Push Mode of Change and Difference
Information on the Web Based on
Agent Interaction

Santi Saeyor, Mitsuru Ishizuka
Dept. of Information and Communication Engineering, Faculty of Engineering,
University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN
{santi, ishizuka} @miv.t.u-tokyo.ac.jp

Abstract— Information sources on the Web are hugely dynamic. The changes made upon them occur at
different rates and in unpredictable ways. Besides the target information itself, the changes upon the
previously released information are irrefutably significant and worth being notifled to those who
perceived the out of date information in less than no time. Unfortunately, stock type information source
has no means to inform its prospective users of the changes. While the stock type information source
occupies a large percentage of sources on the Web, it is necessary to have a system that monitors changes

on the Web, and provides compreh ive pr

tion to the prospective users. This paper proposes a

mechanism that incorporates change monitoring and presentation service for a user community. The
service is provided in push mode without elaborate effort of information providers. The service also
includes shared resource management to make the system fit for a large-scale service.

I. Introduction

The explosive growth of the World Wide Web
(WWW) brings about overwhelming information,
in addition, it is supposed to be changed dynam-
ically without any prior notification. The large
percentage of information sources are stock type.
The users access this type of information in pull
mode, mostly by Web Browsers. These informa-
tion sources have no mechanism to bring infor-
mation of the changes to prospective users. The
users have to deal with the matter by themselves.
Browsing through the sites for new updates is not
only time consuming task but also vain in case
that there is no change made on the sites once vis-
ited. This puts a significant load to the users be-
sides exploring brand new information. We need
some representatives to do such burdensome and
tedious jobs for us. Furthermore, we would like
to know when the changes occurred and how they
look. That means not only tracking tools but no-
tification and presentation issues are also taken
into account.

This paper considers the evolution of mecha-
nism that detects and evaluates changes on the
Web, provides it in comprehensive form, and push
the information to prospective users. At overall
level, these operations induce the flow of informa-
tion, change and difference instances, from the in-
formation sources to the users. With this system,
The ubiquitous stock type information sources on
the Web have no need to provide any effort to

convey their updates-to the users. As a result,
the information is seemingly transferred in push
mode.

We created a system that tracks and provides
review of changes on the Web called WebBe-
holder. We incorporate shared resource manage-
ment with the WebBeholder in order to enable the
framework a larger scale of service. The shared
resource management plays an important role to
make the push mode transfer of changes and dif-
ferences practical. The system would not be prac-
tical if the available resources are used to provide
service to a large group of users without an effec-
tive resource management processing,.

The rest of this paper is organized as follows.
Section 2 describes the architecture of the sys-
tem, section 3 shared resource management, and
section 4 the difference and display issues. Sec-
tion 5 explains the induced push mode. Section
6 presents our results. Section 7 discusses related
work and section 8 concludes.

II. System Architecture

A WebBeholder community is the community
that consists of a service provider agent, a number
of mediators, and a number of mobile agents that
represent their users. The users customize their
own agents to meet their preferences before dis-
patching them into the community. These agents
are called personal agent. The WebBeholder com-
munity is designed to provide an environment in

which various kinds of agents can interact with
one another to achieve change detection and pre-
sentation on the Web.

Fig. 1. The WebBeholder Community with both trans-
action agent and Java applet accesses to the service.

The environment of overall system for the
WebBeholder community is shown in [Fig.1]. The
users of the community dispatch their own agents
to the Mediator via the Internet. At the Media-
tor site, all personal agents are bound in a pro-
vided platform which the agents can execute their
codes under a restricted control. There are three
service modules within the Mediator. All service
modules run independently. Each service mod-
ule serves the personal agent in its own queue.
The Request Broker is the module that negotiates
with and posts the queries to the Service Provider
Agent for the personal agents.

The Navigator module tells the personal agents
about locations of other WebBeholder communi-
ties. This service is provided in the case that per-
sonal agents could not find any information on the
pages assigned by their users. The personal agent
can query the Navigator to look further for some
communities that have the desired information.

The Facilities module provides facilities for in-
coming personal agents. Since the mobile agents
in the provided platform of the Mediator site have
restricted access to the Internet and resource us-
age, the Facilities module offers these facilities
under limited operations. The details of facili-
ties are described in the topic Facilities in the
Commaunity.

The main agent that offers services to the com-
munity is the Service Provider Agent. The archi-
tecture of the service provider agent is shown in
[Fig.2]. Its main modules can be listed as follow-
ing:

e Agent: The heart of the service provider agent.
It interacts with other modules in order to re-
trieve and compare HTML documents.

Fig. 2. The service provider agent.

o Scheduler: The scheduler will loock up the
pages registered for each user then makes a sched-
ule of checking for the user. It constructs a
timetable for the agent to make sure that each
user will be served right in time.

« Difference Engine: The agent implement the
Difference Engine in order to compare the content
of updated pages and see whether there are signif-
icant changes in them. The old and new versions
of HTML documents’ are compared by running
the Difference Engine. The results from Differ-
ence Engine are very important for the agent to
classify the changes. At the same time, it will
summarize the updated information into another
HTML document by innovative algorithm pro-
posed in this research. The detail on Difference
Engine is given in the Difference and Display sec-
tion.

¢ WWW server: The page archives contain the
old and new version of Web pages together with
summary pages constructed by the HTML Dif-
ference Engine. When users are notified by their
personal agents, they can view the changes with
their browsers via the WWW server..

A. Facilities in the Community

The facilities in the community consist of:
« Post Office: The personal agents may have
messages for their owners when they find some-
thing interesting or just for emergency cases. The
message can be sent via the post office of the com-
munity.
¢ Accommodation: This provides accommoda-
tion for some personal agents that wait for some
predictable events or could not go back to its user
for a while.
+ Broadcasting service: This facility allows
broadcasting to all agents in the Personal Agent
Center. This facility is also used to establish com-
munication among personal agents.

B. Communication in the WebBeholder

When personal agents receive assignments from
their users, they go to some Mediator sites. Right
in each Mediator site, there will be many per-
sonal agents. Each personal agent has capability
to deal with components in the Mediator site.The
personal agents are independent of one another.
The communication layers in the WebBeholder is
shown in [Fig.3]. The communication in the com-

Fig. 3. Communication layers in the WebBeholder.

munity can be categorized as shown below:

s User vs. Personal Agent: User can define
the goal of a personal agent via the dialog pro-
vided by the personal agent. The user is required
to provide the page in interest together with a
location of Mediator site, the frequency of check-
ing, the threshold weight that the service provider
agent uses to determine whether the changes are
significant enough to notify the user, the depth of
checking, and the email address of the user. The
service provider regards the email address as the
ID of each service.

+ Personal Agent vs. Components: Each
personal agent knows how to deal with various
components in each mediator site, such as Re-
quest Broker, Navigator, and Facilities.

+» Components vs. Service Provider Agent:
The components each Mediator site deals with
the Service Provider Agent in order to carry re-
quests gathered from various personal agent to it.

Fig. 4. A number of WebBeholder Communities are linked
together by a central Community Location Server.

« Service Provider Agent vs. Community
Location Server: This level provides the door
to another community via the Community Loca-
tion Server. The WebBeholder communities are
linked together as shown in [Fig. 4]. The Commu-
nity Location Server is the center of all communi-
ties. Its holds the information about location of
service provider agents, the Web pages they are
responsible for, and their Mediator sites. The in-
formation may be asked from the Navigator mod-
ules in Mediator sites in order to dispatch some
personal agents to where the desired information
is already provided.

Finally, some users may be comfortable to deal
with the service provider directly. The system
provides a Java applet that makes the request di-
rectly to the service provider. By this way of in-
terface, the users have to do most of things man-
ually and have no access to the benefit of the
mobile agents.

III. Shared Resource Management

When serving a large number of users, we ex-
pect to have some identical or nearly identical re-
quests. These requests can share the resource.
Unlike the service for individual usage, we at-

ofey ¥

.stervice es

000 @™
O ®-

Matched requests

Fig. 5. Resource sharing of matched requests.

tempt to provide personal service while maintain-
ing the efficiency of resource usage. In the case
of pushing changes and difference information, we
push the information to prospective users. This
implies that each user has different degree of in-
terest and attitude against the detected changes.
[Fig. 5] shown that among different service pages,
there are some identical requests. Moreover, the
amount of identical requests can vary dynami-
cally. This is the case when some requests among
currently identical requests are satisfied by the
changed conditions but some are not. For ex-
amples, we decide to push changes information
to the user if we found that the change score is
higher than specific threshold points. Suppose we
have 2 users who specified the score threshold for

identical page at 1500 and 1000 points. Both re-
quests are considered identical if the change score
is 2000 points. However, if the change score fall
between 1000 and 1500 points, the requests are no
longer identical. We can express the utilization of
resource as following equations.

M

N=) G (1)
=1

M Pdijf

where:

N = number of all request

M = number of different kinds of requests

G; = number of matched requests for i** group
Pyisy = Probability of having different kinds of
requests

1 = Utilization factor

We can see obviously that if we share resource
among users, we are likely to get more profit than
serving each user separately. The utilization fac-
tor, finally, depends on the Psy; which ranges
from 4 to 1. The range tells us that our utiliza-
tion factor ranges from 0 to N — 1.

IV. Difference and Display

Our HTML Difference Engine implement the
algorithm called “Longest Common Tag Sequence
(LOCTAGS)” which is developed from the ba-
sic idea of Longest Common Subsequence (LCS).
The well known LCS has been widely used in
comparison of text document revisions for long.
When comparing 2 revisions of text with the ca-
pability of common subsequence extraction, we
can tell the actions made on the new document
easily. Unfortunately, the traditional LCS is not
applicable to hypertext document. In order to
cope with the structured text like HTML, we re-
gard the HTML document as sequence of tags and
context as shown in [Fig. 6]. We use LOCTAGS

Fig. 6. Comparison of context at the right place.

to find the common subsequence of the new and
old version of tag streams. Once we have the com-
mon subsequence of tags, we can point exactly
which tags were deleted or added. This informa-
tion help us in comparing the context pairs at

the right place. In other words, the LOCTAGS
provides information about which context in the
older revision should be compare to which context
in the new revision. When comparing context, we
apply the traditional LCS.

ILonqelL Common L
Tag Parser | | Tag Sequence
betactor
Differantiator
old HTML
Document

Fig. 7. HTML Difference Engine with User’s interest
based Filter

Differentiated
HTML document

Decision | Notify
User

[Fig. 7] shows the diagram of our HTML Dif-
ference Engine. The tool takes both the old and
new HTML document as its inputs. Each doc-
ument is parsed by the tag parser. Both tags
stream are fed to the LOCTAGS detector. The
result, common tag subsequence, is used as a ref-
erence information at the differentiator. Right
here, one of the output line is fed to the HTML
Constructor in order to produce a summary page
in HTML format. On the other hand, the out-
put is fed to the filtering process that evaluates
the changes based on user interests. The result of
evaluation is used by the decision maker. The de-
cision maker decides whether the changes should
be pushed to the users.

V. Push It To The Users

Once the changes are detected, the differ-
ence engine evaluates the content of the changes.
The evaluation is necessary because it is no use
to push a piece of insignificant information of
changes to the user. The evaluation is taken place
in the filter based on user interests. If the changes
are considered significant, the service provider
send notification to the user and let the user select
to show the difference.

The criteria used in this process focus on the
filtering process which is based on user interest as
described in following subsections.

A. User Interests

Users of the framework is served by personal
agents based on their interests. The personal
agents represent their users in the WWW and
work as if the users perform the tasks themselves.
In order to deliver such performance, the personal
agents need to know their users well enough to
give the result that satisfy their needs. A per-
sonal agent places the orders received from its

user to the service provider agent together with
the preferences and interests of the user. This
subsection discusses about the information that
we incorporate into our filtering process. This
research divides the interests of the users into fol-
lowing categories:

o Existence of contents: Many users are curi-
ous to know whether the contents they interested
in are exist in the document. It is inevitable to
check the existence of components again once the
document was reviewed. The filter used in our
service provider agent deals with this demand by
checking the existence of links, images, Java ap-
plet, etc. that appear in new version of docu-
ment. The filter provides a report of the change
in existence of component by comparing with the
old version. The service provider agent notify the
user via email with this information in order to
roughly tell the user how much the document has
been changed.

o Appearance of document: HTML specifi-
cation includes many tags that control the flow
and structure of HTML documents. In some
cases, many users are curious about the change in
the appearance of the documents. Unfortunately,
the presentation of change in appearance is not
straightforward. The appearance of HTML doc-
ument must be either the old appearance or the
new one. This issue is worth taking into account.
We deal with this issue by selecting the new ap-
pearance for our summary document. Meanwhile
we count the change of appearance in the filtering
process. The information of change of appearance
participates in the decision making process which
results in whether the overall changes are signifi-
cant enough to notify the user.

» Topics in interest: This category is the most
important issue when we deal with the user’s in-
terests. In real world, people evaluate whether
the content they are reading fall in the area of
their interest by the context. If we insist to deal
with this issue rigorously, we have an expensive
processing to pay. The evaluation of relevance to
user’s interest areas is considered to be heuristic.
On the other hand, the process need natural lan-
guage processing techniques. We compromised
the correctness with computational costs. The
filter deals with this issue by the hint of words
that relevant to the user’s area of interests.

It is obvious that we have many categories of user
interests to deal with in our HTML document’s
difference stream filter. The details of incorporat-
ing these interest criteria into the filtering process
will be discuss in next subsections.

TABLE I
CHANGE SCORING FOR GENERAL HTML DOCUMENT

Category Score
URL in 256
Java Applet’s Bytecode 256
Image in 128
Page’s Title 128
Background Image 64
Background Color 64
Header <H1>,<H2> 64
Header <H3> and smaller 32
Text (per character) 1

B. HTML Document Stream Filtering

In Fig.[7], the result from the differentiator is
fed into the HTML constructor and the user’s in-
terest based filter. The filtering process is per-
form right in this filter. The filter implements
the three categories of user interest as described
above. The existence of contents can be checked
by finding whether the old contents are still in
the document. At the same time, the filter scans
the document whether is there any new content
inserted to the document. In the same manner,
the filter check whether is there anything changed
with the tags that control the appearance of the
document. Once the filter found any changes that
fall into these two categories, it evaluates a score
of those changes.

N,
Scorecontent = z w; (¢) (4)
i=1
N, N; .
Scwetopic = Z Z 2J+5 (5)
=1 j=1

Scoretotal = Scarecontent + Scoretopz’c (6)
where:
N, = number of content and appearance changes
N = number of key words
N; = number of occurrences of the it* key word.
¢ = category of the change
w;(¢) = weight of the ¢ category

The topics in user interests can be found by
checking the key words that user specified. The
filter checks the existence of those key words in
the context of difference in the stream then evalu-
ates another score for this kind of user interest by
the equation above. The more the occurrences of
a key word, it likely to be the closer to the topic in
user interest. Finally the total score is summed
up and then determined by the decision maker.
If the score is above the specified threshold, the

personal agent will be informed to notify its user
of the changes.

VI. Implementation

The prototype of the system has been imple-
mented locally in our laboratory. We run 2 ser-
vice provider agents and 2 mediator sites. The
mobile agent environment is developed on mobile
agent package provided by IBM Tokyo Research
Lab. Currently, we are serving up to 20 users
and monitoring over 200 pages. The followings
are some of our results.

Subject: Page U rmation
: Wed Jon 27 03:36.48 GMT+09:00 1999
From: i
To: zantifmiv.by-tokvodcin
Report for http:// wewmiv.tu~tokyo.ac jp/ senti:

3 changas for pags link.

The suremary can be found at

i, b~ tokyo. 0.0/ hittn. Y.y~ oo, /hty;

Total changed weight: €11

Fig. 8. Changes information pushed from the service
provider via Email.

Fig. 9. A look of presentation of changes.

VII. Related Work

From the standpoint of tracking and viewing
changes on the Web, the work that is most similar
to ours is that of Douglis, et al., [1],[2]. They used
the AT&T Internet Difference Engine to compare
revisions of Web pages of some enterprises from
time to time. Their work inspires a great deal
of our work. We attempt to improve the ser-
vice for a larger scale of users. We manage the
shared resources among users in order to enable
induced push mode of changes and differences.
The service is made available in both transac-
tion agent and Java applet which deal with the
service provider agent directly. Besides, our dif-
ference engine implements the LOCTAGS algo-
rithm which is capable of comparing context ex-
actly where the revisions should be compared. In
addition to a target page, we assume that the
child pages are likely to have relevant informa-
tion. Therefore, the service provider agent can

be requested to watch the target down to its
child pages. If needed, the agent can also be re-
quested to watch deep down to the grandchild
pages. However, the grandchild level is limited to
the pages in the same domain of each child page.

The Do-I-Care agent [5] applies social discovery
and filtering to inform the users when prospec-
tively significant changes are detected. Moreover,
it takes advantage of training the agent by group
of users where some interesting information may
be offered to the user via the effort of others.
We agree with the idea but we need a more sim-
ple way for evaluation of changes. The scoring
method we use is straightforward and can be car-
ried out quickly while providing a way for users to
adjust the threshold value upon their experiences.

VIII. Summary

In this paper, we presented the evolution of the
mechanism that induces push mode of changes
and differences on the Web. The HTML Dif-
ference Engine that implements LOCTAGS algo-
rithm is capable of providing comprehensive pre-
sentation of changes. The shared resource man-
agement helps us in providing information push-
ing service to multiple users. The number of iden-
tical or nearly identical requests have a significant
impact on resource utilization, and overall per-
formance. These details should be considered in
future studies.

References

[1] Fred Douglis, Thomas Ball, Yih-Farn Chen and Eleft-
herios Koutsofios: The AT&T Internet Difference En-
gine: Tracking and viewing changes on the web World
Wide Web Volume 1 Issue 1, 1998. pp. 27-44

{2] Fred Douglis: Experiences with the AT&T Internet
Difference Engine 22nd International Conference for
the Resource Management & Performance Evaluation
of Enterprise Computing System (CMG96), Decem-
ber, 1996.

[3] F.Douglis, T. Ball, Y. Chen, E. Koutsofios. Webguide:

Querying and Navigating Changes in Web Reposito-

ries. In Proceedings of the Fifth International World

Wide Web Conference, Paris, France, May 1996. pp.

1335-1344.

Jeffrey M. Bradshaw: Software Agents AAAI

Press/The MIT Press, 1997. :

[5] Brian Starr, Mark S. Ackerman, Michael Pazzani: Do-

I-Care: A Collaborative Web Agent Proceeding of

ACM CHI’96, April, 1996.

Aglet-Workbench - Programming Mobile

Agents in Java, IBM Tokyo Research

Lab.,URL=http://www.trl.ibm.co.jp/aglets/

[7] Kazuhiro Minami and Toshihiro Suzuki: JMT (Java-
Based Moderator Templates) for Multi-Agent Plan-
ning OOPSLA’97 Workshop, 1997.

[4

flaa)

[

