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Abstract

This paper describes logical specifications of de Kleer’s assumption-based truth main-
tenance system (ATMS) and its generalizations based on principles which should be
satisfied. A proposed generalized ATMS is investigated model-theoretically in terms of
a hypothetical theory. A model-based ATMS, a nonmonotonic ATMS and other various
generalizations of the ATMS are also explained by this general formalism.



1. Introduction

An assumption-based truth maintenance system (ATMS) [de Kleer 86] has been widely
used when problems require reasoning in multiple contexts. However, this basic ATMS
is restricted to accepting only Horn clause justifications and atomic assumptions. Un-
til now, various generalizations have been proposed, such as [Reiter & de Kleer 87],
[Dressler 87] and [de Kleer 88], but they have independently strengthened some fea-
tures of the basic ATMS and are pursued algorithmically or syntactically rather than
model-theoretically, so that it is not obvious how to make them more precise. The mo-
tivation of this research was the desire to formalize generalizations of the ATMS within
a common simple model theory. We begin by introducing three postulates that should
be satisfied by generalizations of the ATMS to be analyzed by this paper, as follows.

1. Consistency maintenance in multiple contexts: An ATMS should be defined as a
propositional hypothetical theory composed of two sets of logical formulas: justifications
(or azioms) and assumptions (or hypotheses). It is desirable for both sets to be extended
to contain any propositional formulas. It is essential to maintain consistency of such
a theory allowing for a concurrent representation of all contexts, and an ATMS would
often be required to find maximal consistent solutions, or eztensions.

2. Abductive reasoning: An ATMS should be able to generate multiple sound
and complete explanations for a logical formula with respect to a hypothetical theory.
Moreover, we often need minimal explanations, for efficiency, the principle of parsimony,
or other reasons. A connection between hypothetical reasoning like the ATMS and
abductive reasoning has been already discussed in [Reiter & de Kleer 87].

3. Nonmonotonicity: An ATMS which accepts any formula justification and as-
sumptions should capture nonmonotonic reasoning because of introducing the notion of

negation. In many cases, we want to supply nonmonotonic justifications.

2. General Formalism

We shall assume a set, W, of well-formed formulas (wifs) constructed using a set, A,
of finitely many propositional symbols and logical connectives.! An interpretation, I, of
A is defined as an element of 2 such that for each a € I, a is supposed to be assigned
to true. The relations, = (C 24 x W; satisfaction) and | (C 2"V x W; entailment),
can be defined in the usual way. The set of all models of a set of wifs, W, is denoted as
M (W). For two wif sets, X and Y, X =Y is defined as M(X) C M(Y). We say that
M € M(W) is a minimal model of W iff M’ € M(W) and M' C M only if M' = M.

1 While we use the propositional language to make the discussion clear, All concepts in this paper
can be extended to have a subset of the first order predicate calculus without function symbol, where

each formula is assumed to be universally quantified and domain closure axiom is included.




2.1 Supporting Hypotheses

Definition 1. A hypothetical theory, A, is a pair of W and D and is denoted as
A = (W, D), where W is a satisfiable set of wifs, a set of azioms, and D is a set of wils,
a set of hypotheses. The set of environments (with respect to A) is defined as

Env(A) = {E € 2P| WU E is satisfiable }.

Suppose that E € Env(A), then the contezt of (W, E) (denoted as C(W, E)) is the
smallest set of wifs containing W U E and closed under entailment. [J

Definition 2. Let w € W, and A = (W, D). An environment, E € Env(A), is a
support for w (with respect to A) iff

WUE Ew

holds. The set of all supports for w with respect to A is denoted as SO(A,w). O

Each support for w is a supplementary set of wifs with which w is entailed by
W, keeping consistency with W. This perspective is simply the concurrent version of
the framework in [Poole 87]. Given w, the computation of a set of supports for w
corresponds to abductive reasoning. In this framework, we shall regard the notion of

minimality in SO(A, w) as the weakest condition for explaining w as follows.

Definition 3. A support, E € S0(A, w), is (S1-)minimal for w (with respect to A) iff
-3E' € SO(A,w). (E | E') A (E' [ E)).

The set of all S1-minimal supports for w with respect to A is denoted as S1(A,w). O

Proposition 1. S1(A,w) has the following properties:

(1) for each E € S1(A,w), W U E is satisfiable,

(2) for each E € S1(A,w), w € C(W, E),

(3) for E € Env(A), w € C(W,E) iff IE' € S1(A,w). (E = E'), and

(4) for every two environments, Eq, E; € S1(A,w), (Ey = E;) D (E; = Ey). O

In this model theory, the basic ATMS can be characterized as a hypothetical theory,
Aparms = (H, A), where H is given as a set of Horn clauses and A C A is given as a
set of atomic formulas, maintaining a concurrent representation of all contexts by label-
ing each atomic formula, a, with S1(Aparms, a) (called the label of a). Proposition 1
gives a natural generalization of the (1) consistent, (2) sound, (3) complete and (4) min-
imal properties of the ATMS labels, because we do not put any syntactical restriction
on W and D. Proposition 1 (3) also characterizes a membership problem: given an
environment, E, whether or not a given wif w holds in C(A, E). We characterize the



notion of membership or minimality not by set inclusion of hypotheses but by what can
be entailed. (Notice that for two formula sets, A, B, if A C B then B | A.) However,

by considering more on models, we can give other criteria for minimality.

Definition 4. A support, E € SO(A,w), is §2-minimal for w (with respect to A) iff
-3E' € S0(A,w). (WUE E E') A ( WUE' |t E)).

The set of all S2-minimal supports for w is denoted as S2(A,w). O
Example 1. Suppose that Ay = (W, D;) and Ay = (W, Dy), where
W={aDc, bDec, aNbDyg, g},
Dy={a, b, ¢}, and D2 ={qa, "gDa}.
From these, the following sets of supports can be obtained.
S0(Ay,¢) = {{a}, {8}, {c}, {a, ¢}, {b, c}},
S1(Ay,c) = {{a}, {b}, {c}}, S2(A1,¢) = {{c}},
SO0(A1,bAc) = S2(A1,bAc) ={{b}, {b, c}}, S1UA;,bAc)={{b}},
S1(Az,¢) ={{~g Da}}, and S2(As,c)={{a}, {m¢gDa}}. O
Note that when hypotheses in D are independent of each other with respect to
W, S2(A,w) is equivalent to S1(A,w). ? To analyze the semantical properties of
Si(A,w) (1 = 0,1,2), we define the set, M(W,S), of all models of W that satisfy all

formulas in at least one element of a set, S C 2%, of formula sets, as follows:
MW,8)= | ] M(WUE).
E€eS
We define the set, Mo(A,w), as: Mo(A,w) = M(W,S0(A,w)).
Theorem 2. M(A,w) = M(W,Si(A,w)) (:=1,2).* O

Theorem 2 shows that Si(A,w) (i = 1,2) are equivalent to SO(A,w) in the serse
that these sets have the same models of W that can satisfy w. Therefore, all the worlds

where w holds can be characterized as Mo(A, w) whatever minimality criterion is used.
2.2 Extensions

A set of hypotheses, D, is very closely related to a restricted case of a set of normal
defaults in default logic [Reiter 80]. For each d € D, d corresponds to the consequent of
a normal default without a prerequisite, of the form :Md/d.

Definition 5. An eztension, £, of A = (W, D) is a context such that

£=C(W,{de D|~d¢E)}).

2 Roughly speaking, an S2-minimal support corresponds to a mazimal assumption set [Doyle 79].
3 Proofs of all theorems appear in the full paper.




The eztension base for £ is defined as: Eb(E) ={de D|-d¢€}. O

All results of normal default theories in default logic, in particular the existence of

extensions and semi-monotonicity, are guaranteed in our formalism.

Proposition 3. Let A = (W, D), and £(A) be an extension of A.

(1) Eb(E(A)) is a maximal environment in Env(A).

(2) M(E(A)) is a minimal set of models in { M(W U E) | E € Env(A))}.

(3) For any wif, w € W, w € £(A) iff Eb(£(A)) is a maximal support in SO(A,w). [
2.3 Model-based ATMSs

Now, we propose an alternative way of maintaining all contexts by focusing on Herbrand

interpretations of a set of hypotheses instead of keeping minimal supports for a wif.

Definition 6. Let A = (W, D). The hypothetical base, P(D) C A, of D is the set
of all atomic formulas occurring in D. The set of all h-interpretations (with respect to
A) is defined as H(A) = {M NP(D) | M € M(W)}. For I € 2P(P) [ is defined as
I={-p|pe P(D)—1I}. Let w € W. Then, the following two sets of h-interpretations

satisfying w are defined as:
\I’(Aaw)= {MﬂP(D) | M € Mo(A,w)},
U (Aw)={IeHA) | WUIUIkw}. O

We shall consider an ATMS handling ¥(A, w) for w, called a model-based ATMS.
While ¥*(A, w) can be computed from H(A) restricted to the set of all h-interpretations
that entail w, only parts of them are in W(A,w) which is all that is needed for w to
‘be realized by hypotheses, that is, ¥(A,w) C ¥*(A,w). However, there are sufficient
conditions for the two sets to coincide. For a given set, D, of hypotheses, if all elements
of {IUI|I € 2P(P)} can be considered to be realizable, the concept of model-based
ATMS:s is useful.* This case can be characterized as the following hypothetical theory.

Ap =(W,L), where L is a set of literals, thatis, p€ L = -pe L.

Proposition 4. (1) ¥(Ap,w) = ¥*(Ag,w). (2) For each I € ¥(Ap,w), IUT is an
extension base for an extension of Ay that contains w. []
3. Nonmonotonicity

In this section, nonmonotonicity by an ATMS, in particular a model theory of non-

monotonic justifications, is investigated in our general formalism.®

4 Several properties in which this condition is violated are given in the full paper.
5 In the fall paper, the treatment of nonnormal defaults [Reiter 80] is also discussed.



The closed world assumption (CWA) [Reiter 78] says that if a set, H, of Horn
clauses does not entail an atomic formula, p, then —p can be inferred. A generalization

of the CWA for a set, W, of general wifs can be characterized in a similar way to
[Reiter 80], as the CWA hypothetical theory:

ACWAZ(W, NA), where NAZ{_']) | pE.A}.

Then, a model of an extension of Acw 4 is a minimal model of W.

We treat a nonmonotonic justification as a material implication in W of the form:
atA...ANam A=BL A A=y D v, where a;, 8,7 €A,

and {#;]j =1,...,n}(# @) corresponds to the outlist. To enable simultaneous handling
of nonmonotonic justifications and a set, A, of atomic hypotheses explicitly given to an
ATMS, the above Acwa can be extended as:

Any = (W, AU N4), where ACA

Because of the effect of introducing A4, the membership by Proposition 1 (3) can be
extended to the following problem: given an environment, E C AU N4, whether or
not a given wif w holds in an extension, E(Anuy) = C(ANm, E), where E is a minimal
environment with respect to Ay (called a complemented environment of E) such that
E =EUEy, En C N4. The next theorem characterizes this extended membership.

Theorem 5 (extended membership). Suppose that E is an environment with respect

to Ay = (W, AUN,), where E = EpU En, Ep C A, and EN C N4 Let we W

and A4 = (W, A). Then, the following four statements are equivalent.

(1) There is a complemented environment, E, of E, such that w € C(Anp, E’)

(2) There is an S1-minimal support, E' € S1(Aym,w), where E' = ELUE}N, Ep C A,
E); C Ny, such that Ep = Ep and W U E'U E}y is satisfiable [Dressler 87].

(3) There is a minimal model, M, of W U E such that M = w.

(4) There is a minimal h-interpretation, I € ¥*(A4,w), such that WU E |=I. [0

Unfortunately, in the above discussion about nonmonotonicity by ATMSs, the no-
tion of groundedness [Doyle 83] (or well-foundedness) cannot be incorporated, as our
simple semantics with propositional logic cannot express it. To obtain groundedness,
we must add some external mechanism to an ATMS. Therefore, an additional opera-
tional semantics is necessary to obtain expected models which reflect the unidirectional

property or some intended meaning of justifications [Inoue 88].9

6 The detailed discussion is given in the full paper.




4. Reconstruction of Various ATMSs

In Section 2.1, we characterized the basic ATMS as Agarms. This section shows how

various generalizations of the ATMS can be reconstructed in our general formalism.

There are two recent reports on handling non-Horn clause justifications. The
negated assumption ATMS (NATMS) [de Kleer 88] can be characterized as Ayarys =
(W, A), where A C A does not essentially treat negation hypotheses, and S1-minimal
supports are computed for a literal. The label updating algorithm of the NATMS does
not ensure the membership (Proposition 1 (3)), but does the extension completeness
(Proposition 3 (3)). On the other hand, the extended basic ATMS (EATMS) [Dressler 87]
can be characterized as Aparms = (W, AU N,4), the same as Anps in Section 3, and
S1-minimal supports are computed for an atom. Dressler’s ‘OQut-assumptions’ and ‘-
extensions’ correspond to our CWA and complemented environments in Theorem 5.
Neither NATMS nor EATMS ensures well-foundedness as discussed in Section 3.

McDermott’s nonmonotonic ATMS [McDermott 83] can be considered as a version
of Anu in Section 3, as it represents assumptions explicitly. McDermott proposed a
constraint satisfaction method to compute minimal (‘strictly OUTer’) h-interpretations

in Theorem 5 (4), but the method fails to capture groundedness.

The clause management system (CMS) [Reiter & de Kleer 87] can be characterized
as Acys = (X, L.4), where T is a set of clauses in clausal normal form and £ 4 is the set
of all literals, i.e., L4 = AU N4, and Sl-minimal supports are computed for a clause.

Acums is a special case of A, in Section 2.3, and also satisfies Theorem 5.

The massively parallel ATMS (PATMS) [Dixon & de Kleer 88] is a realization of
a model-based ATMS, and is characterized as Aparys = (W, L), the same as Ay
in Section 2.3, and ¥(Aparums,a) is computed for an atom, a, by Boolean constraint
satisfaction methods. Hence, the PATMS satisfies Proposition 4.

Ginsberg’s first-order ATMS [Ginsberg 88] handles closed formulas. He defines
minimality in the way that an environment, E, is less minimal than another environ-
ment, E', iff for each wif, w' € E’, there is a wif, w € E, such that w is an instance of

w'. This criterion is just the first-order version of our S1 minimality.

5. Conclusion

This paper presented a logical framework for a generalization of the ATMS in terms of
a hypothetical theory. This is an important subcase of Reiter’s default logic. The notion
of minimality and completeness was extended and its model theory was discussed. Two
important examples, a model-based ATMS and a nonmonotonic ATMS, were shown in
the general framework. By using model-hased ATMSs, the possibility of parallel label

updating can be extended. Nonmonotonicity can be introduced in order to prune some



environments that are not considered in commonsense. The CWA captures it partially.

Various other generalizations of the ATMS were also re-examined by our formalism.
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