ER—R AT A 80—12
T & #® T73-12

(1990. 11. 9)

5
A

Quixore DA 7Y = 7 +FEII:
ZRE 20, PrEE EE
hESTE () BEs 27 AWM

B — 1k
(W) = >~ € = — X BT R

FT VM (AT V27 TAFYTFATA)URRR AT V2 7 MRAIT — 2= —
Z (DOOD) #@HrA 7 V= 7 MEFAY R F L TEBARMER L L T2, AFTR, fEkD
F7 T =7 FBINECET AR ERET L. Th BT 3 00 JBERILRL, BlE 1COT
FHDICHRE LT3 EEEBRSEE (2 DO0D Ei8) Quivers TOF 7 V= 7 FiNYHICH
MEMTE, Qurrore Ty 47T =7 MRIWERIKRE (M50 & LTHBE b, WHIYR
CES IR AR T o £/, Quivore KBW 347 Y x 7 Vil il L 7351 HIc >
WTHERIRT o

Object Identity in Quzvore

Yukihiro MORITA, Hiromi HANIUDA
Systems Laboratory, Oki Electric Industry Co., Lid
4-14-12, Shibaura, Minato-ku, Tokyo 108, JAPAN

e-mail: morita@okilab.oki.co.jp, haniuda@okilab.oki.co.jp

Kazumasa Yokota
Institute for New Generation Computer Technology (1COT)
21F., Mita-Kokusai Bldg., 1-4-28, Mita, Minato-ku, 'I‘okyo‘ 108, JAPAN
e-mail: kyokota@icot.or.jp

Object identity plays a key role in object-oriented systems, including deductive and object-
oriented databases (DOODs). We revisit various discussions about it, propose some criteria
to represent object identity, and focus mainly on the characteristics in Quzxore, which is
a knowledge representation language developed by ICOT and can be considered as’ onc of
DOOD languages. In QuzxoTe, object identifiers are written in the form of extended term
and constitute a lattice based on the subsumption relation. We also discuss some features
related to object identity of QurxoTe. .

—109—

1 Introduction

Why do we need new generation databases? Why
should we extend to conventional databases such
as relational, hierarchical, and network databases?
The reason is that conventional ones have not
only difficulties to cope with various applica-
tions such as engineering databases and knowledge
bases but also make users take a burden such as
impedance mismatch, and computational and se-
mantic responsibility. In order to overcome such
difficulties, many approaches have been proposed:
deductive databases, object-oriented databases,
and semantic data models. Common features or
main trends among them are towards integration
of database, programming, and knowledge repre’
sentation languages. ’

Among the approaches, we take an approach
for deductive and object-oriented databases
(DOODs), which seems to be more flexible and
comprehensive than others. That is not a fixed
concept of databases or a data model but a frame-
work for extensions to conventional ones. [11] clas-

" sifies extensions to deductive databases as follows:

1) Logical Extensions
2) Data Modeling (Encapsulary) Extensions

. (a) Introduction of Object Identity
(b} Introduction of Complex Data Structure

(c) Encapsulation of Data and Procedures
3) Computational (Paradigmatic) Extensions

(a) Object-Orientation Paradigm

(b) Constraint
Paradigm

Logic Programming

We can extend par each item and combine them
for a new database. In our sense, DOODs are
databases along the above framework.

Object-orientation concepts have been ambigu-
- ously used in various contexts, although they are
considered to be useful in many applications of

databases. In object-oriented programming lan-
guages, the active aspects are emphasized from
a computational point of view, while in object-
oriented databases, the passive aspects are cipha-
sized from a data modeling point of view. Further-
more, other concepts such as object identity, en-
capsulation, and inheritance are not also used uni-
formly\ even in database society. Under the present
situation, many efforts are devoted to the formal-
ization, while most of object-oriented systems are
developed very practically.

In the above framework, we persist in their
formalization for both active and passive aspects
of objects as extensions to deductive databases,
that is, in logic programming paradigm. In the
sense, object-orientation concepts should be made
clearer. Among ‘various features of the concepts
in DOODs, the concept of object identity is one
of the wost important over passive and active ob-
jects. Besides object identification. from a data
modeling point of view, object identity works
for construction of complex data structure and
property inheritance, while, in a computational
point of view, an object works autonomously and

communicates by message passing through object

identity with other objects. In this paper, we
mainly focus on the concept and features of object
identity in a knowledge representation langnage

QUIXOTE.

We proposed a DOOD language Juan in [12],
which is integrated with a knowledge representa-
tion langiuage QUINT and now called QUI.YOTE.
In Section 2, we revisit various discussions on ob-
ject identity and show several criteria of object
identity for DOODs. In Section 3, we represent an
object identifier (oid) formally in the form of ex-
tended terms, and compared it with other works.
In Section 4, we describe various features in the
context of QUIXOTE,

—110-—-

2 Discussion about Object Iden-

tity

Object identity is one. of the most important
issues of object-oriented programming languages
and also object-oriented database languages. For
an object itself, identity is the property of the
object that distinguishes it from all others in a
system. On the other hand, from a user point of
view, it is the property with which users can find
a specific object from a pool of objects. There
are several papers [7, 8, 3, 12] that discuss object
identity in object-oriented systems. However some
of the papers miss the second point of view for ob-
ject identity. In this section, we revisit them and
discuss how to represent object identity.

2.1 For Whom Is Object Identity

Khoshafian and Copeland [7] discussed object
identity in general purpose programming lan-
guages and database languages. They classify de-

grees of support of object identity of la,ngua,ges"

in a two-dimensional space: the representation di-
mension and the temporal dimension. In the tem-
poral dimension, object identity is classified as fol-
lows: '

1) tempbra.l data

(a) within a program or transaction (e.g.,
Smalltalk-80, Pascal, Prolog)

2) persistent data

(a) between transactions RM/T,

UNIX shell)

(eg.,

(b) between structural reorganizations (e.g.,
OPAL)

In the representation dimension, there are three
classes;

1) data value (e.g., identifying employees by so-
cial security number) '

2) user-supplied name (e.g., Pascal, Prolog,
UNIX shell)’

3) system built-in (e.g., Smn.lltaik-SO, RM/'T,
OPAL)

I

According to [7], an succeeding item in cach di-
mension supports more strongly the notion of ob-
ject identity than the preceding ones.

As for the implementation of object identity,
[7] discusses two' concepts of data independence
and location independence, and concludes that the
most powerful technique is through surrogates as
identifier.

However, in [7], object identity is discussed from
a viewpoint of behaviors of objects in a system
but not from a viewpoint of user’s manipulation of
objects. Considering how to support hoth of these
properties with an identifier, we classifly attributes
of an object into two categories, that is, atiributes
which partially take a role of identity and ones
which are independent. of identity.

We explain this’ classification with an example.
Suppose there is an object corresponding to a per-
son who is teen-age, or more exactly a type of
objects each of which is a teen-aged individual.
What- kind of an oid should we give to such an
object? Suppose that an attribute of the object
indicating “teen-age” is age — teens. Since the
attribute plays an essential role for identification,
we construct the oid as

personfage — teens).

In many papers, object identity is discussed to
be independent of the attributes (or the state)
of the object.” [7] points out four problems for
identifier keys which are attributes for identifi-
cation. However, ‘these discussions does not take
both properties of identity into consideration. Sur-
rogates in [7] could not be useéd to find a specific
object with some attributes of the object. Sev-
eral papers[2, 3, 6] pointed out that ‘pure’ object-
based lJanguages are inconvenient, because there is
a case that an oid is not so important for some
object. For example corisider the following[6}:

—111—

eiffel_tower
tuple(name = “Ejffel Tower”,
admission fee = 25 FF,
address = eiffel_address)
eiffel_address
tuple(city = paris,
. street = “champ de mars”)
paris '
tuple(name = “Paris”,
country = “France”
population = 2.6)
where, eiffel_tower, eiffel_address, and paris are
oids. However it is convenient to treat eif
fel_address not as an object but as a pure value,
since it is immutable and is not shared by other
objects.

2.2 Beyond Conventional Object Iden-
tity

Ullman [8] also discussed value-oriented systems
and object-oriented systems. He listed advan-
tages and disadvantages of each system and con-
" cluded: “Value-oriented systems will win simply
becanse they offer the user arbitrary -access to
data, with access expressed declaratively”. How-
ever, he assumed that “declarative programming
is hard to integrate with object-oriented systems”.
He ‘misses requirements of new applications for
objéct-oriented systems and many efforts for for-
malization of object-oriented systems, although
most of the efforts have been done after [8]. In
QUIXOTE, object-oriented and value-oriented fea-
tures are integrated-into an object term as an
identifier.

Beeri [3] took another standpoint: “O-ids are
supposed to implement the ideas that. each ob-
ject has an identity, different from that of any
other object, that does not change -throughout
its lifetime. We claim this is unnecessary. O-ids
are implementation concepts”. [3] denies to de-
ify object identity which has been discussed ab-
stractively, and consider it as an implementation
- element. Alternatively, he selects names and refer-
ences in order to refer to objects. That means a

schema including such a name space that contains
the names of the relations and the attributes in
the database world. Although “How do we refer
to objects?” was considered in [3], it is still in-
sufficient. In QUIXYOTEan identifier is regarded as
a “name” in the same sense of [3], but not as an
implementation element.

Kifer and Lausen [41] proposed F-logic, in which
object-orientation concepts are embedded in logic
programming. They define id-terms for oids and
labels, which are based on a first order predicate
notation. Kifer ot al [5] revised a syntax of labels
to take any number of arguments as overloading of
the predicate, but not one of an oid. Oids become
to be defined explicitly, but there remain some
disadvantages ol a first order predicate notation:
fixed number of argunients, fixed location of argu-
ments, et al. QUIYOTfadopts object terms in the
form of extended term representation to represent
oids and labels uniformly.

Pure object-based languages have another in-
convenient from a database point of view. Most of
them employ system built-in oids, where the only
way to gel an oid is to create an object or to
get from creator of the object. Consider a query
for retrieval of monuments in Paris which is rep-
resented as an object in a system, when we have
some information about Paris. How can we get the
oid of Paris for the query? Some mechanism is
needed to get an oid casily. As mentioned above,
in QUITYOTEWe can construct an oid with a name
in the sense of [3] with attributes, which play an
essential role in the identification:

2.3 Criteria

Yokota {12] discussed the following criteria for oids
from a DOOD point of view:

1) Rules should support a mechanism for dy-
namically generating the oid of intentionally
defined object.

2) Object sharing need‘s' a ‘global’ oid referred
from the related objects, especially in a dis-

—112—

tributed environment.

3) A persistent object also needs an oid, which
should be possible to be recalled when the
object is activated in memory again.

4) An oid should be given even when we have
only partial information about some object,
because we cannot expect an object has a
fixed number of attributes and fixed structure
as the identification information.

Now we consider object structure which is es-
sential to identify the object. For example, Fig-
ure 1 shows a graph with a cycle as a structural
object. As we mentioned above that an oid could
include some attributes of the object to identify
the object, we could construct the oid for the ob-
ject, which reflects the structure.

So, we inherit above four criteria and add an-
other one:

5) We should prepare rich constructors for repre-

senting oids even with recursive structure

3 Representation of

Identifiers

Object

Mentioned in the previous section, we construct
an oid freely, as the representation of object iden-
tity.

3.1 Individual Object Term

First assume a set @ of basic objects, which has
partial ordering < and constitutes a lattice (U for
a join operation and 1 for a meet operation), and
a set V of variables. An individual object term is
recursively defined as follows:

1) A basic object o (€ O) is an individual object

term.

2) A variable X is an individual object term.

3) If 0 is a basic object, 01, -, 0, are individual
object terms, and Iy,---,l,, are labels, then
olly 6 o1+, 1, 8, 0,] is an individual object
term, where 8; for 1 <i < nis —, +—, or =,

4) If o is an individual object term but not a
variable, and X is a variable, then X@o is an
individual object term.

An individual object term in the form of X@o
is called an annolated variable, which is used for
construction of cyclic structure. For example, con-
sider X@o[l = X]. If we unfold it step by step,
we get ofl = o[l = o[l = of--JJ]] with infinite struc-
ture. Such structure frequently appears in many
applications: a person’s parent is a person, whose
pareni is a person, whose parent is a person,
whose - - -

The operators —, «, and = correspond to or-
dering among object terms (see the details in Sec-
tion 4). That is, we can translate an object torm
into the constraint form: '

ofl—o'] & ofl=X]{XCY,¥ o'} & ofl=X]|{XCo'}

o[l —0'] & o[l=X]|{XTY, Yo'} & o[i=X]|{X 20}

ofl = 0] & oli=X]|{X =20}

Now we allow the constraint form in the defi-
nition of object terms and extend.the representa-

tion:

3') Il o is an individual object term, Ily,---,l,
are labels, and Xy,---, X, are variables, then
olh = X1, -, bw = Xu]l{c1,--+,cm} is an in-
dividual object term, where ¢; for 1 < ¢ < m
is X; C 0j, X; O 0j, or X; = o; for any indi-
vidual object term o;.

Note that an annotated variable also can be writ-
ten in the form of the constraint form. For exam-
ple, X@o[l — X] can be written as X|{X = o[l =
Y],Y C X} : :

3.2 Object Term in the Context of
Object-Orientation

Oids are represented uniformly in such a way and
play such a key role in the context of object-

orientation.

—113—

©

b

()

N

Figure 1: A Graph with a Circle

As shown in the construction of object terms,
cach object term is treated not as object-based,
but as value-based. For example,

john[have = pen[maker = a},like = penl]
is a different oid from
johnlhave = pen[maker = a},like = pen{maker = al],

although there is a subsumption ordering among
them (see Scction 4).

We attach properties and methods to such an
oid. Each property is represented in the triple
of a label, an operator, and an object, and can
be comsidered as a kind of methods, because a
label and an object term in an attribute can be
- considered to correspond to a message identifier
with messages and the return value, respectively.
An oid and methods are written in a head part of
a rule and the corresponding implementations of
methods can be written in the body of the same
rule:

oid/[method,,- - - ,method,)

< implementationy, - - -, implementationy,

A label represented by extended term can be re-
garded as a kind of method. For example, we can
represent a method for a class human that return
set of common friend with other person as follow-
ing:
X/[common _friend{with =Y] — {Z}] «

X C person/[friend — {Z}],

Y C person/[friend — {Z}].
A set of rules with the same oid corresponds to an
object, and a method could have multiple imple-
mentations in rules of an object.

Furthermore, the oid also corresponds to a type,
a class, or an instance. In an object-oriented sys-
tem, a type summarizes the common features of a

set of types [1]. By introducing some ordering be-
tween oids, such common features can be attached
to the upper oid. The notion of a class contains
twoand an object warehouse [1]. As for the former,
our oid can create instances by binding variables

in the oid, which corresponds to the operation

new. Instantiated objects are located .under the
original object by natural subsumption ordering
among oids. In the seuse, oids also contains the
concepts of an object warehouse.

3.3 Semantics and the Extensions

An oid takes a set of labeled graphs as the se-
mantics and the correspondence is guaranteed by
Solution Lemma of ZI'C~/AFA set theory [9]. In-
versely, the Solution Lemma allows more exten-
sions of oids. lHere we list some of them under
consideration:

1) Introduction of Set Constructor:
il o0, objects,
{o1,---,0,} is a set object.

,0, are individual then

2) Combination of Set and Tuple Constructors:
0,[1 - {01,'-~,Sn},1' - 0/]

3) Introduction of Element-of Relation:
o[l € {0y,---,0,}])-

Thus, an object term is represented in various
ways. For example, a graph in Figure 1 is written
by using a set constructor in two ways as follows:

plfr=a,
to=X@p[fr=0b,

to=p[fr=c,
to={X,p[fr=d,

to=nil}]]}.

—114—

plfr=a,
to=p[fr=b,
to=Y@p|fr=c,
to=p|fr=0,
to={Y,p{fr=d,
to=nil]}]1])-

The expressions have the same semantics as shown
in [10].

4 Extended Term in QUIXNOTE

In this section, we discuss several characteristics
of extended terms as an oid in a DOOD language
QUIXNOTE.

4.1 Ordering among Object Terms

These is a partial ordering among basic objects
(O). For example, human < animal, which means
that human is an animnal.

We dcfine a partial ordering C extended terms.

In this paper, we give an informal definition by’

example. See {9] about the formal definition.

e a T b if a and b are basic object such that
a=<b

eoll=a]Coll=b]ifal b
(] r)[l] =a,12=1‘)]l;0[11=a]

L4 0[11 = X,ll = X] E 0[[1 = X,lz = Y]

where, X,Y are variables.

o~

Then we can define an equivalence relation &
between extended terms. !

o~

0120, = 0CEo03 A oy Jog

An equivalent extended term represents same
object. That is, object term oy,02 describe
the same object if .0y & o0y. For example,
eating.event[agt = john,obj = apple] means same
object as eating-event[obj = apple,agt = john].

!The user-defined extended term ordering is not consid-
ered here.

4.2 Inheritance and Exception

As mentioned in the previous section, an object
term (oid) can have properties, an object term
with which is called an attribute term. For exam-
ple, if a human named “john” is 24 age, we can
represent it as:

human[name = “John’]/{age = 24]

Here, a term on the righthand of ¢/” represents
properties of the oid that represented by a term
on the lefthand of ¢/°. In QUIXOTE, label and
label value are also represented in the form of
extended term.

QUIXOTE inherits a property inheritance mech-
anism from Juan. Properties are inherited upward
and downward along the ordering of object terms.
If there are several properties under a same label,
these values are joined or merged according to the
operator. That is, if obj C class:

class/[l — p] = obj/[l — p]
obj[[l — p] = class/[l — p]

By such a mechanism, multiple inheritance is also
possible. For example,

if john C human and human/[name = string]
then john/[name — name).

That is, il john is human and human’s name
is string then johm’s name is (an instance of)
Attributes specified in an object term
are also considered as properties of the object,
and inherited. However, such attributes cannot be

string.

changed because this is a essential for the object.
In this way, we can represent exception. Consider
the following example:

bird/[flying — yes]
penguin C bird|[flying — no)
super_penguin C penguin| flying — yes]
Note that
bird/[flying — no] C bird, and
penguin{flying — yes] C penguin,
according to natural ordering among extended
terms.

—115—

According to the inheritance mechanism,
bird[flying — no] inherits flying — yes from
bird. However, it cannot change the property
Slying — no, because the property is essential
for the object. Then penguin inherits only the
property flying — no and super_penguin inherits

flying — yes.

4.3 Module

QUINYOTE has a concept of modules, which makes
The
regarded as a world in Juen, a situalion in
QUINT, or a time. Same object term over dif-
ferent modules can be a same object. But these

rule inheritance possible. module can be

objects can have different states or properties. For

example, it is possible that an object ‘john’ has

a value 24 for his age in a module and has 25 in
_other module.

Fach module has a module identifier, the syn-
tax of which is same as an object identifier. The
partial ordering among module identifiers is also
defined as following two ways:

1) Natural ordering among mod ule identities

2) User-defined ordering

Let m :: » mean a module m has a rule ». Under
the ordering, rules are inherited as follows:

if my C my then

Ve 3 (myr = rEr Amg)
where mj, my are module identifiers and 1,7, are
rules. In this case, the existence itself of a object,

all properties of o in mg3, and rules about o in my
are merged with ones in model m;.

For example, consider following:
if my = john/[have = pen],
ma :: john/[want = pen], and
my C my,
then john has a pen in module ma, too.

Figure 2 shows an example of module that de-
.scribe an ‘update’ scheme 2. u_mod[target = M]

2This example does not necessarily mean semantics of

defines the parametric module. That is, the rule
in this module defined a update rule for a mod-
ule M. In other words, the target for the rule
in the module depends on the parameter M.
Consider an update of a module mod[id = t]
(say my), by update the rule in a module
wmodlid = add_agelt = taro],target = m4] (say
1y). Then the result of the update is a module
that is represented by mod[id = update[target =
my, upanoede = w]] (say ma). Since the first rule
of the example represent a ordering of module
identifiers, module my contains rules and facts
that is in module my but not in del[target =
my, up-mod = wuy]. In w1, there appear other mod-’
ule math that has (perhaps) rules about arith-
metic operation on integer. We can use rules of
this module in this way, or using partial order-
ing among modules. We can modularize knowl-
edge in this way. Furthermore, QUIYOT¢has also
an exception mechanism in rule inheritance among
modules (see [10]).

5 Concluding Remarks

We discussed a notion of ohject identity and oids
in QUIXYOTE. Object identity is onc of the most
important issues of object-oriented programming
languages and also object-oriented database lan-
guages. There are two viewpoints of the object
identity: viewpoint of an object itself and view-
point of a user. On the first point of view, identity
is the property of the object and distinguishes it
from all others in a systém. On the second one,
identity is the property, with which users can find
a specific object from a pool of objects. However,
many works miss the second point of view of the
object identity, and we believe that the point is
important for databasse. QUIXOTE uses extended
term representation (an object terin) as oids, each
of which can include some attributes of the object.
So user can obtain a necessary oid easily.

An object term itself has a characteristic of
value-oriented representation, while an attribute

update in QUTXOTE.

—116—

modlid = update[target = Time,up-mod = U]] 2 . N ‘ »
T@mod[id = Timel/del[target = T,up-mod = UQup_mod[id = X,target = T]].

del[target = M,up-mod = U_mod) ::

Fact <= u-mod[larget = M]: changes/[should_retract — Fact].
mod[id = update[target = Time, up-mod = u_mod]] :: '
Fact < u_mod : changes/[should_assert — Fact].

u-mod[id = add_age[t = taro],larget = M] =:

changes/[should_assert — tarolage = X|] <= M : taro/[age = Y], .

w-mod[id = add_age(l = taro],largel = M] =:

math : Y C integer /[add[to = 1] = X].

changes/{should_retract « tarolage = Y]] < M : taro/[age = Y].IA

Figure 2: Example of Module Rules

term has a characteristic of object-oriented one
based on the oid. That is, in the sense, the oid
in QUIXOTE integrates value-oriented and object-
oriented concepts.

We also describe how extended term represen-
tation as as oid plays an important role in sev-
eral features: representation of partial information,
inheritance with exception, and massage passing.
QUIXOTE uses uniformly extended term represen-

tation as an identifier not only for an oid but also’

for a label, a value, and a module identifier. Ix-
tended term representation makes it possible to
represent parametric ones, that is, a kind of ab-
stract data type.

In [7], update is one of the most important
notions to discuss object identity. However, this
paper does not discuss update, since update se-
mantics of QUIXOTE is one of the future works.

Acknowledgments
The authors would like to thank members of

QUIXOTE meeting and members of ETR-SWG
for valuable comments and suggestions.

References

[1] M. Atkinson, F. Bancilhon, D. DeWitt, K.
Dittrich, D. Maijer, and S. Zdonik: The

Object-Oriented Database System Manifesto,
Deductive and Object-Oriented Dalabascs, Ky-
oto, 1990.

[2] S. Abiteboul and P.C. Object
Identity as a Query Language Primitive, SIG-
MOD, 1989.

Kanellakis:

[3] C. Beeri: Formal Models for Object Oriented
Databases, Deductive
Databases, Kyoto, 1989.

and Objeet-Oriented

[1] M. Kifer and G. Lausen: F-Logic: A Iligher-
Order Languages for Reasoning about Ob-
jects, SIGMOD,

1989.

Inheritance, and Scheme,

[5] M. Kifer, G. La.useﬁ, and J. Wu: Logical
Foundations for Object-Oriented and Irame-
Based Languages”, Technical Report 90/14

(revised), June, 1990.

[6] C. Lecluse and P. Richard, “The O, database
programming Language”, In VLDB’89, Au-
gust, 1989,

[7] S. N. Khoshafian and G. P. Copeland: Object
Identity, OOPSLA 86, September, 1986.

(8] J.D. Ullman: Database Theory: Past and Fu-
ture, PODS, 1987.

[9] H. Yasukawa and K. Yokota: Labeled Graphs
as a Semantics of Objects, SIGDBS & SIGAI
of IPSJ, Nov., 1990.

—117—

{10] H. Yasukawa and K. Yokota: An Overview
of of a Knowledge Representation Language
QUIXOTEdraft, 1990.

[11] K. Yokota and S. Nishio: Towards Inte-
gration of Deductive Databases and Object-
Oriented Databases: A Limited Survey, Ad-
vanced Database System Symposium, Kyoto,
1990.

{12] K. Yokota: The Outline of a Deductive and
Object Oriented Database Language Juan,
SIGDBS of IPSJ, July, 1990.

—118—

