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This paper presents a topological model;for,probabilistic‘loéié; This
topological model is based on an idea that logical functions are
regarded as points in space, As an idea like this is used in functional
analysiﬁ{_this ﬁbpological mo&eIVQan be regarded as a functional
analysis in'Log[c{ By a'mefhod sihilar‘to(ghat for Hilbert spﬁce,
Euclidean space will be obtained on which theinformation in- a
proposition will be defined. The merits of this theory will be confirmed
in d4n application to‘ad'}hdﬁéffv; fnféiehce}zﬁy whiéh'a ﬁrobdsftion'fs

induced from a probability distribution over possible worids.,



1.Introduction

In artificial intelligence, reasoning with uncertain information is important and will be more impor-
tant in the future[Bra90]. Therefore there are many studies about probabilistic reasoning(for exam-
ple[Nil86,FH88]). However few researchers have introduced topology into logic. In [Tsu90aj, the author
presented a topological model for propositional logics.' In this paper, the model will be developed for
probabilistic logic and will be applied to inductive inference.

There are some distances among propositions concerning uncertain information in natural languages

(= probabilistic propositions). Now we consider the following propositions.
1. She is an old woman.
2. She must be an old woman.
3. She might be an old woman.

4. She is not an old woman.

It is possible to argue the distances among propositions 1., 2., 3. and 4.. For ex'amypl‘é, proposition 3. is
nearer to proposition 1. than proposition 4., and is further than proposition 2.. In dddition, it is also
possible to argue the information in a proposition. For example, the information in proposition 1. is
greater than that in proposition 2.. As the above examples show, there are some distances (topologies)
among propositions expressing uncertain information, and the propositions have certain information.
Nevertheless, up to n&w, these distances among propositions and the information in a proposition have
been ignored or thought little'of. This paper proposes a topological model for probabilistic logic, including
classical logic, on which the information in a proposition is defined. This paper treats the case of
propositional logic. Euclidean distance is the most natural, therefore the goal is to introduce Euclidean
distance in the set of probabilistic‘logical functions, which can be equated with probabilistic propositions.

There is the theory of functional analys;is,‘w}lich iﬁtroduces distances in the sets of functions to treat
functions as points in space topologically. Especially, Hilbert space is an extension of Euclidean space.
Therefore, it is natural to try to construct the Euclidean space of probabilistic logical functions by a
method similar to that for Hilbert space.

It is worth noticing that classical logic has properties similar to vector space. The properties are seen
in Boolean algebra with atoms which is a model for classical logic. The atoms (a;) in Boolean algebra
have the following properties. a; - a; = a; (unitarify), a; -a; = 0 (¢ # j) (orthogonality), £a; = 1
(completeness). This shows that the atoms in Boolean algebra have properties similar to unit vectors. In
other words, the atoms in Boolean algebra are similar to the orthonormal functions in Hilbert space.

As Boolean algebra has properties similar to Hilbert space, constructing Euclidean space starts with

Boolean algebra. The process from Boolean algebra to Euclidean space is as follows:

1. Represent Boolean algebra by elementary algebra. In other words, present an elementary algebra

model for classical logic. (Section 2)



2. Extend the truth value. From this, a probabilistic logic is 6btained. (Section 3)

3. Expand the above model to the space where nonclassical logical functions, including probabilistic
logical functions, are represented. In other words, eliminate the idempotent law. partially and

expand the model to the space where the idempotent law doesn’t hold. (Section 3)

4. Introduce an inner product to the above space and construct Euclidean space where probabilistic

logical functions are represented as vectors. (Section 3)

On this Euclidean space, the information of probabilistic logical functions will be defined. For exémple,
the information of x is 1 bit and the information of zy is 2 bits. A principle will be presented about
the correspondence between probabilistic logical functions and probability distributions over possible
worlds. This principle is explained with a primitive case. The vectorial representation of AV 4 is (1,1),
where atoms are ‘A and 4. AV A is 'tautology, therefore the information in AV 4 is 0 bit. Let w;
and w, be possible worlds corresponding to A and 4, respectively. The probability distribution over w,
and wy which corresponds to A V A should have no information, namely the entropy of the:probability
distribution corresponding to tautology should be 0 bit. The probability distribution whose entropy is 0
bit is (1/2, 1/2). Therefore the proposition (1, 1) corresponds to the probability distribution (1/2, 1/2).
This correspondence principle will be dxscussed in detall in Section 4.

According to the above principle, the propocltlon (1,1,1,0) whlch means AV B corresponds to the
probability distribution over possible worlds (1/3, 1/3, 1/3, 0). The transformation formula will be
obtained from a probability distribution over possible worlds to the vectorial representation of a proba-
bilistic logical function. In the above example, (1, 1, 1, 0) will be obtained from (1/3, 1/3, 1/3, 0) by
the transformationlformu]a. With this transformation formula, probabilistic propositions, such as ‘rain
falls with probability 0.7’ will be represented in the space of probabilistic logical‘ functions. ‘Détails are
discussed in Section 5. The linear algebraic method in this paper is similar to [Nil86,FH88,5hv90] and
so on. However, [Nil86Jetc. treat probability distributions directly, while this paper treats (probabilistic)
logical functions which are natural expansions of classical logical functions.. Namely [Nil86]etc. treat the
vectors of probability distributions, while this paper treats the vectorial representation of (probabilistic)
logical functions. Therefore, the merits of the method presented in this paper are that probabilistic logic
is treated topologically in addition to linear algebraically and that the probabilistic logic is a natural
expansion of classical logic. These merits are confirmed in an application . '

This theory will be applied to an inductive inference from a probability distribution over possible
worlds. A primitive example is that the proposition ‘whenever it rains, it is cloudy’ will be induced
from the probability distribution over possible worlds (0.2, 0.01, 0.29, 0.5), where the first figure is the
probability that it rains and it is cloudy, and so on. An approximation method in addition to the above
tra\.nsformation formula is used in this inductive inference, which is realized by the fact that topology and

information are introduced into logic. (Section 5)



2. A model] for classical logic ‘ ‘ L
We review the model introduced in [Tsu90a]. More détailed explanations can be found in [Tsu90b]
Hereinafter, let X, Y,...stand for propositional variables and let z, y,...stand for variables. Let F G, stand
for propositions and let f,g,... stand for logical functions. v
2.1 Some preliminaries
(1) Definition of 7 o ‘ . ; .
Consider f(z) = g(z)(z — %) + r(z), where f(z),q(z) and r(z) are real polynomial functions, and
z € {0,1}. 7o is defined as follows:
nU@D-dﬂ '
(2) Definition of 7

3

w hén fis of n ‘variables, r is vdeﬁned‘ as foliowé:
.1"=‘I'[;‘1r,“' . TN | .
For e}\amp]e T(:c + y+ 1) —‘a: + y+ 1 ‘
 (3) Definition of L B
" Let L be the set of all functions satlsfymg T(f) f Then L = {flr(f):f} L is the set of linear
" real polynomlal functions. In case of 1 varlable L= {a:v: + b|a be R} -
4) Definition of L
Let x,y, ... be variables, where z':,_y, - € {0, 1}.”L1 is inductively deﬁned as fOIIO\vs: 4

1. Variables are in Ly.

2. If f and g are in Ly, then 7(z-y), r(z +y—z - y) and 1'(1 - a,) are in Ll (Tllese three calculations

are called 7 calculation.)
3. Ly consists of all functions finitely genefated by the (repeatgd) use of 1. and 2..

(5) If f'is in Ly, then f satisfies r(fz) f. Thatis, f € L1 = T(f2) = f. This can be easily checked.
Obviously, if f € Ly, then f € L. ) '
2.2 A new model for classical logic
Let the éo"rrespondence between Boolean algebra and 7 calculation be as follows:
FAG & 1(fa), ' |
FVGer(f+g-fg),
F er1-J).
where A,V and @ stand for conjunction, disjunction and negation, res"péctively‘ Then (Ll,‘r“calcu-
latxon) is a model for classical propositional logic, namely Ly and 7 calculation satxsfy the ‘axioms for
Boolean algebra Proofs can be found in [Tsu90b] '
'2.3°0n 7(f2) =



It can be verified that if f satisfies 7(f2) = f, then f is inLy. Then, (fe D)A(r(fO)=f)e fFel,
follows from (f € L)/\ ('r(fz) =f)=>feliand fe 1 = (‘r(f2) =f)A(f€L)in21(4). Thus, the

subset of L which satisfies T(f’) = f is equal to L, (the set of c]assncal propositional logical functxons)

3. A topological model for probabilistic logic
3.1 Extension of truth value

The truth value is extended from {0,1} to [0,1]. By this extension, functions become continuous
functions (f : [0, 1]* — [0,1]). , , , '

This truth value is interpreted as probablhty This extension makes classwal loglc a probablllstlc
logic. The formulas for this probabilistic logic are the same as those for classical logic.
3.2 A probabilistic logic

Let p1,p2 probabilities of X,Y. Then the calculations are :;15 follows:
1. X AY & pips,

2. XVY & p1 +p2—pip2,

3. Xe1-p;. |

Obviously, this calculation is valid only if propositional variables are independent, therefore some modi-
fications(for example [Bun90]) or additional definitions of calcule;t,ions like some weak logics(for example
[Gir87]) will be necessary. However, let us go ahead with the problem unsolved as a future work. Here
X A X is not calculated as pypy = p. Because X A X = X, namely 7(2?) = 2, the accurate calculation
"of XAX isps. :
3.3 Elimination of 7(f?) = f o
In 3.1, truth value was extended, which represents uncertainty of variables. In this section, we will
represent uncertainty of propositions. This means that probabilistic propositions are represented by
probabilistic logical functions. Therefore, it is necessary to expand the space of classical logical functions
(L1). As 2.3 shows, 7(f2) = f means the space of classical logical functions. Here, 7(f?) = f is eliminated
in order to expand this space, then the space of linear polynomial functions(L) is obtained. Hereinafter,
this space(L) will be made into Euclidean space(= a finite dimensional inner product space). Elimination
of 7(f?) = f means the elimination of the idempotent law for formulas except variables ( for example z,
¥,-..).Therefore,this space is a model for a weak logic where the contraction rule ‘and the weakening rule
hold only for variables. Therefore this space must have much to do with Girard’s linear logic, where the
contraction rule and the weakening rule don’t hold. The study of the relation between this model and
linear logic will be a future work.
~ 3.4 Euclidean space
(1) Definition of inner product

Inner product is defined as follows:



< f,9>=2" [} 7(fg)de,

where f and g are in L, and the mtegral is generally a multiple mtegral Thls ha.s the propertles of an
inner product. )
{2) Definition of norm

Norm is defined as follows:
Il £ll= VT, TS

This has the properties of a norm. This norm is denoted by N,(f).N, stands for relative norm, ‘which
depends ot the dimenisioh of space (the number of variables). Therefore, L becomes an inner product
space with the above norm. The dimension of this space is finite, because L consists of the linear
polynomial functions of n variables, where n is finite. Therefore L becomes a finite dimensional inner
product space, namely Euclidean’ space '

A new norm is defined as follows:
N(f)=Vv2-"Nr(f).

This norm is used in Section 4.
(3) Orthonormal system

‘The ott.honormal syst.em is as fol]ows

H, le(x_,)(z—l~2"j—1~n)

where e(z;) = 1—2; or ;.

It is easily understood that these orthonormal systems are expansions of the atoms in Boolean algebra (See
the Introduction). It is also easily verified that the orthonormal system satisfies the following properties:
’ <¢idi>=0G#5) ‘
=1(i =)
f=Y < fidi> b

This Euclidean space is -an ‘expansion of Hasse diagram of classical propositional logic. ‘ :

4. ‘Correspondence between the vectorial representation of' a ‘probabilistic
logical function and a probability distribution over possible worlds
4.1 The information of a probabilistic logical function ’

The information of a pl‘Ob'lbthth logical functlon is'introduced, whicli is called logical entropy. Loglcal

i

entropy Hj is defined as follows:

H(f) = ~loga(N (D)= ~loga(f3 7(7)dz).

[

Examples are shown below.

Hr(1) =0 = This means that the information contained in tautology-is 0 bit.:



Hi(z)=1 = This means that the information contained in z (namely the
affirmation of a certain proposition) is 1 bit.
Hp(zy)=2 => This means that the information contained in zy (namely the
' h conjunction of a certain proposition and another proposition)
is 2 bits. | ’ o
Hi(0)=o00 = This means that the information contained in contradiction
is infinite. )
As the above examples show, the information of a probabxllstxc logical funct.lon is reasonably defined.
4.2 Correspondence principle between the vectorial repl esentation of a probablhstlc logical
function and a probability distribution over possible worlds
(1) Terms and notations

The following terms and notations are introduced.
1. f stands for e;rprobalii'li’stic logical function.

2. f stands for a propositional vector, which is the vectorial representation of a probabilistic.logical

function.
3. (w;) stands for possible worlds.
4. p stands for a probability vector, which is a probability distribution over possible worlds,

(2)At first; X VX of 1 variable'is considered. The propositional vector of X vV X is (1, 1) Then, this
proposition is tautology. Therefore, this ‘proposition has no infdnrﬁati;)n ﬁainély the information in this
proposition is 0 bit. The probability distribution whose information is 0 bit is (1 /2 1 /2), where the
information of a probability distribution (I) is defined as usual: B : ' o
I=n—HH==Y] plogaps), e A
where 7n'is’ thie number- of variables and p; is probability. “Therefore, the ‘propositional vector ‘([l, 1)
corresponds to the probability vector (1/2, 1/2). Similarly, the following correspondences are obtained :
 tautology of n variables (1,...,1)& (1/(2"), ... 1/(2%)), : e
X of 2 variables (1, 1,0, 0)< (1/2,1/2,0,0).
The latter correspondence follows from the following two facts. The first fact is that X denjes X, therefore
the probability of possible worlds corresponding to X must be 0. Another is that the 'pioboéitional vector
(1, 1) corresponds to the probability vector (1/2,1/2). ‘ ' ’
These correspondences can be generalized to the following prmcrple Let (a;) be a proposntlonal vector
and let (b;)'be a probability vector. Suppose m-elements of (a;) are 1. ' ;
“If @; =1, then b; = 1/m, and if a; = 0, then b; =0
Tiie above correspondence principle means that the direction of probositibn'al vector is the same a5 that

of probability vector and that they differ in the norm. '



(3) The information of a probabilistic logical function is equal to the information of a probability distri-
bution. . ) o ) :

The information of a probabilistic logical function was defined in 4.1, and the information of a prob-
ability distribution was described in 4.2 (2). Hp == I (namely Hr = n — H) can be obtained from the
above two informations. Proofs can be found in [Tsu90b].

Thus two important relations between propositional vectors and probability vectors are obtained:
1. The directions of two vectors are the same,
2. The information of two vectors are the same.

Hereinafter, these relations are extended to nonclassical logics including probabilistic lbgic. In other
words, we will use the above principle in nonclassical logics too. '
4.3 Transformation formula

Probability distributions are transformed into vectors which represent probabilistic logical functions.
This transformation will be executed by the above correspondence principle. Transformation from a
probability vector to a propositional vector is obtained from the above two relations. From 2., N, = 9H/2
is obtained. Since Hy, =1 - Hy =n—H — -—loy;;(?"'/zN,.(f))2 = n— H. The directions are the same
from 1.. Therefore, the transformation formula is S

f=(25/2/|p|)p, where H =7 (pilogapi), lpl= (27 p2)V2, p= (p1, ..., pan).

By this transformation formula, we can transform a probability vector to a propositional Veétor.
Therefore, when we know a probability distribution over possible worlds, we can obtain the proposition

corresponding to the probability distribution over possible worlds.

5. An application to inductive inference
5.1 Inductive inference from a probability distribution over possible worlds:

We can infer a proposition from a probability distribution over possible worlds by the formula in 4.3.
This inference is a kind of inductive inference. It is desired that a probabilistic proposition is expressed
by natural language. The solution is to approximate the probabilistic proposition by an ;':mppropriate
proposition of classical logic. The approximation method is-as follows. Let (f;) be the propositional vector
whic,h:represents a probabilistic proposition, and let (g;) be the propositional vector which represents a
classical proposition. Then, if f; > a, then g; = 1, otherwise g; =0.

5.2 An example

An example is shown in Table 1 Here, X stands for rain and Y stands for.cloudy.. Although w, is very
scarce, wz is considered, since probability ps is not 0. This example is about the. weather. Therefore, the
question will be ‘Which classical propositions about the weather will be obtained from which probability
distribution over four possible worlds?’ Table 2 shows two specific instances .of probability vector in

Table 1 and the results of this inductive inference. Here, p stands for a probability vector. f stands for



the propositional vector obtained by the transformation formula. g stands for the classical propositional
vector obtained by approximation. (Let a be 0.5.)
' Table 1. Four possibie vorlds

possible vdrld |} y2 33 ¥4

rain " rain rain | not rain| not rain

fine/cloudy | cloudy fine cloudy | fine

probability 1 P2 P3 P4

Togical function xy xy Xy Xy

Table 2. Two Instances

classical

proposllLO?

1" | (0.28.0.02.0.3.0.45) | (0.99.0.09.1.29.1.94) [ (1.0.1.1)] Xv¥(-X=Y)

"2 | (0.45.0.5.0.28.0.02) [ (1.94.1.20.0.99.0.09) | (1.1.L.0)|  Kv¥’

Instance No.1 means that fine and cloudy are even, and it rains one day per four days, and it very seldom
rains, when it is fine (However the real probability of rain in fine weather is less than 0.02). Instance
No.2 means that it is rather cloudy than fine, and that it is very seldom fine and that fine and cloudy
are nearly even when it rains. )

The result of Instance No.l is X V Y(= X — YY), which means ‘whenever it rains, it is cloudy’. As
probability(X — Y) is 0.98,. this result.is reasonable. ; .
The result of Instance No.2 is X VY, which means ‘it rains or it is cloudy’. As probability(X VY) is
0.98, this result is reasonable. Naturally, X VY (= X —Y) cannot be obtained, which means ‘whenever
it rains, it is cloudy’, since the probability of wy is 0.3, which is very big compared with that of Instance
No.l and is not much smaller than that of w;. ‘

These instances show that this inductive inference is reasonable and effective. Why we can obtain clas-
sical propositions from a probability distribution is mainly attributed to the fact that topology(distance)
and information are introduced-into the space which is a model for an expansion of classical logic. We

will apply this inference to larger problems. However, this method has the problem of computational



complexity, which will be argued in another paper.

‘6. Conclusions

The author has presented a topological model for probabilistic logic and applied it to an inductive
inference. This topological model can be viewed as a functional analysis of logical functions, which enables
logical functions represented as vectors. The author has also presented a correspondence principle between
propositional vector (probabilistic logical function) and probability vector(probability distribution over
possible worlds), by which the vectorial representation of a probabilistic proposition has been possible.
Furthermore an inductive inference from a probability distribution has been obtained as an application
of the above correspondence principle. The essence of this pai)er can be an introduction of distance and
information into logics. In addition, it is characteristic that logic and probability are treated together

and separately.
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