L B M R 114—9
10. 2)

oA
(1998.

NEREZFBOREICIIBHREDET
- WARPRERIEFEBIZEEER -

=t #¥%
LB AR ZE TEE

EE BN CGERED RRTIAMNES I TLGRELEEETHLRATFAISDVTRETS. T
I—XELTRBRUNDFROBERICLIEHRRI P BAAFANEAL, FhEDIRE
BROLHOBTBBRPECALET) ISHARATRRTSHEERRETS. COREHIL
HBOPREBEI-Cz oM BENCHEFEREO—BELTRETHLIMBEIC—BRMNTRRE
ERTTITRESSBS. TOFSLTHRESMEZHIZLY, 2 BLLEOFIFIVRABR
AEBIZETTHIIE FThEU EOREA TRE - DAMRETH N RRSE DN H %
BHLLETRT.

Learning in Dynamic Domain by the Method of Dynamics Reconstruction and
Machine Learning
(A Method by Reinforcement Learning and Chaotic Time Series Prediction)

Sadayoshi Mikami®
Faculty of Engineering
Hokkaido University

Abstract: We discuss a system that learns in dynamic domain. We separate the problem
into two phases: first is the short-term state transition prediction by a method of dynamics
reconstruction, second is the cost-minimum action search by using trial-and-error based
learning such as Reinforcement Learning. Such system provides a general method for
interacting learning agents, where each agent observes another as a part of its
environment. We put a hypothesis that such interacting agents exhibit deterministic
dynamics. Although theoretical proof has not be given, we could get the results that,
under simple conflict resolution task by interacting multi agents, the agents with proposed
method has effectively worked to converge.

continuously changes by the interaction and
exhibits context dependency. Such situation will
commonly be found when we plan to apply
Reinforcement Learning to large-scale distributed

1 INTRODUCTION

We discuss a system that learns in dynamic domain.

We separate the problem into two phases: first is
the short-term state transition prediction by a
method of dynamics reconstruction, second is the
cost-minimum action search by using trial-and-
error based learning such as Reinforcement
Learning. Such system provides a general method
for interacting learning agents, where each agent
observes another as a part of its environment. We
~ put a hypothesis that such interacting agents exhibit
" deterministic dynamics. Although theoretical proof
has not be given, we could get the results that,
under simple conflict resolution task by interacting
multi agents, the agents with proposed method has
effectively worked to converge. .

The situation where Reinforcement Learning agents
are interacting with each other is a hard
environment to learn. The environment

problems without communication (Lin, 1993,
Connell, 1993, Whitehead, 1995). Traffic signal
control, . air-conditioning systems, and network
routing problems are amongst them. However, if
the behavior of the other agents is perfectly
predictable, these situations are reduced to normal
Reinforcement Leaning problems. This is because
context dependency is resolved by knowing the
predicted next state. A single strategy should be
applied for a given input state.

In this paper, we put a hypothesis that such
interacting agents exhibit deterministic dynamics.
It is-known that short-term prediction of the state
transition
deterministic dynamics (Crutchfield, 1994, Pollack,
1992). For example, embedding is one of
techniques to extract dynamics from a time series

is available for a system having

of sensory input, and to predict one time step
evolution (Takens, 1981, Sugihara, 1990).

This means that, if the hypothesis hold true, then an
agent can understand the other agents” policies in

terms of the dynamics that the entire system obeys.

The short-term prediction implémented in each
agent will resolve the context dependency, and then
successive Reinforcement Learning will converge.
Thus, co-operation will be learned by observation.

To this end, we implement dynamics-detection-
based prediction method into TD Learning
algorithm (Sutton, 1998). Although theoretical
proof has not been given, we get the results that,

under simple conflict resolution task by interacting

multi agents, the agents with _pkopo‘sed method has
effectively worked to converge.

2 REINFORCEMENT LEARNING
WITH STATE PREDICTION
FUNCTION

2.1 STANDARD RL IN STATIC
ENVIRONMENT

Consider a set of standard Reinforcement Learning
agents. Each agent observes the. other agent’s
behavior (such as position) as one of its observing
state.

For the simplicity of the discussion, a state vector
x,is assumed to be one—dlmensxonal discrete value.
We also assume that an evaluation (payoff)
function depends on the state tramsition x,, x,,
and the action aq,,as r, =r(x,x.;,4a,).

Reviewing the standard (TD) learning, the
objective of the learner is to maximize a
cumulatlve discounted payoff such that,

wx) = X VG xana), (1)

which represents a sum of future payoff under the
condition where the best actions are selected from
t to . In the form of the time evolving system, it
is rewritten as,

u(x) = vu(x,.,) . 2)

,+.,a)

Defme that an action g, is opumal if it satisfies

u(x) = p(%,:0,,1) JOR

p(x,,a,,t)- describes a function that gives a policy
when q, is applied to the state x, at time ¢. From
this defmmon the optimal actxon is selected as the
a that satlsf}es i

‘ xl*] =f (] :)

arg max, p(x,,a,t) .)

. Choose an action according to cost function
u(x,,%,,,a,)

a?a,?

an ?‘,w‘xl“'l

»°
o
=

'xr‘Z

Predicted future

T
Observed state

Figure 1: Prediction based learning. A cost function
is associated to the current state, future state and
: the performed action.

2.2 LEARNING IN STATIC DOMAIN

In standard RL, the state is regarded as static. It
means that there exists a function f such that
By using f, the function p is
rewritten as,

p(x,a,1) = r(x, f(x,a),a) * u(f(x,a)). (5)

Note that the equation does not contain x,,,, and

the function p(®) does not depend on time variable
¢t . An optimal action is then selected by looking up
only p(x,a) table.

This lets the learmng phase as simple as follows:
Recall that the learning is a process of refining the

-approximation for u(x,) by using actual payoff

values given through trials. Assume that a trial was
performed and the system has then moved to a new
state y. Let r be a payoff given by the trial. From
the eq.2, the following must hold,

u(x) =r*yu(y), . (6

Let #(x) be the current approximation of u(x) .
The error value for ia(x) is,

d=(r+p(y) =i . o
It is used to gradually refine the' di(x) as,-
i(x) — ii(x) + ad ®

where @ €[0,1} is a learning coefficient. From the
definition, the policy p has the same error value.
Thus, by using the symbol p for the current
approximation for p, the followmg updatmg rule is
applied:

pa)cpa B, (9)

where B €[0,]] is the learning coefficient for the
policy.

2.3 EXTENSION TO INCLUDE STATE
PREDICTION FUNCTION

Let us consider the case where the time variable ¢ is
not removed from the policy table p(x,a,r) . If x,,
is known from x,a, and ¢, we can remove the time
t dependency of p.

Let g be a function that returns a (predicted) next
state, such that x,, = g(x,,q,,1). The table
p(x,,a,,1) is then,

p(xnant) = r(xl’al’g(xlial’t)) +u(g(xnant))y (IO)

Note that, in the equation, g(x,,a,r) is already
known at time r. By rewriting g(x,,a,,t) as y, we
get an equation for p that do not use ¢ term as
follows:

(1
This means that the table p must be addressed by
three independent variables. Thus, the selection of
an appropriate action should be done by a slightly
different way: For every possible action a, a
(predicted) next state y(a) is calculated by using
the function g as y(a) = g(x,,a,t) . This is then used
to look up a utility of applying the action a in the
state x,_ at time f, p(x,a,y(a). Clearly, like

equation (4), an appropriate action a is selected by
the one that gives the maximum payoff,

p(X,,a,,y) = p(x,a,t) =r(x,a,t) Y u(y).

a =argmax, p(x,,y(a),a) . 12y

The learning algorithm is the same as the standard
TD, by modifying an element of the table p(x,,q,)
using x,,a,, and r. In this dynamic environment
version, the updating scheme is extended to
incorporate in the transited state y. Note that the
utility storage - é(x) is still.used in the same way as
the standard TD. At first, the TD error d is given by
d = (r * vu(x,.,)) = i(x,) . Then, Eq.8 is used to update
i. The content of p to be modified by using d
should be addressed by using current (meaning that
the modification is done after state transition) state
x,.,» the last performed action g, , and the previous
state x, . The updating equation is then,

P(%,%,,a) ¢ p(x,x.,a)t Bd . (13)

An important characteristic of this scheme is that,
the action selection is done by a forecast state
(using the" state transition function g), but the
modification of policy y is done by the actually
transited state. The latter is based on reliable

information since everything it uses has already
happened. The error in the function g is reset in the
succeeding policy modification phase.

2.4. STATE PREDICTION BY .
DYNAMICS RECONSTRUCTION,

In our method, the learner is expected to know the
deterministic dynamics that produces its sensory
input sequence. Since it is not explicitly given, the
learner has to -reconstruct it only through
observation. Then, the reconstructed dynamics is
used to predict the short-term future of its sensory
input, The function g, x,., = g(x,a,,?), is such a
dynamics-reconstruction-based time. series

forecaster.

A method to realize g, is known as the local
reconstruction by embedding (Alligood, 1996). The
method embeds a time-series {x)into higher
dimensional space by using delay-coordinate. The
embedded time series is defined as a series of a
VECIOr Z, = (X, X450+ X,+(yy,) fOT the delay time 7.
From the theory of embedding (Takens, 1981), it is
known that if a time-series is produced by an n-
dimensional deterministic dynamics, and if the
dynamics has an attractor, then, by embedding the
series into a delay-coordinate system that is higher
than n, the attractor is reconstructed into the delay-

coordinate. We write the embedded dynamics as
Z,, = hz).
Agent-#1
Resource #1 Resource #2
Action #1

for Agent #2 ™% -~

Agent #2 Resource #3 Resource #4 Agent #3
Figure 2: A conflict resolution game by three
agents for five resources. Size of state space is 32,
and actions are 5. Gaussian action selection at
temperature 1 is used.

Consider a point z, in h. From the property of an
attractor, a set of pdints {2,;]2,2,| < €) in h that are
close to z, will be transferred to the neighboring
points |{z,.;]z.,,%,,| < £} in the same attractor h.
The embedding-based time series forecast uses this
property. Let us find the next state %., for x,. At
first, x, is embedded into z - with past states.
From the property of 4, some points <z,,z,,and z_,
for example - that are close to z,, will be
transferred to the neighbors of =z, Although
z., is not known, we can approximate its Jocation

so that it preserves geometrical relationship
between z, and z,z,z,, such as preserving the
ratio of areas surrounded by these points (Sugihara,
1990). %, is separated from the approximated
z.,- Then, the RL uses ., to select an action,
modify the policy, and store that policy.

3. INTERACTING LEARNERS

The forecasting function g is used in conjunction
with Eq.10-13 to provide dynamics-forecasting-
based RL (DFRL). The hypothesis here is that, if
the agents using DFRL are interacting with each
other, then the time evolution of the states of these
agents will converge into fixed dynamics. In our
scenario, forming dynamics of having an attractor
and the forecasting based on that attractor will
concurrently work together. However, the
theoretical analysis is not yet given until now.

We conducted basic experiments to test this
hypothesis. The test problem is a simple conflict
resolution game by three agents. The action of an
agent is to choose one resource (place) out of five.
The decision making is synchronized over the
agents. If more than one agent choose the same
resource, they are penalized by -1, otherwise
rewarded by 1. An agent only observes the other
agents’ choices of the last trial. (Fig.2)

L

7

N

" i@
. M 1+ L

. .
T w w @ 2 m]| s 8 w o wom oA

RN

v

(a) from 1 to 24 steps (b) from 25 to 50 steps
(¢) from 51 to 100 steps

Figure 3: Plot of states in embedded space. X and
y-axes correspond to x, and x,.,.

Two-dimensional embedding method was applied
for the dynamics-forecast-based RL. The results are
shown in Figs.3 and 4. It is observed that an
attractor was explicitly formed. After 50 trials, the
reconstruction of state was almost converged, so
that the rate of failure was reduced to almost zero,
whilst normal Q-learning doesn’t achieve any
improvement. The agents were synchronously
choosing the resource (0,1,3), (0,1,4), and (1,0,2).

Although this is a very limited experiment, the
result is encourageous because it is shown that such
a system having highly-freedom could form
attractor in a short period. this is a preliminary
result

1.2
Rate of Success of |
é 1t , . & Prediction . .
f
$2 s NI b
= g 1
88
% 5 06 \- .
@ % Rate of Conflict {Q-L.earning)
%m 04 |
-~
® Rate of Conflict (DFRL)
©
I 0.2
0 T T S AL SN LS S
"5 55 AbBDrINODED
LIRSS 88
Step

Figure 4: Rate of conflict and success for
prediction. ‘

4. CONCLUSION

For the acquisition of co-operation for a group of
agents without communication, we have proposed
an approach based on a combination of time-series
prediction of an unknown dynamics with
Reinforcement Learning. The assumption that the
interaction of these learning agents exhibits
attractor in low dimension is difficult to prove. But
if this assumption holds true, it seems possible by
our algorithm to acquire reactive rules under a
large class of complicated (even in chaotic)
problems with many systems interacting with each
other, such as traffic control, dynamic routing, and
navigation of vehicles.

References

Alligood, K.T., Sauer, T.D & Yorke, J.A. (1996) Chaos - an
introduction to dynamical systems, Springer Verlag.

Connell, J.H. & Mahadevan, S. (1993) Robot Learning, 1,
Kluer Academic Press.

Crutchfield, JT.P. (1994) The Calculi of Emergence:
Computation, Dynamics and Induction, Physica D, 75, pp.11-
54.

Sugihara, G. and R. M. May (1990). Noglincar Forecasting as a
Way of Distinguishing Chaos from Measurement Error in
Time Series, Nature, 344, pp.734-740.

Lin, L-J. (1993) Reinforcement Learning with hidden states,
From animals to animats 2, pp.271-278, The MIT Press.

Moore, A.W. & Atkeson, C.G. (1993) Memory-Based
Reinforcement Learning: Converging with Less Data dand Less
Real Time, Robot Learning, pp.79-103, Kluer Academic Press.

Pollack, J.B. (1992) The Induction of Dynamical Recognizers,
Proc. IICNN.

Sandholm, T. & Crites, R.H. (1995) Multiagent Reinforcement
Learning in the Iterated Prisoner's Dilemma, Biosystems, 37,
pp.147-166.

Sutton, R. & Barto, A. (1998) Reinforcement Learning: An
Introduction: The MIT Press.

Takens, F. (1981) Detecting strange attractors in turbulence,
Lecture Notes in Mathematics, 898, pp.366-381.

Whitehead, S.D. & Lin, L-J. (1995) Reinforcement learning of
non-Markov decision processes, Artificial Intelligence, 73,
pp.271-306.

