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Abstract We propose an approach for making FOIL better handling multiple-instance data. This learning prob-

lem arises when trying to generate hypotheses from examples in the form of positive and negative bags. Each bag

contains one or more instances and a bag is labelled as positive when there is at least one positive instance, otherwise,

it is labelled as negative. Several algorithms have been proposed for learning in this framework. However all of them

can only handle data in the attribute-value form which has limitations in knowledge representation. Therefore, it

is difficult to handle examples consisting of structures among components, such as chemical compounds data. In

this paper, the Diverse Density, a measure for multiple-instance data, is applied to adapt the heuristic function in

FOIL in order to improve learning accuracy in multiple-instance data. We conducts the experiments on real-world

data related to chemical compound analysis in order to show the improvement.
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1. Introduction

Multiple-instance (MI) learning[3] is a framework ex-
tended from supervised learning in the case that training
examples cannot be labelled completely. Training examples
are grouped into labelled bags marked as positive if there is
at least one instance known to be positive. Otherwise, they
are marked as negative. The MI learning framework was
originally motivated by the drug activity prediction problem
which aims to determine whether aromatic drug molecules
bind strongly to a target protein. As a lock and a key, the
shape of molecules is the most important factor for deter-
mining this binding. The molecules can nevertheless adapt

their shapes widely. Then, each shape is represented as an
instance and the positive bags are the molecules with at least
one shape binding well. On the other hand, the negative bags
contains molecules whose shapes did not bind at all. Diet-
terich et al. formalised this framework and proposed the axis-
parallel rectangles algorithm (3]. After this work, many ap-
proaches have been proposed for MI learning [2], [4], [7], they
nevertheless aim for handling only data in the attribute-value
form where an instance is represented as a fixed-length vec-
tor inheriting a limitation that complicated relations among
instances become difficult to be denoted, for example, repre-
senting chemical compound structures by describing atoms
and bonds among atoms.
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Inductive Logic Programming (ILP) has introduced more
expressive first-order representation to supervised learning.
ILP has been successfully applied to many applications and
the first-order logic can also be represented the MI data well.
However, in order to make the ILP systems able to gener-
ate more accurate hypotheses, the distance among instances
would be useful because in MI data the positive instances
cannot be specified exactly, thus the distance between posi-
tive instances and negative instances plays an important role
in this determination. If there is an area that many instances
from various positive bags locating together and that area is
far from the instances from negative bags, the target concept
would come from the instances in that area.

This paper presents the extension of FOIL[5] using the
Diverse Density (DD) [4], a measure for evaluating MI data.
Applying this measure will make FOIL more precisely iden-
tify the positive instances and generate more suitable hy-
potheses from training data. In this research, we focus on
applying this approach to predict the characteristics of chem-
ical compound. Each compound (or molecule) is represented
using properties of atom and bonds between atoms.

The paper is organised as follows. The next section de-
scribed the background of DD and FOIL which are the bases
of our approach. Then the modification of FOIL algorithm is
considered. We evaluate the proposed algorithm with chem-
ical compound data. Finally the conclusion and our research

direction are given.
2. Background

2.1 Diverse Density

The Diverse Density (DD) algorithm aims to measure a
point in an n-dimensional feature space to be a positive in-
stance. The DD at point p in the feature space shows both
how many different positive bags have an instance near p,
and how far the negative instances are from p. Thus, the
DD is high in the area where instances from various positive

bags are located together. It can be calculated as

D) = [J( - T]1 - exp(~11BS —l)) -
TTTI( = eon-11B5 — i) )

where z is a point in the feature space and B;; represents
the j** instance of the i** bag in training examples. For the

distance, the Euclidean distance is adopted then

B —al® = > (Bise — )’ (2)
k

In the previous approaches, several searching techniques

are proposed for determining the value of features or the

area in the feature space that maximises DD. In this paper,
the DD is however applied in the heuristic function in order -
to evaluate each instance from the positive bags with the
value between 0 and 1.

2.2 FOIL

The learning process in FOIL starts with a training set (ex-
amples) containing all positive and negative examples, con-
structs a function-free Horn clause (a hypothesis) to cover
some of the positive examples, and removes the covered ex-
amples from the training set. Then it continues with the
search for the next clause. When the clauses covering all
the positive examples have been found, they are reviewed to
eliminate any redundant clauses and re-ordered so that all
recursive clauses come after the non-recursive ones.

FOIL uses a heuristic function based on the information
theory for assessing the usefulness of a literal. It seems to
provide effective guidance for clause construction. The pur-
pose of this heuristic function is to characterise a subset of
the positive examples. From the partial developing clause
R(W1, Vs,..
covered by this clause are denoted as T;. The information

Vi) « L1, La,..., L;m-1, the training examples

required for T; is given by
I(Ty) = —logo(ITH /(T +1T7D) 3

If a literal L., is selected and yields a new set Ti41, then

the similar formula is given as
I(Tipr) = —logy (Tl /(T + 1 Ti341)) (4)

From above, a heuristic used in FOIL is calculated an

amount of information gained when applying a literal Lm;
Gain(Li) = T} x (I(Tip) = 1(T)  (5)

T;** in this equation is the positive examples extended in
Ti—H .

This heuristic function is used over every candidate literal
and the literal with a largest value is selected. The algorithm
will continue until the generated clauses cover all positive ex-

amples.
3. Our Approach

The essential difference between the MI problem and the
classical classification problem is in the positive examples. In
the classical problem, positive and negative examples are pre-
cisely separated, where in the MI problem, positive instances
cannot be specified exactly since positive bags only contain
at least one positive instance. FOIL nevertheless evaluates
and selects the best literal based on a number of positive
and negative instances covered and uncovered. The negative

examples can exactly be obtained from negative bags but for
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the positive examples, they are mixed in the positive bags
together with the negative ones. Thus, if the MI data are
applied to the original algorithm, it would be more difficult
to get the correct concept since the positive examples con-
tain a lot of noises. In order to handle these data, most of
MI learning algorithms assume the area in the feature space
where instances from different positive bags locating together
as the target concept and this is formalised into the measure
in DD.

The basic idea of our approach is to evaluate instances
from the positive bags by using DD to show the strength of
the instance to be positive using a value between 0 and 1. We
then modified the heuristic function in FOIL to use the sum
of DD values covered instead of the number of positive ex-
amples. For negative examples, as they are exactly labelled,
we then use the number of negative examples in the same
manner as the original function. Therefore, |T;t| in formula
(3) is changed to the sum of DD of positive examples, but
|T;7| still remains the same as in the original approach. The

modified heurisfic function can be written as follows.

DD,(T) = »_ DD(Ti) (6)
T; €T

I(Ty) = —logy(DD(T;") /(DD (T7) +|T771))  (7)

Gain(Li) = DDs(Ti %) x (I(Tig1) — I(T3)) (8

3.1 DD computation

In order to compute DD, the features describing each in-
stance are necessary so that the instances can be separated.
However, the first-order representation is so flexible that the
feature can be described in several ways using one or more
predicates. Therefore, predicates representing each instance
have to be specified first.

In this research, the distance between predicates is cal-
culated from the difference between each parameter in the
predicates, then, these difference values are combined to the
distance by using the Euclidean distance. For example, in the
chemical compound data, we treat each atom in a molecule as
an instance. The atom may be defined as atm(compoundid,
atomid, elementtype, atomtype, charge). The distance be-
tween two atoms can be computed by using the difference
between parameters. However, a parameter may be discrete
or continuous value. In case of continuous value, the differ-

ence is computed by substraction.

Ap = |p1 — pal 9)

In case of discrete value, the difference value will be 0 if

they are the same value. Otherwise, it will bé 1.

1 An example of problem domain for MI data (a molecule

represents a bag and an atom is an instance in a bag.)

0 if PL=p2
Ap= P (10)
1 otherwise.
Then, the distance between two predicates can be calcu-
lated in the same way as formula 2 as

I1A-RP= >  (ap)® 1)

P1:€EP1,p2. EP2

For example, the distance between atm(ml, al-1, ¢, 20,
0.1) and atm(mi, al-2, o, 15, 0.2) will be calculated from
the difference between ‘¢’ and ‘o’, ‘20’ and ‘15’ (these val-
ues are treated as discrete because it is the atom type), and
‘0.1’ and ‘0.2’ that is 12 + 1% 4+ 0.1 = 1.01. Figure 1 shows
an example of problem domain for MI data that a molecule
represents a bag and an atom is an instance in a bag. The
DD approach tries to evaluate the area that instances from
various positive bags locating together and is far from neg-
ative instances. From the figure, the shaded area has high
DD value. For the chemical compound prediction, this area
shows the characteristics of atoms that are common among
the positive molecules.

3.2 The Algorithm

From the proposed approach, we examined the heuristic
calculation in order to suit the MI data. We then considered
modifying the algorithm.

Figure 2 shows the main algorithm used in the proposed
system. This algorithm starts by initialising the set Theory
to null, and the set Remaining to the set of positive exam-
ples. The algorithm loops to find rules and add each rule
found to Theory until all positive examples are covered. It
can be seen that this main algorithm is the same as FOIL.
We modified the heuristic calculation which is in subroutine
FindBestRule.

Subroutine FindBestRule is shown in figure 3. As ex-
plained above, the DD is applied for calculating a heuristic

function. Another problem can nevertheless be considered
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o Theory «— 0

e Remaining +— Positive(Exzamples)

e While not StopCriterion(Ezamples, Remaining)
— Rule «— FindBestRule(Ezamples; Remaining)
— Theory «— Theory U Rule

— Covered — Cover(Remaining, Rule)

— Remaining +— Remaining — Covered

& 2 The main algorithm.

in this learning approach. When using the DD in counting
the number of positive examples covered, there are many
cases that the heuristic value may not increase during the
searching process (the information gained equals to 0) be-
cause there are usually few true positive instances in one pos-
itive bag; hence, most of instances from positive bags have
the DD value close to 0. This situation makes it difficult
to find the best rules using only the hill-climbing approach
as in FOIL since there are various candidates with the same
heuristic value, aimlessly selecting the candidate may lead
to the wrong direction. In order to avoid this problem, the
beam search is applied to the proposed system so that the
algorithm maintains a set of good candidates instead of se-
lecting of the best candidate at that time. This searching
method makes the algorithm able to backtrack to the right
direction and finally get to the goal.

FindBestRule(Examples, Remaining)
e Initialise Beam with an empty rule, R as

R(V1, V2, Va,..., &) «

e R «— BestClauseInBeam(Beam)

e While Cover(R, Negative(Ezamples))

— Candidates + SelectCandidate(Ezxamples, R)

— For each C in Candidates

* GenerateTuple(Examples, Tuples)

* If C contains new relation Then re-calculate DD.

* Calculate heuristic value for T'uples and attach to C.
—~ UpdateBeam(Candidates, Beamn).

— R « BestClauseInBeam(Beam)

X 3 The algorithm for finding the best literals

4. Experiments and Discussion

We conduct experiments on datasets related to chemi-
cal structures and activity. The objective of these dataset
is to predict characteristics or properties of the chemical
molecules which consist of several atoms and bond between
atoms. Therefore, the first-order logic would be more suit-
able for representing this kind of data since it is able to de-
note relations among atoms comprehensibly. This learning
problem can also be considered as multiple-instance problem

because each molecule may consist of a lot of atoms but only

Approach Accuracy
Proposed method 0.82
Progol 0.76 [1]
FOIL 0.61[1]

# 1 Accuracy on the mutagenesis dataset comparing to the other
ILP systems.

some connected atoms may effect on the characteristics or
properties of the molecule. Therefore, we treat a molecule
as a bag that consists of instances as atoms.

4.1 Mutagenesis Prediction Problem

The problem aims to discover rules for testing mutagenic-
ity in nitroaromatic compounds which are often known to
be carcinogenic and also cause damage to DNA. These com-
pounds occur in automobile exhaust fumes and are also com-
mon intermediates used in chemical industry. The train-
ing examples are represented in form of atom and bond
structure. 230 compounds were obtained from the standard
molecular modelling package QUANTA [6].

e bond(compound, atoml, atomZ2, bondtype), showing
that there is a bond of bondtype betweem the atom atoml
and atom?2 in the compound.

o atom(compound, atom, element, atomtype, charge),
showing that in the compound there is the atom that has
element element of atomtype and partial charge charge

We conduct the experiment on this dataset and evaluate
the results with 10-fold cross validation comparing to the ex-
isting ILP systems (FOIL and Progol). Table 1 shows the
experimental results on this dataset. Examples of rules gen-

erated from the proposed system is shown in figure 4.

(1) active(d) :- atm(A,B,C,D,E), D=95.
The molecule that consists of an atom
whose type is 95.
(2) active(A) :- atm(A,B,C,D,E), D=27, E<O.
The molecule that consists of an atom
whose type is 27 and charge is less than 0.
(3) active(A) :- atm(A,B,C,D,E), E>=0.816, E<0.823,
atm(A,F,G,H,I), I>=0.817.
The molecule that has two atoms.
One has charge value between 0.816 and 0.823.
Another one has charge value greater than 0.817.
(4) active(A) :- atm(4,B,C,D,E), D=27,
atm(A,F,G,H,I), H=27,
bond(4A,B,F,J).
The molecule that has two atoms.

Both atoms are the same type which is 27 and

there is a bond between them.

X 4 Examples of rules generated from the proposed system on

the mutagenesis dataset.

4.2 Dopamine Antagonists Activity

This is another dataset that we conducted the experiment
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(1) active(A) :- atm(A,B,C,X,Y), C=h, X<6.

The molecule that consists of the hydrogen atom
whose position in the X axis is less than 6.

(2) active(d) :- atm(4,B,C,X,Y), C=cl, Y>=5, X<3.
The molecule that consists of the chroline atom
whose position in the X axis is less than 3
and the position in the Y axis is greater than
or equal to 5.

(3) active(A) :- atm(A,B,C,X,Y), C=s, Y>=12, X>=6,

bond (A,G,B,H), H=4.
The molecule that consists of the sulfur atom
whose position in the X axis is greater than
or equal to 6 and the position in the Y axis
is greater than or equal to 12. There is also

a bond of type 4 from this atom.

B 5 Example of rules generated on the dopamine antagonist

analysis.

on. We used the MDDR database of MDL Inc. This dataset
contains 1,364 molecules that describe dopamine antagonist
activity with atoms and bonds structure in the similar man-
ner to the mutagenesis dataset in the previous. experiment.
Dopamine is a neurotransmitter in the brain that neural sig-
nals are transmitted via the interaction between dopamine
and proteins known as dopamine receptors. An antagonists
are a chemical compound that binds to a receptor, but does
not function as a neurotransmitter. It blocks the function
of the dopamine molecule. Antagonists for these receptors
might be useful for developing schizophrenia drugs. There
are four antagonist activities (D1, D2, D3, and D4). In this
dataset, each atom is represented by its type and position in
2-dimensional area when the molecular structure is plotted.

We conducted the empirical experiment on this dataset in
order to generate hypotheses for D1 activity. Therefore, D1
compounds are used as positive examples, other compounds
are used as negative. The example of rules for D1 activity
are shown in figure 5.

4.3 Discussion

From the experiments, we found that the proposed method
generates more accurate rules when comparing to Progol and
FOIL. Example of rules in figure 4 also shows the benefit of
the proposed method which produces hypotheses in the first-
order represenation, for instance, rule (3) and (4) consist of
two atoms or a bond between atoms. These kinds of rule can-
not be represented hsing the propositional logic. Moreover,
when considering the knowledge discovery, only properties of
one atom may not be good enough for describing the charac-
teristic of molecule. Therefore, in this classification the first-
order logic would be more suitable than thg propositional
logic. We will also try to improve the heuristic function or
the search technique in order to generate hypotheses that

incorporate a group of atoms and bonds between atoms.
5. Conclusions

We have presented the extension of FOIL for better han-
dling multiple-instance data by using Diverse Density to eval-
uate tuples from positive bags. This evaluation is similar to
setting the instances with different sets of feature which is ac-
tually the benefit of using the first-order representation. The
experimental results show that our approach learns from the
real-world problem better than Progol and FOIL.

For the future work, the scaling factor of the feature should
be considered in the heuristic value calculation so that the
system can produce more suitable heuristics from training
data. Since the proposed approach works only in the top-
down ILP system such as FOIL, it would be better to adopt
this approach in the other kind of ILP system such as the
one with bottom-up approach. Moreover, extending the MI
learning problem to ILP would bring the possibility to var-

ious applications. We also plan to evaluate the proposed

system to the other applications.
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