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Abstract

Circumscription proposed by McCarthy is one of the most hopeful formalizations of nonmonotonic
aspects of commonsense reasoning. It has several versions, however, they are all proposed for denotative
minimization of predicates, that is, circumscription minimizes the extension of predicates. Regarding
such treatment, this paper considers three problems; absence of abnormal things, a limitation on equality
and formalization of the unique name assumption. This paper proposes a solution for them by presenting
a connotative treatment of circumscription. This treatment is based on the idea of circumscribing
predicates connotatively, that is, minimizing the set of names denoting objects which satisfy a certain
predicate.
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1 Introduction

Consider the following situation.

Situation: “A person in a living room hears someone knocking on the front door. He knows that
if someone knocks it is normally a man, however, he remembers that one time there was an exception:
Tweety, a woodpecker, knocked on the door. He is very tired, so rather than go to the door he calls
"Who is it?’. The visitor does not answer...”

In this situation, we expect that he would conclude that the anonym is a man after all and would
reluctantly walk to the door. He knows that if someone knocks it is normally a man and he has not
received any information that contradicts the conclusion. McCarthy proposed a way to represent facts
about what is “normally” the case. The key idea is minimization of abnormality and, to minimize some
predicates, he propose a form called circumseription [5, 6]. For instance, the situation is expressed as
follows. (To clarify our arguments, it is simplified.)

Example 1. Let a sentence, A, be

V(K nocks(z) A—~Ab(z) D Man(z))

AKnocks(Anonym)
NAb(Tweety)
A Man(Tweety)

and, according to the idea of circumscription, we minimize (circumscribe) a predicate, Ab, with allowing
a predicate, Man, to vary. We do so because we want to think that each object is normal unless
available information shows otherwise, and because we want to know whether the object is a man or
not. However, there are three unsatisfied points on such treatment of circumscription.

1) Absence of abnormal things

The circumsecription of Ab with allowing Man in A to vary yields

Ve (Ab(z) = z = Tweety).

This circumscription says that T'weety is the only abnormal. This result is too strong and somewhat
unnecessary. What we want is the conclusion that the anonym is a man, that is, we want simply to
think that the anonym is not abnormal if it is consistent with the given sentence; we do not need to
know what is abnormal. To obtain the intended conclusion, why do we have to think that only Tweety
satisfies the property, Ab? It seems more natural to think that abnormal things except Tweety would
still exist.

2) A limitation on equality

The most important and serious problem concerns a limitation of circumscription on equality. We
showed that circumscription (of any predicates with any predicates or functions that are allowed to
vary) cannot yield a new fact that varies the least cardinal number of domains of models of a given
sentence if there exists a model whose domain consists of finite objects [1]. Returning to Example 1,
from A and the result of circumscription (the above sentence) we can obtain

Anonym # Tweety D Man(Anonym).

However, we can never obtain the expected fact that the anonym is a man, Man{Anonym). Because if
circumscription could yield the fact then the circumscription changes the least cardinality from 1 to 2.
(Note that there is a model of A whose domain consists of one object; so the least cardinality of 4 is
1. However, in a model of A where Man(Anonym) holds, Anonym # T'weety holds, too. So the least
cardinal number of such models is 2). This is a contradiction and shows that without additional axioms
to A circumscription could never yield our intended results.

3) Formalization of the unique name assumption

Readers may think of using the unique name assumption for the above problem. However, we do
not presently know satisfiable formalization of the unique name assumptions. This is closely related to
the limitation mentioned above.
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Reiter introduced the idea of the “unique name assumption (or hypothesis)” [7], that is, distinct
names denote distinct objects unless available facts imply that those objects are equal. Some approaches
to formalization of the unique name assumption have been taken, but, we are not satisfied with them
yet. For instance, McCarthy’s solution [6] uses the language which involves the names themselves as the
only objects. So all assertions about objects must be expressed as assertions about names. This may
be considered unnatural [4]. Lifschitz presented another solution [4], which provides (finitely many)
symbols for both names and denotation and introduced a unary function from names to objects. His
solution also involves axioms which represent that the names are distinct from each other. Notice that
these axioms provides a sufficient number of objects to yield facts on inequality under the limitation
mentioned in 2). Yet their solutions are both insufficient by reason of the following two points; i) they
do not express the unique name assumption for infinite names (for the infinite names, infinite axioms
would be needed.) and ii) if the given axioms involves the domain closure axiom their solutions cannot
be applied generally. Given a sentence with a domain closure axiom,

Ve(z = Jekyll V £ = Hyde) A Man(Stevenson),

their solutions require three distinct names for Jekyll, Hyde and Stevenson which means that the
domain of any models of (inconsistent) sentences involving such objects must consist of at least three
objects. Of course, it is impossible by the domain closure axiom, which asserts at most two objects.

This paper attempts to solve these problems. Our approach is to present a way to circumscribe
predicates connotatively, whereas each version of circumscription proposed so far circumscribes predi-
cates denotatively. Our result is called the connotative circumscription. It minimizes the set of names
denoting objects which satisfy certain predicates. Intuitively, the sentence expresses an idea; “the names
that can be shown to denote the objects satisfying a certain property P from certain facts A are all the
names denoting objects which satisfy P”. We show this in the next section.

2 Connotative Circumscription

Our approach uses the language L = L ULgULj. Ly consists of the logical symbols. Lg is the external
language which is used for representation of the concerning universe, that is, let a given sentence A be a
sentence of Ly ULg, and Ly is the internal language which is used for representation of the connotative
universe. We assume that a given sentence, A is closed, that is, no variable occurs free in A.

Ly, consists of parentheses, (,), logical connectives, A,V,—,D,=, quantifiers, V, 3, and equality, =
Both Lg and L; consist of symbols for predicates (constants and variables) and functions (constants
and variables), but are disjoint with each other. (Object constants are considered 0-ary functions.) If
a symbol, K, is in Lg, Ly involves a similar symbol, K, represented by putting “"” over K ( We
say K(= Ky,..., Ky,) is similar to L(= Ly,...,L,) if for each i K; and L; are both predicates (or,
functions) and ha.ve the same arity). That is, an n-ary predicate constant P is in Lg, Ly involves an
n-ary predicate constant P, and similarly to functlons F, and each variables, p and f ; P,p, F, f, ... are
in Lg and P,p, I, f, ... are in Ly. Especially, we say a symbol K, is paired if K is a similar symbol in
Lg. )

We use symbols starting with a capital letter (or
letter for variables.

Moreover, let L 2 involve a unary predicate, D (for being a member of the connotative universe) and a
binary predicate, = (for connotative equality). ( D is not always paired, and = is not paired in the above
sense. As we will see soon, = is related to equality, =, in Lp) Let Ly involve the following functions: 0
(for zero), S (for successor), + (for addition), x (for multiplication), and 1 (for exponentiation). Let it
also involve a unary function II (for assignment function of objects to its names in connotative universe).

({2’

and a capital letter) for constants and a small

CONNOTATIVIZATION
We handle the connotative universe in addition to the denotative universe and restrict the application
of circumscription to the connotative universe. The connotative universe can be considered as the domain
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of the inner world. We take a sentence from the outer world into the inner world. We call this treatment
connotativization. )

The connotative universe involves a set of natural numbers, some of which can be considered as
names denoting grounded terms in the denotative universe. Especially, with respect to a ceartain tuple
of functions, F, in Lg, names are distinctly assigned to terms in F, ( that is, terms constracted with
functions in F and object variables in Lg). The other functions in Lg need not to be distinguished.
Such universe is called connotative universe w.r.t. F.

First, to construct such connotative universe, we start with introduction of axioms on unique naming.
Then, we consider connotativization.

1) Unique Naming. The unique naming embodies each paired function, F,in F, in an adequate
function based on the number theory such that syntactically distinct terms in F can be distinguished
each other, where F is a certain tuple of paired functions in Ly and F is a tuple of functions in Lg
which functions in F are paired with. Speaking more concretely, as a result, each grounded term in F
is denoted by a distinct number each other as its name in the connotative universe. Before introducing
the axiom, we need some preliminaries.

(a)Number Theory Unique naming is based on a number theory represented by the following
sentence, N4, where N4 is a sentence

Va(5(3) #0)
A VEE+0=2)
A VE(Ex0= 0)
A ViE(£10 = S(0))

A VE,§(S5(2) = S(9) O & =9)
A VE,§(2+5(5) = S(Z + 9))
AN VEGEXxS@=Ex9)+8E)
A VE,9(215(9) = (819) x 2),
where z # y stands for ~(z =
In the remainder of this paper we abbreviate S(0) as 1, S(S(0)) as 2, and so on. We also abbreviate
#19 as £9. We call 0,1,... (natural) numbers, and the set of numbers is denoted by N.

Then, we introduce a function, <>", which plays a main role in unique naming.

For each n <1, let a n-ary recursive function ,<>", satisfy the following conditions;

<>": N® — N, and for all numbers ay, ...,an, b, there is a 2-ary recursive function, g , such that
if <aiy,..,an >"=b, B(4,0) =n and B(b,i) = a; (1<i<n).

It is well-known that such a function, <>" exists. For example, < a;,...,a, >"=2" x 3% x --- X
Pr(n + 1), where Pr(n) is the n-th prime number. Of course, we can easily construct a recursive
function, 3, based on unique factorization. It means that <>" can be considered as a function which
encodes finite sequences of numbers to numbers which it is computable to decode into their original
sequences. Note that it also means that distinct sequences are encoded into distinct numbers. We take
such a <>".

b) Unique Name Axiom. Then, we introduce the unique name axiom. The unique name axiom,
denoted by U, N(F), which is the conjunction of sentenses

le,...,xn(ﬁ‘(xl,...,wn) =< F,z1,...,Zn >ntly

for each F' in F', where F' is a paired function and F' is a distinctly assigned number to each function,
F,in Lg which F is paired with.

Note that, as a grounded term in F is represented by a sequence of numbers, for each grounded term
we can obtain a distinct number as its name by applying recurswely these functions that correspond to
each function in the term. (Also, note that < F Ty,...,%n >+ is a function of Lj. ) We can consider
< F,zy,...,2, >™*1 as an n-ary function from N” to N, so we abbreviate this as F(ml, ©yTn).
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Next, we consider connotativization. .

In connotativization, we use an unary predicate constant, D, in L; to represent the connotativized
outer domain (the denotative universe), that is, D stands for the connotative universe. Also, we use an
unary function constant, II, (in L) of the connotative universe into the denotative universe. Intuitively,
the connotative universe consists of names and II maps each name to an object denoted by the name.

2) Connotativizalaion of quantifiers. To connotativize quantifiers, we introduce the next sentence

(C) Aconn(II;D)’

where Acrn(TiD) ig the conjunction of sentences formed by connotativization of universal quentifier
(CV) and connotativization of ezistential quantifier (C3).

Connotativization of universal quantifier is to replace each universal quantifier Yz B(z) in A by

va(D(2) D B(I(2)))
and connotativization of existential quantifier is to replace each existential quantifier 3zB(z) in A by
33(D(2) A B(I(2))).

Connotativization of quantifiers means that objects which are denoted by names in the connotative
universe satisfies a given sentence.

3) Connotativization of symbols.
We have inner predicates and functions in Ly corresponding to each outer ones in Lg. Then, we
introduce a sentence which relativize them between the both universes in symbols.

(d) Connotative Function Axiom. First, we define the paired functions as functions which acts on
the connotative universe. The connotative function axiom, denoted by F'— a:czom(D), is the conjunction
of sentences

VE1, ..., Ea(DE) A ... A D(5,) D D(F (51, . ..,%,)))

for each n-ary paired function, Fin L; (for 0-ary functions, F,, D(Fc)),

F—aziom(D) states that each F' can be considered as a function of D into D and that the result of
application of each paired function to any tuple of objects in the connotative universe is an object in
the connotative universe.

(e) I-axiom. We connect symbols and thieir paired symbols with each other by the II—aziom,
denoted by II-axiom(Il; D; =), which is the conjunction of (IIF) sentences

V&1, ..., 6 (D(@) A ... A D(&,) D FL(£),. . .,1(£,)) = T(F(z,...,%5)))
for each n-ary function, F, in Lg and ¥ in L; (for O-ary functions, F., F, = H(ﬁ'c) ), and (ILP) sentences
Va1, ..., G (D(@1) A .. A D(5,) D (P(U(1),...,1(£,)) = P(51,...,4,)))

for each n-ary predicate constant, P, in Lg and P in P (for propositions, P,, P, = F,),and (II =)
sentence

Vi1, £ (D(%1) A D(52) D (U(#) = (%) = £,243)).

H-axiom(1I; D; =) states that the function, II, can be considered as a homomorphic function of inner
world into outer world which preserves the relations and functions.

If we assume that (d) and (e) hold, Acern(ILD) can be transformed into another sentence, A%*™(D),
in which no symbols in Lg occur. Next proposition shows that.
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Definition. Simple connotativization of A is to replace each universal quantifier V:I:B(m) in A by
V#(D(%) D B(#)), each existential quantifier 3z B(z) by 32(D(£) A B(8)), where B(z) is a sentence in
which z occurs free, and to replace F' by F' for each n-ary function, F', P by P for each n-ary predicate,
P, and each equality = by =. X

The result of simple connotativization is denoted by Aeonn(D),

Note that A°°"*(D) is written completely in Ly U Ly.

Proposition 1.

F—agziom(D) A U—aziom(Il; D; £) > Acm(h D) = jeonn(D),

For this reason, we say that ' ( b= ) is connotativization of F ( P,=), and also, for a tuple of
predicates and / or functions, K, we say that K is connotativization of K if each predicate or function in
K is connotativization of its corresponding predicate or function in K. In the remainder of this paper,
we usually assume that K denotes connotativization of K.

CONNOTATIVE CIRCUMSCRIPTION

Now, we can introduce connotative circumscription. Connotative circumscription expresses mini-
mization of the set, C, of names, #, denotating objects, II(2), that satisfy certain predicate C. That is,
it is to minimize C in the conjunction of the sentences (a), (b), (c), (d) and (e).

Ay AAomn (T DINF— amom(D)/\II aziom(Il; D; 2)AUn(F) is denoted by A(IL; D; =; F), or simply
abbreviated to A(F) if it is clear by the context.

[K/L] is substitution of L for K, such that K and L are similar, that is, A[K/L] represents a result
of substitution of L for K in A, where A is a sentence. We abbreviate this to [L] if it is clear by the
context.

K < L means that K and L are similar, and stands for

Vx(K1(%) D Li(X)) A . .. AVX(Kpn (%) D Ln(x)),
assuming that K = K;,...,K,, and L = Ly,..., Ly,. And K < L stands for (K < L) A (L < K).

Definition. Let C,Z be a tuple of distinct predicate constants (which equality, =, is allowed to be a
member of), and C, Z be connotativization of C,Z. Also, let F be a tuple of distinct functions and P
be connotativization of F. E is a tuple of all predlcates and all functions in Lg. Let A be a closed
sentence.

The connotative circumscription of C with variable Z in A w.r.i. F is the sentence

A(F) A =3, 8, i,e.(f&(f‘)[w,é,i, e]AE < ),

denoted by C—-Cir(4; C;Z;F).

The connotative circumscription can be simplified remarkably by simple connotativization.
Proposition 2.

(1) C-Cir(A; C;Z; F)
= A(F) A =3, &, 5((A°"®D) A F—aziom(D) A E—aziom(Il; D;2))[r, 8,21 A& < ©),

where E—aziom(Il; D; <) is (Il =) sentence, and,
(2) moreover, when if equality does not occur in C, Z,

C—Cir(A; C; Z; F) = A(F) A -3¢, 3((A°"D) A F—aziom(D))[&, 5] A& < €).
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Note that Acnn(D) A F'—agiorn(D) A E—aziom(Il; D; ) is a sentence of Ly U L.
In the reminder of this paper, we use the simpler definition of C—Cir(A; C;Z) using proposition 2.
So, A(F) stands for

Ay A Acn (D) A F—aziom(D) A l—aziom(Il; D; £) A Un (F)
and C—Cir(4; C;Z;F) denotes

A(F) A =3, é,i((fi""""(ﬁ) A F—aziom(D) A E—aziom(II; D; 2))[r, &, 2] A& < Q).

Example 1 (continued). We connotatively circumscribe Ab with variable Man. In this case, we can
use the result of proposition 2. C—Cir(A4; Ab; M an; Anonym, Tweety) is

Ay A Aconn(D) A F—aziom(D) A l—aziom(IL; D; £) A UN(An;;ym, Tweety)

A-3ab, an((A"®P) A F—aziom(D))[ab, man] A ab < Ab),
where —3ab, man((A*"™D) A F—aziom(D))[ab, man] A ab < Ab) is
Vab, man((A"®) A F—aziom(D))[ab, man] A Va(ab(z) D Ab(2)) D V&(Ab(2) D ab(2))),
Aconn(D) ig » - . .
V&(D(2) A Knocks(£) A ~Ab(&) D Man(#))
AK @ks(An;;ym)
/\?fb(T?;e\ety),
A~ an(Tweety)

M—aziom is .
Anonym = II(Anonym)

ATweety = T(Tweety)
AVE(D(2) D (Ab(TL(2)) = Ab(8)))
AV2(D(2) D (Man(1l(2)) = Man(2)))
AVE(D(#) D (Knocks(1(£)) = Knocks(2)))
NVEy, 85(D(1) A D(%3) D (IL(21) = 1(22) = #1=4)).
F—aziom(D) is o o
D(Anonym) A D(T'weety),

and Uy (Anonym, Tweety) is
An/o;ym = Anonym A T@ty = Tweety
In C — Cir(A; Ab; Man), if we substitute ab = A&(2 = Tweety) and man = A#(T), where T stands
for tautology (that is, 7 = (P, V —F,) for a proposition,P, ), then it yields
V2(Ab(2) D & = Tweety),

that is, X ' -
V£(D(2) A Ab((£)) D & = T'weety).
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This says that only the object named T@t'y satisfies Ab. As An;;ym qndlz;e;ty is equivalent to
natural numbers by the unique name axiom, for instance, Anonym = 0 and Tweety = 1, we obtain

—-E(Angr?ym) A Man(Anonym),

which is equivalent to
—Ab(Anonym) A Man{Anonym),

since ]:)(An;;ym) and II—aziom.

Note that this result saying “Anonym is not abnormal and a man”, is the intended result but can
never be yielded by usual circumscription. Moreover, Y2(D(2) A Ab(II(2)) D # = Tweety) says nothing
about objects with no name, so abnormal things may still exist somewhere. This shows that connotative
treatment is a method to solve the problems of absence of abnormal things and limitation on equality.
Example 2. The unique name assumption. Connotative treatment is also successful in formalizing the
unique name assumption. We connotatively circumscribe equality, =.

Example 2.a. Clark’s equality theory

A(F) is finitely axiomatized if Lg are finite. Let A be a sentence in which equality does not occur
positively. By the result in proposition 2. (2), assuming that F involves any functions in A, the
connotative circumscription of equality, C—Cir(4;=;F) is

A(F) AV, eq((A%mD) A F—agiom(D) A E—aziom(Il, D, 2))[r, =/eq] AVE, §(eq(#, §) D £=4)

D V&, §(32§ D eq(%,9))),
which simplifies to

A(F) AY7, eq(E—aziom(m, D, eq) AVE, §(eq(&, §) D #21)

D Vi, (829 D eq(2,9))),
since = does not occur positively in Aconn(D) A fr —a:ciom(f)), which does not affect the process of
minimizing =. Substituting = for eq and Az(z) for =, we obtain
V2, §(32§ D & = §).
Therefore, . .
¥, 3(D(#) A D(@) ALI(&) = I(5) > & = ).

This says that distinct names denotes distinct objects, which means a narrow definition of the unique
name assumption itself [see Clark’s Equality Theory; [2]].

Note that although there are infinite names (natural numbers) this formalization is finitely axioma-
tizable if Lg is finite.

Example 2.b. With a domain closure axiom.
Let A be a sentence

Va(z = Jekyll V£ = Hyde) A Man(Stevenson).

Here, we want to minimize equality, that is, consider the connotative circumscription of equality. In
C—Cir(A;=; Jekyll, Hyde, Stevenson) (see Example 2. a.), Ac"(D) js

Vi(D(£) D &= Jekyll V 8= Hyde) A Man(Stevenson),
and F—aziom(D) is
D(Jekyll) A D(Hyde) A D(Stevenson).
If we substitute Az,y(z =yVz = Je’k?jll Ay = Stevenson V y= Je/kzlll Az = Ste@son) for =, and
II; for m, such that if z = Stevenson then II; (z) = Jekyll else II; () = =, we obtain
Stevenson=Jekyll
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SVE,§(32§ D (& = §V & = Jekyll A § = Stevenson V § = Jekyll A & = Stevenson)).
Apn, Uy and the result of substitution of J g]aj” , }ﬁ;\de for z,y in the above sentence yields
Stevenson=Jekyll D —(Jekyli=Hyde)

follows. Similarly,
Stevenson=Hyde D ~(Jekyll=Hyde)

holds. The above two results and Acenn(D) yields

(Stevenson=Hyde V Stevenson=Jekyll) A —~(Jekyll= Hyde)
follows. By II—aziom and F'rm—agziom, we obtain

(Stevenson = Hyde V Stevenson = Jekyll) A Jekyll # Hyde

This shows the result of minimization of equality.

3 Options

In some applications, we may intend to obtain stronger results than the results from the connotative
treatment of circumscription mentioned above. In this section, we briefly consider possible and inter-
esting extension of connotative circumscription for obtaining stronger results.

1) “Absence of abnormal thing” is a criticism for formalizing common-sense knowledge by mini-
mizing abnormality denotatively, and connotative circumscription evades the criticism by minimizing
connotatively. For instance, in the Example 1, connotative minimization of abnormality brings a weaker
result, “Only the object named T'weety is abnormal”, than the result by the usual minimization, “Only
Tweety is abnormal”. However, in some application of circumscription, we may want to obtain such a
strong results. In the case, we add the following (IIOP) sentence to lI—aziom;

Vzq,...,2n(C(z1,- .., 2n) D IE1(D(F1) Az1 = T(£L)) A ... ATzn (D(@n) A 2 = T(2)))-

It says that each object of a tuple which satisfies C has his own name, which means that Il maps the
extension of C onto the extension of C. In Example 1, let us assume that we add a sentence obtained
by substitution of Ab for C in (IIOP) sentence to II—aziom. We still obtain

Vi(D(2) A Ab(TI(2)) D & = Tweety).
This result and (IIOP) sentence yields
Vo(Ab(z) D F2(D(2) A z = 1I(8) A (Ab(£) D & = Tweety))),

which simplifies to
Vz(Ab(z) D z = Tweety).

Note that we can still obtain ~Ab(Anonym) A Man(Anonym).
2) Another interesting option is related to Skolemization. Consider the following example.
Example 1°. Let a sentence, A, be g

Vz.(Knocks(z) A—Ab(z) D Man(z)),

AdzKnocks(z),
ANAY(Tweety),
A-=Man(Tweety).
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Same to Example 1, “someone” knocks on the door, though we have no name of it. Should we guess
that it would be a man? I can not tell which is better. It would depend on the situation. Anyway, if
we think that we should guess so, we can obtain the intended results by means of Skolemization in the
inner world.

We skolemize in connotativization of quantifiers. The result is
Vi.(D(hatz) A Knocks(#) A—Ab(2) D Man())
AKnocks(G) |
AAb(Tweety)
A-Man(Tweety),
where G is a Skolem function. The connotative circumscription of Ab with variable Man still yields
Knocks(G) A~AWG) A Man(G),
which is equivalent to
Knocks(II(G)) A —Ab(I1(G)) A Man(II(G)).
This implies .
Jz(Knocks(z) A ~Ab(z) A Man(z)).

Connotative circumscription based on Skolemized connotativization ( we say, Skolemized connotative
circumscription ) has an important aspect. Skolemized connotativization yields a universal sentence
(that is, VxA, where x is a tuple of object variables, and A is quantifier-free) therefore, the next
proposition holds.

Proposition 3. Any Skolemized connotative circumseription w.r.t. a tuple of functions which involves
any functions in A is consistent, where A is a consistent closed sentence.

Note that circumscription is inconsistent generally [3].
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