories is no
longer monotonic. Those locally derivable could be
falsified globally. For instance, about the bird
problem, we know ‘A creature can fly if it is a bird,
unless there is fact contrary to this.’, “Tweety is a
bird’ and ‘Tweety is a Penguin.”. Then ‘Tweety can
fly.’ could be conjectured locally from ‘A creature
can fly if it is a bird, unless there is fact contrary to
this.” and ‘T'weety is a bird., while it cannot be
concluded globally with all of those sentences. In
our paper, two ways to specify the non-monotonic
reasoning of this kind, default logic and

circumscription, will be observed in same
viewpoint of minimal entailment. Now we shall
first recall some basic concepts concerning with
default logic and circumscription.

1.2. Default Logic

Default logic is one proposal to represent
incomplete knowledge with exceptions *! and to
formalize the non-monotonic reasoning on the
incomplete knowledge of this kind. It is based on an
extended first-order language by introducing a
modal symbol M which could be roughly explained
as ‘consistency’. The theoretical meaning of M has
not been considered in classically logical sense.
Here a few terminologies and definitions relating
to default logic will be recalled briefly. A default &
is written as (a(x): MB(x)/7(x)), where a(x), B(x), and
7(x) are wffs and x is the tuple of all variables
occurring in 8. 8 is said to be closed when every
variable is bound by quantifiers. a(x) is called the
prerequisite, denoted by PREREQUISITES(S), f(x)
the justification, JUSTIFICATION(3) and r(x) the
consequent of 8, CONSEQUENTS(8). For a set D of
defaults, PREREQUISITES(D), JUSTIFICATION
(D) and CONSEQUENTS(D) stand for sets of
prerequisites, justifications and consequents
respectively of all defaults in D. A default & is
roughly explained as: its consequent y(x) is
believable if its prerequisite a(x) is believable
unless its justification B(x) is explicitly negated. A
default theory is defined as a pair of sets of defaults
and wffs, usually indicated by DT=(D, W), where
D is a set of defaults and W a set of wffs. (D, W) is
said to be closed when every default in D is closed
and every wff in W is closed. (D, W) is said to be
clausal form when every wff ¢ in
WUPREREQUISITES(D)UJUSTIFICATION(D)U
CONSEQUENTS(D) is clausal form, i.e., ¢ is
universal quantified. The follows will give the
definition of extensions for default theories.

Definitionl
Let DT=(D, W) be a closed default theory,
and E a set of closed wffs. Define
(1) E9=W;
(2) EC+D=ThEMU{ 70|
(a(x): MB(x)/7(x)€D,
a(x)€EY and —B(x)¢E.}
E is an extension for DT iff

E=|JE®.

A wffdis é:gd to be believable in a default
theory (D, W) if there is some extension for (D, W)
containing ¢. However there are not always
extensions for a default theory of general form. And

it is also obviously extensions are not necessary to
be consistent. For a default theory, restricting the




syntax of all of its defaults to be normal form, i.e.,
the consequent of default is same with the
justification of default, then it has always
extensions and each of them is consistent if all of
wffs in the default theory is consistent.

Definition2
Let DT =(D, W) be a default theory and E an
extension for DT. GD(E) is introduced to denote the
set of generation defaults wrt E, defined by:
GD(E) ={s(1 8=(a(x): MB(x)/7(x))€D,
a(x)€E and —B(x)¢E }.

1.3. Circumscription

Circumscription is another proposal to
formalize non-monotonic reasoning without
introducing any modal symbol into classical logic
31, Commonsense knowledge or incomplete
knowledge could be represented by introducing the
so-called abnormal predicate and the commonsense
reasoning (which is, of course, a kind of non-
monotonic reasoning) can be achieved through
circumscribing the abnormal predicate 4. As an
advantage of circumscription, it has a semantic
counterpart, a minimal model. Now let us describe
the formal definition of circumscription and declare
some terminologies used in this paper.

Definition3

Let A(P) be a sentence ( a formula without
free occurrences of variables ) with occurrences of
an n-ary predicate symbol P in first-order
language. The circumscription of P in A(P) is
defined by the following second-order formula:

APAVp. [A(p)AVx. (p(x) DP(x))D

Vx. (P(x)Dp(x))]
denoted by Circum(A(P); P), where p is an n-ary
predicate variable. A(p) is the result of substituting
p for each occurrence of P in A(P). x is a tuple of
variables.

Let W be a set of wffs, S a set of predicate
symbols and ¢ a closed wff. W4 stands for that ¢
is provable from the result of W circumscribing
every predicate symbol occurring in S, i.e., Wb
iff Circum(W; S)i~¢.

1.4. An Example And Outline

Let us intuitively observe default reasoning
and commonsense reasoning relative to
circumscription. In default logic, the modal symbol
M is the key to understand default reasoning, how
to behave and what to be derived. Informally, for a
wff B(x), MP(x) represents that about p(x) we at
least know the negation of B(x) does not hold even if
B(x) itself is not provable at present time. According
to this, it seems appropriately to explain a default
(a(x): MB(x)/7(x)) as the declaration of “when a(x) is
derived, y(x) is also derived as long as the negation

of B(x) does not appear.”. Then the default
reasoning with such defaults seemingly encourage
us to derive something as much as possible unless
there are contrary facts. Such as in the bird
problem, for a creature, if it is known to be a bird,
the default (Bird(x): MFly(x)/Fly(x)) encourages us
to believe it can fly no matter actually it can or
cannot unless we are told that it is unable to fly.
However, circumscription tends to suggest to
minimize what could be derived and denies
something unknown. For example, all we know is
“A and B are two blocks.”. In view of
circumscription, we would like to conjecture that
“Something neither A nor B is not block.”. Then
circumscription and default reasoning seem to stem
from two entirely contrary observations of
incomplete knowledge. On the one hand,
J.McCarthy has introduced the abnormal predicate
symbeol ab to describe what represented by defaults,
and achieved commonsense reasoning (perhaps
similar to default reasoning) through
circumscribing ab 4, On the other hand, hinted by
that minimal models of a sentential set of wffs
coincide with models of extensions induced from
those wffs by the closed world assumption, we shall
try to find some deeper relationship between
default logic and circumscription. However, by
Tomasz Imieliski’s research 1% we also know by
modular translation of defaults, the expressive
power of circumscription is same with single
seminormal default theories (i.e. only one
extension) without prerequisites. Then we
introduce a predicate symbol B for every default
(a(x): MB(x)/7(x)). (a(x): MB(x)/7(x)) is then
transformed into a(x)A—-"B(x)Dy(x) and
—B(x)D"B(x). Based upon this transformation of
defaults, we shall try to discover the relationship
between default reasoning and circumscription in
the following sections. In order to see the main idea
intuitively, an example is illustrated as below.

Example
Let DTBird=(wBirdy DBird) be the default

theory describing the bird problem mentioned
previously. Wgiyq is the set of wffs:

Penguin(x) DBird(x)

Penguin(x) D~ Fly(x)

Penguin(Tweety),
and Dpg;, is the set of a single default:

Bird(x): MFly(x)
Fly(x) '

The abnormal theory of DTgj.q, i.e., the
transformed form of DT, (the formal definition will
be given in the coming section) is:

Bird(x)/\ —"Fly(x) DFly(x)

—Fly(x) D"Fly(x)

Penguin(x) DBird(x)



Penguin(x) D Fly(x)

Penguin(Tweety).

Here "Fly is a new predicate symbol, and the
abnormal theory of DTy, , is separable wrt "Fly'®l,
Then the circumscription of "Fly in the abnormal
theory can be expressed in first-order language and
is reasonably computable. The expected definition
of "Fly is achieved, i.e., "Fly(x) iff 7 Fly(x), by
circumscribing "Fly in the abnormal theory.
Circumscribing "Fly actually to minimize the cases
that creatures being birds cannot fly.

In our opinion, a wff ¢ believable in DTy, , is
same as that ¢ is circumscriptively inferred from
the abnormal theory of DT, , wrt "Fly.

In section2, a model Mg of W restricted by
T [Mo] wrt s default theory (D, W) will be defined as
amodel of (D, W). It is also shown by theorem1 that
a default theory has a consistent extension iffit has
a model.

The relationships revealed in section3,
among three concepts of the believability in default
logic, the minimal entailment in first-order logic,
and circumscriptive inference in circumscription
are sketched in the figure.

Here we shall briefly explain it. DTHB¢
stands for. that a wff ¢ is believable in a default
theory DT. At first, it has been known that for a
theory, the circumscription of a predicate symbol is
true in all of its models minimal in this predicate
symbol. Next, for a default theory (D, W), through
certain transformation of defaults, it will be shown
that a wff believable in (D, W) can be
circumscriptively inferred from the transformed
theory of (D, W) by theorem2.

Then the commonsense reasoning and
default reasoning based on circumscription and
default logic respectively are connected through
minimal entailment and certain transformation of

defaults. The model-theoretical meaning of M in

default logic could be explained by minimal
entailment. It is also possible to compensate for the
disadvantage of circumscription, i.e., the difficulty
of derivation with second-order formulas, by
simulating the proof procedure on default theories.

At last, by theorem4, we come to the
conclusion that: a wff believable in a closed default
theory (D, W) of clausal form is minimally entailed
by GDY%E)UW, where E is a consistent extension for
(D, W).

2. Models of Default Theories

In our opinion, models for a default theory
(D, W) are models of W satisfying one extension for
(D, W); and conversely any consistent extension of
(D, W) is satisfied by some models of (D, W). Now
we define I'_[Mg] for any model Mg of W. My is

Default Logic
GDE)UW = Justenab GDY(E)UW |_JU5’I‘(GD(E>)B
if DT 2. if DTH29.

GD(E)UW=

GDE)UWH

JUS'I‘(GD(E))B Ji US'l‘(GD(E))ﬁ

Minimal
Entailment  GD'E)WUWE B8
if GDE)UW

Circumscription

JUS‘I‘(G‘:D(E}))B

Fig. Relationship among s, s and 8

defined as a model of (D, W) when it is the minimal
model of T' [Mg].

Let DT=(D, W) be a closed default theory,
My any model of W and L the set of all formulas in
first-order language.
(1) T [Mo]=W;
2.1 T,,,[Mo]=L
for some default (a(x): MB(x)/7(x)) in D,
a(x)€T,[Mo],
My~ k= —B(x) and
—1B(x) €T, [Mol;
(2.2) T, ,[Mol=Th(T{MoDU{ (@ |
(a(x): MB(x)/7(x)€D,
a(x)€T'[Mo],
Moy~ E=—B(x) and
Mok=r() };
(2.3) T, ,[Mg]=L
for some default (a(x): MB(x)/7(x)) in D,
a(x)€T,[Mo],
Mo~ —B(x) but
Mo~ Er(x).
Then I'_[Mp] is defined as:

T, M= L_)o TiM]

Now we shlall give a concept of minimal
model. The model Mg of W will be defined as the
model of (D, W) if Mg is minimal model of T [Mg]
wrt (D, W).

Definitiond

The structure M of a sentence A of clausal
form is defined as:

(i) a non-empty Herbrand universe, called the
domain of M, denoted by [M];
(ii) MI[K]: [M|°—|M]|, if K is an n-ary function
symbol;

M[K]: |M|"—{True, False} if K is an n-ary




predicate symbol.
MK *]={a€|M|*| M[K](a) =True}C|M]|%;
M[K-]={a€[M|"| M[K](a) =False}C|M|".

Definitions
Let M and N be two structures of a sentence
A.Mis a substructure of N in a predicate symbol P,
written as M= pN, if
1) M| =|NJ;
(2) M[Q]=NI[Q] for any predicate symbol Q (or
function symbols), Q# P;
(3) M[P*]CNIP*].
MI[Q*]is called the extension of predicate symbol Q
in a structure M.
A model M of a sentence A is minimal in P iff
for any model M’ of A,
M =pM only if M'=M, i.e,M[P*]=M[P*].
Let S be a set of predicate symbols. M=gN
means that M= p N for each Pjin S.

Definition6

Let DT=(D, W) be a closed default theory. A
model Mg of W is said to be a model of DT iff
T' [Mp]# L, and My is a model of ' [Mp] minimal in
[Mp], the set of all predicate symbols occurring in
the justifications of defaults used to construct
T [Mo].

¢ is said to be believable in DT, written as
DT3By, iff there is an extension E of DT
containing ¢, i.e., $€E.

When a default theory (D, W) has a model
defined in the above way, we can simply figure out:

(1) all wffsin W are consistent;

(2) there is a consistent extension for (D, W).
As we have known, a default theory is generally
said to be consistent if it has at least one consistent
extension. Then this suggests the default theory is
consistent if it has a model.

By the definition of I’ [Mg], there is a model
for a default theory (D, W), then this model is also
satisfying all of those wffs in W. Thus (1) is self-
evident. (2) will appear in the if-half of the
following theorem.

Theoreml

A closed default theory of clausal form
DT =(D,W) has a consistent extension iff it has a
model when when every default in D is (a(x):
MpB(x)/7(x)), and = B(x) contains no negative literal.

[ PROOF] 1. Atfirst, we shall prove the if-halfof
the theorem, i.e., if (D, W) has a model then it has a
cohsistent extension.

Suppose My is a model for DT. By the
definition6, we have I' [Mg]# L. Then we can
construct E in the way of definitionl based on
T [Mo]l.

(1) E9=W;

(2) EG+V=Th(ED)U {T(x) I
(alx): MB(x)/7(x))€D,
a(x)€EY and
—B(x)€T [Mql.}

E=|JEY.
o
In order to prove I'_[Mo] is an extension for

DT, it is sufficient to show I’ [Mo]=E
Prove ECT' [Mp], i.e.,

U e9c Jrm,)
I nductli_v% base: =0

E®CT [Mg] by the definitions of E and
T [Mgl;

Inductive hypothesis:

Assume E®CT [Mg].
Inductive step:

Prove EA*DCT,  [Mgl.

For a default 8=(a(x): MB(x)/7(x)) in D,
a(x)€ED and —B(x)¢T, [Mo), to show a(x)€T;[Mg],
Mo~ E 1 B(x) and MgEy(x).

(i) Prove a(x)€T',[Mg].

By the inductive hypothesis E9CT[Mp] and
a(x)€ED, we have a(x) € T;[Mg];

(ii) Prove Mg~ k= —1B(x).

(a) Let —1B(x) be an atom P(t). Obviously we
have P(t)€[Mp], where [M] is the set of predicate
symbols occurring in the justifications of defaults
used to construct I'_[Mg].

Suppose Mg=P(t). Then we can construct a
proper substructure M of My in the way:

MIK]=M[K] forevery K#P and

MI[P]=Mg[P]—(t).

Because of P(t)¢T' [Mo] and MykT_[Mg].
Then M is a model of ' [Mp]. This contradicts the
minimality of Mg, Thus Mg~ = — p(x);

(b) Let —p(x) be P(t1)vQ(t2) or P(t)AQ(t2).
The proof of Mg~ —B(x), similar with (a), will be
omitted here.

Thus we get Mg~ E = f(x);

(iii) To prove MgkEy(x).

By the definition of I"_[Mp], we know that
when a(x)€T,[Mgl, Mg~ = —B(x), r(x) is satisfied by
M ifT'_[Mo]+# L; otherwise, I'_[Mgl=L.

Thus we get MoF=7(x).

By (i), (ii) and (iii), we have E4*DCT, [Mo].
Therefore ECT'_[Mgl.

Prove ' [MgICE, i.e,

U riMgc U E9.
Inducttiug base: =

[ [MoICE® by the definitions of E and
T [Mo];
Inductive hypothesis:

Assume T,[Mg]CE®;



Inductive step:

ProveT, [Mg]CEd+D,

For a default §=(a(x): MB(x)/r(x)) in D,
a(x)€T,[Mpl, Mo~ &= —B(x) and MgE=7(x), to show

a(x)€E® and - B(x)€T, [Mol.
' (i) Prove a(x)€E®,

By the inductive hypothesis I'[MolCE® and
a(x)€T,[Mg], we have a(x) €ED;

(ii) Prove = f(x)¢T [Mp].

Suppose —f(x)€T [My]. Then it is reasonable
to assume there is an j, j=i, ' B(x) €T [Mo].
Together with a(x)€T',[Mg], Mo~k —p(x) and j=i,
we have a(x)€T;[Mgl, Mo~ F - p(x) and
—'ﬁ(x)YI‘j[Mo]. Then according to (2.1) in the
definition of T’ [Mg], I [Mp]=L is obtained. This
contradicts that My is a model of I' [Mp]. Hence
-1 B(x) €T, [Mo].

By (i) and (ii), we have T, ,[MglCE(+D,
Therefore ' [MplCE.

Together with ECT _[Mg], I' [Mgl=E has
been proven.

II. Next, we shall prove the only-if-half of
the theorem, i.e., if (D, W) has a consistent
extension, then it has a model.

In order to show (D, W) has a model, it is
sufficient to construct an I'_[My] based on a model
Mg of W wrt (D, W) and prove that My is a model of
I, [Mg] minimal in [Mf].

Let E be an extension for (D, W). Because (D,
‘W) is clausal form, then E is also a theory of clausal
form. At the same time, a clausal theory has always
a minimal model. Thus it is reasonable to assume
My be a model of E minimal in {Mp], the set of
predicate symbols occurring in the justifications of
defaults in GD(E).

At first we can construct I' [Mp] in the way:

(1) T [Mo]=W;

(2) T, Mol = Th(T[MoD U{ 7|

(a(x): MB(x)/7(x))€D,
a(x)€T,[Mo],

Mo~ E —B(x) and
Mok=7r(x) }.

r, M= U0 LM
im
Prove I' [MplCE, i.e.,

U rimgic | E®.
Inductive%bgse: =0
I [MglCE® because of the definitions of
T' [Mo] and E;
Inductive hypothesis:
Assume I',[Mg]CE®;
Inductive step:
Prove I, [Mo]CE®+D,
For a default (a(x): Mﬁ(x)/r(x)) in D,

a(x)€T,[Mp]l, Mo~ E —f(x) and MoE=y(x), to show
a(x)€E® and — p(x)¢E.

(i) Prove a(x)€E®,

By the inductive hypothesis I',[Mg]ICE® and
a(x)€T,[Mg], we get a(x)€E®D;

(ii) Prove —1B(x)¢E.

Suppose —B(x)€E. Then it is true in every
model of E. This contradicts My~ k=—p(x) and
MoEE.

By (i) and (ii), we have I, ,[Mg]CE4+". Thus
T, [MgICE.

Prove ECT' [Mg], i.e.,

UOE" c Uo TM,)
is =
Inductive base:

E®CT[Mg] by the definitions of E and
T {Mol;

Inductive hypothesis:

Assume EOCT'[Mg];
Inductive step:

Prove E4*UCT, | [Mg].

For a default (a(x): MB(x)/r(x)) in D, a(x)¢E®
and —f(x)¢E, to show a(x)€T,[Mg], Mg~k — f(x)
and MgoE=r(x).

(i) Prove a(x)€T'[Mgl.

By the inductive hypothesis E9CT,[Mg] and
a(x)€ED, we get a(x)€T,[Mol;

(ii) Prove Mg~ k= —1B(x).

According to Mg=E, —B(x)¢E and the
minimality of Mg, we can reason out Mgk —f(x).
The details of this proof, similar with (ii) to show
I' [Mp]CE in the proof of if-half, will be omitted
here;

(iii) Prove MgkE=7(x).

Because of a(x)€¢E® and —p(x)¢E, then we
have 7(x)€E by the property of extension. Thus
MykF=7(x) follows Mo =E.

By (i), (ii) and (iii), we have ES+ICT, [Mq).
Thus ECT_[Mpl.

Together with I' [MglCE, there is
I'_[Mpl=E. Therefore My is a model of I [Mg] in
[MB] because Mg is a model of E minimal in [Mp].

Then theorem has been proven. QED

Generally, a default (a(x): MB(x)/r(x)), in
which - B(x) contains negative literals, can be
changed into default (a(x): MB'(x)/r(x)), in which
—1B'(x) contains no negative literal. For instance,
(Bird(x): MFly(x)/Fly(x)) can be represented by
(Bird(x): M "Fly(x)/Fly(x)) and —Fly(x)D>°Fly(x).
Therefore, theorem1 may be appropriate for any
default theories if we slightly change the form of
defaults appearing in those default theories.

According to this, a default theory has
extensions is identified with that it has models,
which are actually the models for all wffs and




satisfy those restrictions represented by some
defaults in the default theory. Let us consider a
model Mg for a default theory (D, W) and an I'_[Mj)]
wrt (D, W). Shown by theoreml, T'_[Mg] is an
extension for (D, W).

Corollaryl .1
Let DT=(D, W) be a closed default theory of

clausal form. A wff ¢ believable in DT is true in a
model Mg of DT, i.e., MgE= ¢ if DTHBp.

3. Transformation of Default Theories

As shown in [10], Tomasz Imielinski defines
an abstract ordering among models of a theory wrt
a predicate symbol and explains the
circumscription of this predicate symbol in the
theory by the smallest models wrt defined ordering.
He tries to represent defaults by this semantic
ordering. However, he achieved a very surprising
result that it is incapable to represent an important
class of defaults, normal defaults with
prerequisites, and it is only capable to represent a
simple (i.e., with only one extension) default theory
without prerequisites by semantic ordering. Then
in order to connect default reasoning with
circumscription, it seems not sufficient to introduce
only an abstract ordering among models. In our
case, for every default in a default theory, a
predicate symbol wrt its justification is defined.
The reasoning upon this default theory will be
described through circumscribing those additional
predicate symbols in the transformed theory. Now
the relative definitions are stated formally as
follows.

Definition7

Let D be a set of defaults and § a default.

8% and D are defined as:

8% =(a()A"B(x) Dy (x)A(— B(x) D"B(x)) if
8 =(a(x): MB(x)/y(x));

DO={8°|8€D };

JUST(D) is a set of predicate symbols,
defined as:

JUST(D) ={"B | (a(x): MB(x)/y(x))€D.}

WUD? is called the abnormal theory of a
default theory (D, W).

It has been known that if a wff ¢ is
believable in (D, W) then there is a model Mg of (D,
‘W) satisfying ¢ by corollaryl.1l. Observing T’ [Mo]
and the definition of circumscriptive inference, we
could figure out a relationship established between
two concepts, relative to non-monotonic reasoning,
of believability in default logic and circumscriptive
inference in first-order logic.

Now let us observe the relationship between
believability and circumscription. Suppose E is an
extension of a default theory DT=(D, W) and
GD(E) the set of generation defaults wrt E.

GDYE)UWustcpey ¢ means that ¢ is derived
from GDYE)UW by circumscribing every predicate
symbol *B in JUST(GD(E)), appearing in
definition7. For a default theory, deriving Mp(x),
which suggests no = p(x) explicitly exists, could be
achieved by minimizing " in its abnormal theory.

Preparatory to presenting next one of our
main results on default reasoning and
circumscription, we shall give several concepts
useful to prove theorem.

Definition8

Let T be a first-order theory consisting of
sentences and P a predicate symbol occurring in T.
Cireum(T; P) is reducible iff there is an first-order
theory, written as Tcircum(T; P), model-theoretically
equivalent to Circum(T; P). That is, for any
sentence §in the first-order language,

Cireum(T; P)EB iff Toiroun(T; PYEB.

T is said to be circumscriptively reducible on
P when Circum(T; P) is reducible.

Definition9

A formula F is called solitary wrt a predicate
symbeol P if it is the conjunction of:
(i) formulas without positive occurrences of P;
(ii) formulas of the form Vx (U(x)DP(x)), where
U(x) does not contain P,

A formula F is called separable with respect
to P if it is a disjunction of solitary formulas.

Suppose that

LiA. . ALy DP(ty,. . ., tn) 1)
is a clause about a predicate symbol P. Let = be the
equality relation, and x;, . . ., X, be variables not
appearing in the clause. (1) is equivalent to the
clause

x1 =t1 A\ Ay =t ALIA. AL DP(x1,...,Xn)

Finally, if y1, .. ., yr are the variables in (1),
itisitself equivalent to

3y, yox1 =t ANAxp =tp ALIALALRD

P(x1, ...,.Xn) (2)

we call this the general form of the clause.

Suppose there are exactly k clauses, k>0,
about the predicate symbol P, Let

E1DP(x1,...,Xn)

...... 3)

ExDP(x1,...,Xn)
be k general forms of these clauses. Each of E; will
be an existentially quantified conjunction of
literals as in (2). The definition of P, implicitly
given by all of those k clauses, is

(V1,0 x)[E1VE2V...VEK =P(x1,....Xn)] 4

The if-half of this definition is just the %
general form clauses (3) grouped as a single
implication. The only-if-half is the completion
axiom for P.



For a theory T of clausal form, it may be
partitioned into two disjoint sets:

Tp: those clauses in T containing exactly one
positive literal in P, and

T-Tp: those clauses of T containing no
positive (but possibly negative) literals on P.

The completion of T wrt P, Comp(T; P), is a
theory of T with Tp replaced by the definition of P.

Lemma2.1

Let DT=(D, W) be a clausal default theory.
Then the abnormal theory of DT is separable wrt
JUST(D).

Lemma2.2

Let T be a theory of wffs of clausal form.
Then T is circumscriptively reducible wrt a
predicate symbol P if T is separable wrt P and the
circumscriptively reduced theory Ty, .(T; P) of T
is Comp(T; P).

The details about those issues will be
omitted in this paper. Who interested in them are
suggested to refer [1], [2] and [6].

Then, we define a concept of default proof for
a wffin a default theory and show that for a closed
consistent default theory DT, if it has a consistent
extension containing a wff ¢, then ¢ has a default
proof in DT. Because default theories of general
form have no semi-monotonicity, it is certainly we
cannot expect a wff, having default proof, could be
definitely believable.

Definitionl0

Let DT=(D, W) be a closed default theory of
general form and ¢ a wff. The finite sequence Dy,
Dj,...,Dq, of finite subsets of D is said to be default

proofof & iff
(1) WUCONSEQ UENTS(DO)I—qx

(2) foranyi,1=i=n, WUCONSEQUENTS(®D )
PREREQUISITES (Di P

ircum

A3) Dn= %5
n n
4w U JUSTIFICATION(Di) U CONSEQUENTS(Di)
i=0 i=0
is satisfiable.

As we have known, the concept of a default
proof of a wff has also been defined by R.Reiter in
[9]. Our definition of default proof is slightly
different. Firstly, he defines a default proof on a
closed normal default theory because it seems that
he expects to establish a complete relation between
the believability and default proof of a wff in
normal default theories. Actually, he has
successfully shown that a consistent closed normal
default theory has an extension containing a wff ¢
iff there is a default proof of ¢ wrt the default
theory. Secondly, it follows normality of default

theories that in (4) the satisfication of justifications
is not necessary to be considered for it is
automatically met by the satisfication of all of
those consequents of defaults involved in the
default proof. In our definition, the underlying
default theory is general form, then in property (4)
the satisfication of justifications of Dj is no more
trivial. All of our intensions to modify the concept
of default proof in this way is to show following
lemma for the coming theorem. Because general
default theories lack semi-monotonicity possessed
by normal default theories, i.e., for a default theory
(D, W), its extension is not always a super set of
sub-default theories consisting of W and subsets of
D, the lemma can obviously not be conversed. That
is, for a wff, the existence of its default proof does
not determine its believability in default theories of
general form.

Lemma2.3

Let DT=(D, W) be a closed default theory. A
closed wff ¢ has a default proof in DT if there is a
consistent extension E of DT containing ¢.

[ PROOF] In order to prove this, we introduce
GD(E®) to stand for the defaults relative to E¥ in
the definition of extension.

If $€E, then there is at least an EY, such
that $€E®. Construct Dy, Dy, . . ., Dj in following
way:

foranyj, 0% j= i, takeD ;= Lj GDE™®).
E=0

Obviously Dy, D1, . . ., D; satisfy the properties
(1)~(4)in definition10.
(1) WUCONSEQUENTS(Dg)¢ is caused by
¢€E(i);
(2) For any v, 1=v=i, WUCONSEQUENTS(Dy)-
PREREQUISITES(Dy —1). We can say this by the
definition of Ei-v+), PREREQUISITES(Dy_1)€
WUCONSEQUENTS(Dy);
(3) D;=© because there is E®¥ =W then
GD(E®)=;
(4) Because E is consistent and for any fin

i
U JUSTIFICA TION(Dj),

j=0
therejis —B¢E; Then
w L=)0 JUSTIFICATION®D ) ,yo CONSEQUENTS® )
is sati’sﬁable.
Thus the sequence of Dg, D1, ..., Diis a
default proof of ¢. QED

According to lemma2.3, a closed wff ¢
believable in a closed default theory has a default
proof. Transforming those defaults involved in the




default proof, then ¢ can be circumscriptively
inferred from this transformed abnormal theory.

Theorem2

Let DT=(D, W) be a closed consistent
default theory of clausal form and E a consistent
extension of DT. A closed wff ¢ believable in (D, W)
is circumscriptively inferred from GD*E)UW wrt
JUST(GD(E)), i.e., GDO(E)UWF’JUST(GD(E» (1) if(pEE .

[ PROOF] By lemma2.3, it is sufficient to show
that ¢ is circumscriptively inferred from
GDYE)UW wrt JUST(GD(E)) if ¢ has a default
proof in DT, because ¢ is contained by the
consistent extension E for (D, W).

For the existence of a default proof of @, it
could be assumed to be the sequence D¢, Dy, . . ., Dp.
(1) When n=0, it is trivial that
GDYE)UW - justcpay ¢ from WH;

(2) Forn>0, Dy, Dy, ..., Dy could be assumed to be:

D = @, by the property3 of default proof;

a P Mp V@)
n—1 n—-1

[ a(l"" Dy Mﬁ(l" D)
D =
-1 _ _
" e D rf,':n_li(x)
(=2, . (n—2)
{a(ln-z)(x): Mﬂi"_z)(x) amn_z(x). MB"'n_z(x)
D =
-2 _ —_
" r(l" D) r("':n j;(x)

[HFR% (i)
umi(x). MB';i(x)

a(li’(x): Ml."(l“ (x)
’ @ @

[(UPN ()}
amo(x)‘ Mp mo(x)

0

[ (1(10) (x): M B(IO) (x) ]
rOw r("?;(x)

By the properties (1) and (2) of default proof,
we have:

Wl—{ (n— 1)(x) a ("r: l)(x)]

wU {r‘;‘-”(x),. V) } I—[u(ln_z)(x), . ,a(’:_z)(x)}
n-1 n-2
v [7(li)(x), .. ,7('2(x)} r-{ay'""(x), calis "l(x)]
13 | and

wlJ [r“”(x) '°’(x>}»—{¢} *
ForDy_1,.. Dy, .., Do, the union of Dp_1,
. Di, ..., Dgis the set of generation defaults wrt
the extension containing ¢. Then there are:

q(ln- l)(x)A_‘nB(ln— l)(x):)r(ln-l)(x)

n n—

O (A () 1 (O
amO(x)/\ "Bmo(x)Drmo(x) (**)

in GDYE) wrt GD(E).

Let W; be a set of W with all formulas
—BP(x) DB M), for any j, 1=j=m,;.

A pair (W, i) is used to stand for

WiU{r (0),...,7m; ()} {a, 9 (), 0m, , = D(x)}
in *, for any i, n=i=<0, except for
{r"@,eesrm, ()} =D and {a,~1(x),...,am; , ~1(x)}
={d}, where i is the superscript of 7’s in the left
hand side of I-.

A pair (i, j) is used to stand for

'(x)/\—' "B, ‘(x)Dr i(x)
in *% where i and J are the superscript and
subscript of a respectively.

According to lemma2.2, for any —"B(x), it
can be derived from the result of circumseribing
every predicate symbol °B in Wj if B(x) is consistent.
Then we can conclude with follows:

Circumscribing "g,~Y, . . ., "By, _
the union of W1 and #+, then {y®-Vx), ...,
7m,_; "~ (x)} can be derived from Circum(W1U{++};
{nl}l(n—l)’ - npmn_l(n—l)}; {nﬁl(n—i’), e nﬁmn_z(n—Z), .

o "By, .., Bmy'®}) because of (W1, n~1), (1,
n—-1), ..., (mp_1, n—1) and the consistency of
Wunrg ®=x), . . ., °Bm,_,;"V(x) by property (4) of
default proof.

By the same way, 7,4(x), .
derived from Cireum(Wp_;U{s+}; {p,®, . . .
{"B, -1, 0By, G-, n @

(n-1) ;
1 n

. »7m;(x) can be
1) npl’l’li(l)};

’ ano(O)})y and efc..

Thus Circum(WnU{*+}; {"8,'V,. . .,"Bm,¥}
infers ¢.
According to [4], we have
Circum(WU{s+}; {°,P,...,"Bm, _, " V}>...>

EBD, e B, 1> B, B )
<p Circum(W;U{s+}; {"ﬁ @- ., “Bm -}
s Ben, @1 1» . np, O, B ©)).

n—i—

Then (1) is derived from Clrcum(WU{**},
{npl(n—ll’."’nﬁmn_1(n—1)}>".>{npl(l),".,nﬁml(l)}>{nBl(0)
yeees"Bmy'®'}). Hence ¢ is derivable from the
prioritized circumscription of =g, -V, .. .,



ann_l(n_l)’ LIRS ] nBl(l)’ LR ] n[}ml(l)v npl(mv LR ano(O)

in WU{*+} wrt the priority > among "f’s. That is, ¢

is circumscriptively inferred from GD(E)UW.
QED

As shown in the -above proposition, a wff ¢
believable in a default theory (D, W) is
circumscriptively inferred from GD%E)UW. By
Corollaryl.1, we have also know that a wff
believable in a default theory is satisfied by a
model of DT.

4, Minimal Entailment and Default Reasoning

Theorem3 18]

Let ¢ be a theory in first-order language and
S be a set of predicate symbols occurring in T. A wff
¢ circumscriptively derivable from T wrt S is true
in all of minimal models of T in 8, i.e., TEgd if
Thsd.

However theorem3 cannot always be
conversed because for a theory, not every one of its
models has a submodel minimal in some predicate
symbeols.

Up to now, we have observed the
relationship between believability in a default
theory and circumscriptive inference on the
transformed abnormal theory in last section, and
the relationship between circumscriptive inference
and minimal entailment just above. Then we can
simply figure out what between believability in

“default reasoning and minimal entailment in
model-theoretical sense. Summarize theorem2 and
theorem3, we conclude with the following theorem.

Theorem4

Let DT=(D, W) be a closed default theory of
clausal form and E a consistent extension of (D, W).
A closed wff ¢ believable in (D, W) is minimally
entailed by GDYE)UW wrt JUST(GD(E)), i.e.,
GDUE)UW= ¢ if DTH3B.

5. Conclusions

TUST(GDHE))

In this paper, we have introduced a predicate
symbol »B for the justification p(x) of each default in
a default theory (D, W). Then a default can be
rewritten as two wffs and a default theory can be
transformed into a theory in first-order language.
It has been shown that the reasoning on a default
theory could be simulated by circumscribing
additional predicate symbols "p’s in the
transformed abnormal theory of the default theory.
The reason we propose this transformation of
defaults is that, in our opinion, two ways of non-
monotonic reasoning, both default logic and
circumscription, proposed based upon seemingly
entirely contrary observations of incomplete
knowledge in the real world, are both appropriate

to represent incomplete knowledge in a large class,
i.e., knowledge with an infinite number of
exceptions. Then we would like to expect default
logic not only to be a tool flexible to cope with
incomplete knowledge but also to possess a model-
theoretical explanation for its default reasoning
through connecting it with circumscription which
has a solid semantic foundation of minimal
entailment.
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