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Experimental Evaluation of Time-series Decision Tree
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Abstract In this paper, we give experimental evaluation of our time-series decision tree induction method under
various conditions. It has been empirically observed that the method induces accurate and comprehensive decision
trees in time-series classification, which has gaining increasing attention due to its importance in various real-world
applications. The evaluation has revealed several important findings including interaction between a split test and
its goodness.
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fier which is highly appraised by domain experts[8]. In this

1. Introduction . . .
paper, we perform additional experiments based on advice

Time-series data are employed in various domains includ- from domain experts, and investigate on various character-

ing politics, economics, science, industry, agriculture, and istics of our time-series decision tree.

medicine. Classification of time-series data is related to many . . ..
2. Time-series Decision Tree

promising application problems. For instance, an accurate

classifier for liver cirrhosis from time-series data of medical
tests might replace a biopsy which picks liver tissue by in-
serting an instrument directly into liver. Such a classifier is
highly important since it would substantially reduce costs of
both patients and hospital.

Our time-series decision tree represents a novel classifier
for time-series classification. Our learning method for the

time-series decision tree has enabled us to discover a classi-

2.1 Time-series Classification

A time sequence A represents a list of values a1, a2, -+ -, ar
sorted in chronological order. For simplicity, this paper as-
sumes that the values are obtained or sampled with an equiv-
alent interval (= 1).

A data set D consists of n examples e1, ez, -+, en, and
each example e; is described by m attributes a1, az, --

Cy Qm

and a class attribute ¢. An attribute a; can represent a time-
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series attribute which takes a time sequence as its value. The
class attribute ¢ represents a nominal attribute and its value
is called a class. In time-series classification, the objective
represents induction of a classifier, which predicts the class
of an example e, given a training data set D.

2.2 Learning Time-series Decision Tree

Our time-series tree [8] has a time sequence which exists in
data and an attribute in its internal node, and splits a set of
examples according to the dissimilarity of their correspond-
ing time sequences to the time sequence. The use of a time
sequence which exists in data in its split node contributes to
comprehensibility of the classifier, and each time sequence is
obtained by exhaustive search. The dissimilarity measure is
based on dynamic time warping (DTW) [6].

We call this split test a standard-example split test. A
standard-example split test o(e,a, ) consists of a standard
example e, an attribute a, and a threshold 0. Let a value of
an example e in terms of a time-series attribute a be e(a),
then a standard-example split test divides a set of examples
e1,e2, -+, ey to a set Si(e, a,8) of examples each of which
e;(a) satisfies G(e(a), ei(a)) < 0 and the rest Sa(e,a,8). We
also call this split test a 6-guillotine cut.

As the goodness of a split test, we have selected gain ra-
tio [7] since it is frequently used in decision-tree induction.
Since at most n — 1 split points are inspected for an at-
tribute in a @-guillotine cut and we consider each example
as a candidate of a standard example, it frequently happens
that several split points exhibit the largest value of gain ra-
tio. We assume that consideration on shapes of time se-
quences is essential in comprehensibility of a classifier, thus,
in such a case, we define that the best split test exhibits
the largest gap between the sets of time sequences in the
child nodes. The gap gap(e, a,0) of o(e, a, ) is equivalent to
G(e'(a), e (a)) where €’ and €” represent the example e;(a)
in S1(e,a, ) with the largest G(e(a),ei(a)) and the example
e;(a) in Sz(e,a,0) with the smallest G(e(a),e;(a)) respec-
tively. When several split tests exhibit the largest value of
gain ratio, the split test with the largest gap(e, a,8) among
them is selected.

We have also proposed a cluster-example split test
o'(¢’,€”,a) for comparison. A cluster-example split test di-
vides a set of examples e1, ez, -, e, into a set Ur(e’,e”,a)
of examples each of which e;(a) satisfies d(e’(a),e;(a)) <
d(e'"(a), ei(a)) and the rest U(e’,e”,a). The goodness of a
split test is equivalent to that of the standard-example split
test without 6.

2.3 Experimental Results and Comments from

Domain Experts

We hawe evaluated our method with Chronic hepatitis

ddta[1], the Australian sign language data [4], and the EEG

data [4]. As a result of pre-processing, we have obtained two
data sets, which we call H1 and H2, from Chronic hepatitis
data. Similarly, two data sets, which we call Sign and EEG,
have been generated from the Australian sign language data
and the EEG data respectively. The classification tasks in
H1 and H2 are prediction of liver cirrhosis from medical tests
data. We have employed time sequences each of which has
more than 9 test values during a period of before 500 days
and after 500 days of a biopsy. In both data sets, there are 30
examples of liver cirrhosis and 34 examples of the other class.

Since the intervals of medical tests differ, we have employed

. liner interpolation between two adjacent values and trans-

formed each time sequence to a time sequence of 101 values
with a 10-day interval. In H1, one of us, who is a physfcian,
suggested to use in classification 14 attributes (GOT, GPT,
ZTT, TTT, T-BIL, I-BIL, D-BIL, T-CHO, TP, ALB, CHE,
WRBC, PLT, HGB) which are important in hepatitis. In H2,
we have measured shifts for each of these attributes from its
average value and employed these 14 attributes in addition
to the original attributes. Experimental results have con-
firmed that our induction method constructs comprehensive
and accurate decision trees.

We have prepared another data set, which we call HO, from
the chronic hepatitis data by dealing with the first biopsies
only. HO consists of 51 examples (21 LC patients, and 30 non-
LC patients) each of which is described with 14 attributes.
Experimental results show that our time-series tree has been
shown to be promising for knowledge discovery. We show a

time-series decision tree learned from HO in figure 1.
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Figure ' Time-series tree learned from HO (chronic hepatitis data

of the first biopsies)

‘We obtained the following comments from medical experts.
e The proposed learning method exhibits novelty and
is highly interesting. The splits in the upper parts of the

time-decision trees are valid, and the learning results are

—134—



surprisingly well as a method which employs little domain
knowledge.

e Medical test values which are measured after a biopsy
are typically influenced by treatment such as interferon
(IFN). It would be better to use only medical test values
which were measured before a biopsy.

e 1000 days are long as a period of measurement since
the number n of patients is small. It would be better to use
shorter periods such as 365 days.

e The number of medical tests might be possibly re-
duced to 4 per year. Prediction from a few number of medical
tests has a higher impact on clinical treatment.

e A medical expert is familiar with sensitivity, speci-
ficity, and an ROC curve as evaluation indices of a classifier.
It causes more problems to overlook an LC patient than mis-

take a non-LC patient.
3. Experiments for Misclassification Costs

3.1 Conditions of Experiments

Based on a comment in the previous section, we evaluated
our time-series decision tree without using medical test data
after a biopsy. For a continuous attribute, C4.5[7] employs
a split test which verifies whether a value is greater than a
threshold. This split test will be called an average-split test
in this paper. We call our approach which employs both
the standard-example split test and the average-split test
combined-split test. For sake of comparison, we also em-
ployed the average-split test alone and Line-split test, which
replaces a standard example by a line segment. A line seg-
ment in the latter method is obtained by discretizing test
values by an equal-frequency method with « — 1 bins, and
connecting two points (-500, p1) and (0, p2) where each of p1
and p; represents one of the end values of discretized bins.
For instance, it considers 25 line segments if @ = 5. The
cluster-example split test was not employed since it exhib-

ited poor performance in [8].

Table 1 Confusion matrix

LC  non-LC
LC (Prediction) TP FP
non-LC (Prediction) FN TN

We show a confusion matrix in table 1. As the domain
experts stated, it is important to decrease the number F'IN
of overlooked L.C patients than the number F'P of mistaken
non-LC patients. Therefore, we employ sensitivity, speci-
ficity, and (misclassification) cost in addition to predictive
accuracy as evaluation indices. The added indices are con-
sidered to be important in the following order.

C FN+ FP

Cost = G P+ FN) = (TN = FP) &

TP
TP+ FN
TN
TN+ FP 3)

(2)

Sensitivity (True Positive Rate) =
Speci ficity (True Negative Rate) =

where C represents a user-specified weight. We settled C = 5
throughout the experiments, and employed a leave-one-out
method. Note that Cost is normalized in order to facilitate
comparison of experimental results from different data sets.

It is reported that Laplace correction is effective in de-
cision tree induction for cost-sensitive classification [2]. We
obtained the probability Pr(a) of a class a when there are
v(a) examples of a among v examples as follows.

v(a) +1

Pr(a) = v+ 2

)

where [ represents a parameter of the Laplace correction. We
settled | = 1 unless stated.

We modified data selection criteria in each series of ex-
periments and prepared various data sets as shown in table
2. In a name of a data set, the first figure represents the
selected period of measurement before a biopsy, the figure

[Iet)

subsequent to a “p” represents the number of required med-

Wi

ical tests, and the figure subsequent to an “i” represents the

number of days of an interval in interpolation. Since we

employed both B-type patients and C-type patients in all

experiments, each name of a data set contains strings “BC”.

Since we had obtained novel data of biopsies after (8], we
employed an integrated version in the experiments.

3.2 Experimental Results

Firstly, we modified the required number of medical tests
to 6, 3, 2 under a 180-day period and a 5-day interpolation
interval. We show the results in table 3. From the table, we
see that the average-split test and the line-split test outper-
form other methods in cost for p2 and p6 respectively. For
p3, the methods exhibit the same cost and outperform our
standard-example split test. We believe that the poor perfor-
mance of our method is due to lack of information on shapes
of time sequences and the number of examples. We interpret
the results that lack of the former information in p2 favors
the average-split test, while lack of the latter information in
pb favors the line-split test. If simplicity of a classifier is also
considered, the decision tree learned with the average-split
test from p2 would be judged as the best.

Secondly, we modified the selected period to 90, 180, 270,
360 days under an interpolation interval 5 days and the num-
ber of required medical tests per 30 days 1. We show the
results in table 4. From the table, we see that the average-
split test and the line-split test almost always outperform
our standard-example split test in cost though there is no
clear winner between them. We again attribute these to lack

of information on shapes of time sequences and the number



of examples. Our standard-example split test performs rel-
atively well for 90 and 180 and this would be due to their
relatively large numbers of examples. If simplicity of a clas-
sifier is also considered, the decision tree learned with the
line-split test from 180 would be judged as the best.

Thirdly, we modified the interpolation intervals to 2, 4, - - -,
10 days under a 180-day period and the required number of
medical tests 6. We show the results in table 5 and 6. From
the table 5, we see that our standard-example split test and
the line-split test outperform the average-split test in cost
though there is no clear winner between them. Since the 180
in table 4 represents 180BCp6i5, it would be displayed as i5
in this table. Our poor performance of cost 0.35 for i5 shows
that our method exhibits good performance for small and
large intervals, and this fact requires further investigation.
If simplicity of a classifier is also considered, the line-split
test is judged as the best and we again attribute this to lack
of information for our method.

Lastly, we modified the Laplace correction parameter [ to
0,1,---,5 under a 180-day period, the required number of
medical tests 6, and a 6-day interpolation interval. We show
the results in table 7. From the table, we see that the Laplace
correction increases cost for our standard-example split test
and the line-split test contrary to our expectation. Even for
the average-split test, the case without the Laplace correc-
tion (I = 0) rivals the best case with the Laplace correction (I
= 1). The table shows that these come from the fact that the
Laplace correction lowers sensitivity but this requires further
investigation.

3.3 Analysis of Experiments

In the experiments of [8], we employed longer time se-
quences and a larger number of training examples than in
this paper. It should be also noted that the class ratio in [8]
was nearly equivalent. We believe that our time-series deci-
sion tree is adequate for this kind of classification problems.
The classification problems in this paper, since they neglect
medical tests data after a biopsy, exhibit opposite charac-
teristics, favoring a robust method such as the average-split
test. Though it is appropriate to neglect medical tests data
after a biopsy from medical viewpoint, the effect is negative
for our time-series decision tree.

The decision trees which were constructed using the
combined-split test and the average-split test contain many
LC-leaves. Most of the leaves contain a small number of
training examples, thus they rarely correspond to a test ex-
ample. The high sensitivity and low cost exhibited by de-
cision trees learned with the average-split test might come
from their large sizes since they predict the LC class more fre-
quently than a tree constructed with the combined-split test.

This observation led us to consider modifying tree-structures

in order to increase sensitivity and decrease cost.

4. Experiments for Goodness of a Split
Test

4.1 Motivations

Table 8 Two examples of a split test

Split test Left Right gain gain ratio
test 1 6 (0,6) 113 (76,37) 0.077 0.268
test 2 47 (42, 5) 98 (34, 38) 0.122 0.160

From the discussions in the previous section, we consid-
ered to use the medical tests data before a biopsy and to
replace gain ratio by gain. The former was realized by using
the data sets employed in [8]. For the latter, consider their
characteristics as goodness of a split test with tests 1 and 2
in table 8. Tests 1 and 2 are selected with gain ratio and
gain respectively. As stated in [7], gain ratio tends to select
an unbalanced split test where a child node has an eitremely
small number of examples. We believe that example 1 corre-
sponds to this case and determined to perform a systematic
comparison of the two criteria.

4.2 Experiments

We have compared our standard-example split test, the
cluster-example split test, the average-split test, a method
by Geurts [3], and a method by Kadous [5]. We settled Nrmaz
= 5 in the method of Geurts, and the number of discretized
bins 5 and the number of clusters 5 in the method of Kadous.
Experiments were performed with a leave-one-out method,
and without the Laplace correction.

We show the results in table 9, and the decision trees
learned from all data with the standard-example split test,
the cluster-example split test, and the average-split test in
figures 2, 3, and 4 respectively. The conditions are chosen
so that each of them exhibits the lowest cost for the corre-
sponding method.

From the table, we see that our standard-example split test
performs better with gain ratio, and the cluster-example split
test and the average-split test perform better with gain. We
think that the former is due to affinity of gain ratio, which
tends to select an unbalanced split, to our standard-example
split test, which splits examples based on their similarities or
dissimilarities to its standard example. Similarly, we think
that the latter is due to affinity of gain, which is known to
exhibit no such tendency, to the cluster-example split test
and the average-split test, both of which consider character-
istics of two children nodes in split. Actually, we see from
the figures that a standard-example split test tends to pro-
duce a small-sized leaf while a cluster-example split test and
an average-split test tend to construct a relatively balanced

split.
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Table 2 Data sets employed in the experiments

experiments data (# of non-LC patients : # of LC patients)
experiments for the number of medical tests 180BCp6i5 (68:23), 180BCp3ib (133:40), 180BCp2i5 (149:42)
experiments for the selected period 90BCp3i5 (120:38), 180BCp6i5 (68:23), 270BCp9i5 (39:15), 360BCp12i5 (18:13)

experiments for the interpolation interval 180BCp6i2, 180BCp6id, 180BCp6i6, 180BCp6i8, 180BCp6il0 (all 68:23)

Table 3 Results of experiments for test numbers, where data sets p6, p3, and p2 represent

180BCp6i5, 180BCp3i5, and 180BCp2i5 respectively

accuracy (%) size cost sensitivity specificity
method p6 p3 p2 p6 p3 p2 pé p3 p2 p6 p3 p2 pé p3 p2
Combined 78.0 75.7 80.6 10.9 20.5 189 0.35 0.35 0.33 0.52 0.53 0.52 0.87 0.83 0.89
Average 83.5 82.1 874 3.2 247 74 0.39 0.27 0.27 0.39 0.63 0.57 0.99 0.88 0.96
Line 84.6 82.7 85.9 9.0 227 3.6 0.30 0.27 0.34 0.57 0.63 0.43 0.94 089 098

Table 4 Results of experiments for periods, where data sets 90, 180, 270, and 360 repre-

sent 90BCp3i5, 180BCp6i5, 270BCp9i5, and 360BCp12i5 respectively

accuracy (%) size cost sensitivity specificity
method 90 180 270 360 90 180 270 360 90 180 270 360 90 180 270 360 90 180 270 360
Combined 77.8 78.0 64.8 45.2 19.5 109 8.5 5.5 0.36 0.35 0.52 0.69 0.50 0.52 0.33 0.23 0.87 0.87 0.77 0.61
Average 79.7 835 79.6 71.0 23.7 32 87 64 0.30 0.39 0.41 040 061 0.39 040 0.54 0.86 0.99 0.95 0.83
Line 77.2 84.6 T4.1 484 18.7 9.0 87 6.5 0.41 0.30 0.40 0.58 0.39 0.57 0.47 0.38 0.89 0.94 0.85 0.56
Table 5 Results for accuracy, size, and cost of experiments for intervals, where data sets
i2, 4, i6, i8, and i10 represent 180BCp6i2, 180BCp6id, 180BCp6i6, 180BCp6is,
and 180BCp6i10 respectively
accuracy (%) size cost
method i2 i4 i6 i8 i10 i2 i4 i6 i8 i10 i2 i4 i6 i8 i10
Combined 85.7 85.7 824 81.3 824 109 109 124 123 124 0.29 0.31 0.33 0.33 0.33
Average 84.6 846 835 846 824 3.0 3.0 3.2 3.9 5.1 0.36 0.36 0.39 0.36 0.39
Line 85.7 83.5 83.5 84.6 T79.1 90 90 89 91 112 0.29 0.32 032 0.30 0.32
Table 6 Results for sensitivity and specificity of experiments for intervals
sensitivity . specificity
method i2 i4 i6 i8 i10 i2 i4 6 i8 i10
Combined 0.57 0.52 0.52 0.52 0.52 0.96 0.97 0.93 0.91 0.93
Average 0.43 0.43 0.39 0.43 0.39 0.99 099 099 099 0.97
Line 0.57 0.52 0.52 0.57 0.57 096 094 094 0.94 0.87
Table 7 Results of experiments for Laplace correction values with 180BCp6i6, where
methods C, A, and L represent Combined, Ayerage, and Line respectively
accuracy (%) size cost sensitivity specificity
value  C A L C A L C A L C A L C A L
0 86.8 857 824 10.9 108 7.4 0.28 0.29 0.33 0.57 0.57 0.52 0.97 0.96 0.93
1 824 835 835 124 3.2 89 0.33 0.39 0.32 0.52 0.39 0.52 0.93 0.99 0.94
2 81.3 83.5 80.2 9.1 3.0 9.0 0.36 0.39 0.38 0.48 0.39 0.43 0.93 0.99 0.93
3 835 736 835 9.1 2.5 9.0 0.30 0.63 0.34 0.57 0.00 0.48 0.93 0.99 0.96
4 81.3 835 79.1 9.2 2.6 8.9 0.36 0.39 0.39 0.48 0.39 0.43 0.93 0.99 091
5 824 835 824 9.1 27 89 0.35 0.39 0.37 0.48 0.39 0.43 094 0.99 0.96
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Table 9 Experimental results with gain and gain ratio

accuracy (%) size cost sensitivity specificity
method goodness H1 H2 H1 H2 H1 H2 H1 H2 H1 H2
SE-split gain 64.1 78.1 10.6 7.2 0.34 0.25 0.67 0.73 0.62 0.82
-spli
P gain ratio 79.7 85.9 9.0 7.1 0.24 0.18 0.73 0.80 0.85 0.91
CE-split gain 81.2 76.6 9.0 8.7 0.20 0.23 0.80 0.77 0.82 0.76
~SPil
P gain ratio 65.6 73.4 9.4 7.2 0.36 0.31 0.63 0.67 0.68 0.79
AV-split gain 79.7 79.7 7.8 108 0.22 0.24 0.77 0.73 0.82 0.85
-spl1
P gain ratio 73.4 70.3 109 114 0.31 0.39 0.67 0.57 0.79 0.82
Geurt gain 68.8 70.3 10.1 9.7 0.28 0.32 0.73 0.67 0.65 0.74
eurts
gain ratio 71.9 67.2 10.0 9.2 0.29 0.29 0.70 0.73 0.74 0.62
gain 65.6 62.5 12.6 120 0.38 0.41 0.60 0.57 0.71 0.68
Kadous i i
gain ratio 71.9 65.6 88 13.2 0.29 0.27 0.70 0.77 0.74 0.56
1-NN 82.8 84.4 N/A N/A 0.19 0.18 0.80 0.80 0.85 0.88
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5. Conclusions

For our time-series decision tree, we investigated the case

a cost-sensitive learner and a discovery method.
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