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Abstract 

In this paper, we show how self-interested agents collectively learn “correlated rules” that 
sustain both efficient and equitable dynamic orders. The conventional zero-sum RSP game is 
gene ralized as non zero-sum games by modifying payoff matrix. We formulate a collection of 
agents in a lattice model repeatedly play the generalized rock-scissor-paper (RSP) games. 
Agents are modeled to play with neighbors by applying interaction rules. Those interaction 
rules are evolved by crossing over with the most successful neighbor. If the payoff for the 
winning the game increases, agents learn to win and lose in a coordinated way: they repeat 
these coordinated plays in order to realize the most efficient and equitable situation. We also 
investigate learning rules of agents. We show interacting agents co-evolve to learn sharing the 
same types of rule, which sustain the efficient and equitable society. 
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1. Introduction 

One of the central aims of ecology is to identify mechanisms that maintain biodiversity. 
Numerous theoretical models have shown that competing species can coexist if ecological 
processes such as dispersal, movement, and interaction occur over small spatial scales. In 
particular, this may be the case for non-transitive communities, that is, those without strict 
competitive hierarchies. The classic non-transitive system involves a community of three 
competing species satisfying a relationship similar to the children's game rock-paper-scissors, 
where rock crushes scissors, scissors cuts paper, and paper covers rock. Such relationships 
have been demonstrated in several natural systems. Some models predict that local interaction 
and dispersal are sufficient to ensure coexistence of all three species in  such a community, 
whereas diversity is lost when ecological processes occur over larger scales. 

It is not surprising that games as absorbing as bridge and chess have their world federations 
and international unions. But not everyone knows that even a game as lowly as  
rock-scissor-paper has its own society. This game, which must surely be very old, can be  
explained to any toddler. Two players signal, on a given cue, either rock (fist), scissors (two 
fingers), ore paper (flat hand). If I display a flat hand and you show me your fist, I win, as 
‘paper wraps rock’ . Similarly, scissors cuts paper, and rock smashes scissors. If both players 
make the same signal, the game ends  in a draw. And in case you think of it as a rather 
simple-minded pastime, you should take a look at the home page of the ‘World RPS Society’, 
which is a treat. 

 
2. The Modified Rock -Scissor-Paper (RSP) Games 

We generalize RSP games w ith the payoff matrix given in Table 1. If we set λ=2, this 
game become equivalent with the original zero-sum game. The game with the payoff matrix 
in Table 1 has a Nash equilibrium. Nash equilibrium strategy is to select rock, scissor, and 
paper with the probability 1/3. The expected payoff of each agent with this mixed Nash 
strategy obtained as (λ+1)/3. 
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If the parameter λ  is not one, their payoff at equilibrium is asymmetric and the problem of 
the fairness may also arise. With this game, we are especially interested in the effect of 
changing the parameter valueλ. The most preferable situation is that each agent adopts the 
different strategy, and we define they cooperate if they choose different strategies in this case. 
 
 

 
 
 
 
 
 
 
 
 
 
 

      ( 2≥λ ) 
 

Table. 1. The payoff matrix of modified rock-scissor-paper game 
 

3. Repeated Games with Interaction Rules 
An important aspect of social evolution is the learning strategy adapted by individuals. In 
most game theoretic models, agents calc ulate their best strategy based on information about 
what other agents have done in the past. Then agents gradually learn the equilibrium strategy. 
A number of evolutionary models based on the iterated general non-cooperation games have 
been proposed. Many dynamical systems and evolutionary models have been constructed with 
the Prisoner’s Dilemma game as a model for the interaction between individuals. Axelrod 
applied a genetic algorithm (GA) to the iterated Prisoner's Dilemma and used a bit-string 
representation of finite memory strategies.  

We use the different approach suggested by [10]. Each strategy in the repeated game is 
represented as a temary string so that the genetic operators can be applied. In order to 
accomplish this we treat each strategy as deterministic bit strings. We use a memory, 
which means that the outcomes of the previous one move are used to make the current 
choice. As Fig.1 shows, there are nine possible outcomes for each move ((S1S1), (S 1S 2), 
(S 1S 3), (S2S1), (S2S2), (S 2S 3), (S3S1), (S3S2), (S 3S 3)). We can fully describe a 
deterministic strategy by recording what the strategy will do in each of the nine different 
situations that can arise in the iterated ga me. Since no memory exists at the start, extra 
one bit is needed to specify a hypothetical history. If we assume that 0 = S1, 1 = S2, and 2 
= S3 then each strategy can be defined by a 3-bits string. 

 
Fig. 1. The agent’s memory architecture (1-history) 
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Each agent interacts with the agents on all eight adjacent squares and cross-overs the rule of 
any better performing one. In each generation, each agent attains a success score measured by 
its average performance with its eight neighbors. Then if an agent has one or more neighbors 
who are more successful, the agent crosses with the strategy of the most successful neighbor. 
Partial mimicry which partially mimics the strategy of an opponent is known as cross-over in 
a genetic algorithm. Each agent is modeled to be matched several times with the 8 neibhbors, 
and the list of the strategies (rule of interaction) for the same partner is coded as the list. With 
partial mimicry, cross -over, a part of the list is replaced with that of the most successful agent. 
The neighbors also serve another function as well. If the neighbor is doing well, the behavior 
of the neighbor can be shared, and successful strategies can spread throughout a population 
from neighbor to neighbor [10]. 

We also consider the implementation error specified by the rule and exists small probability 
of choosing the wrong strategy. We showed the simulation results without any errors and with 
ten percent of the error rate as noise. Significant differences will be observed when agents 
have small chances of making mistakes.  

 
4. Simulation Results 
In this section, we investigate the property of co-evolutionary learning among agents. We 
especially investigate what the learning influence from agents’ payoff. Each agent adopts the 
most successful strategy as guides for their own decision (individual learning). Hence their 
success depends in large part on how well they learn from their neighbors. If the neighbor is 
doing well, his strategy can be imitated by others (collective learning). In an evolutionary 
approach, there is no need to assume a rational calculation to identify the best strategy. 
Instead, the analysis of what is chosen at any specific time is based upon an implementation 
of the idea that effective strategies are more likely to be retained than ineffective strategies 
[12]. Moreover, the evolutionary approach allows the introduction of new strategies as 
occasional random mutations of old strategies. The evolutionary principle itself can be 
thought of as the consequence of any one of three different mechanisms. It could be that the 
more effective individuals are more likely to survive and reproduce. A second interpretation is 
that agents learn by trial and error, keeping effective strategies and altering ones that turn out 
poorly. A third interpretation is that agents observe each other, and those with poor 
performance tend to imitate the strategies of those they see doing better. 

In this simulation, we consider the case in which each local interaction is modeled as games 
as shown in Table 1. Number of agents are 400 (N=400). At each time period, each agent 
plays the game in Table 1 with his eight neighbors and they decide next strategy by referring 
1-history or 2-history. At next time period, each agent cross-over with the strategy of the most 
successful neighbor who obtain the highest payoff. 

We simulated several cases by changing the parameterλ. Fig. 2, 3, and 4 shows transition 
of payoff average to generation in cases when we set λ= 2, 5, or 10, and shows the 
distribution of payoff average which agents acquired in the final generation. And we 
simulated to the each case to be no noise and each ten percent. It played a game 20 times a 
generation and the 2000 generations was repeated to see the changing society enough. 
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 (a) error rate: 0%                         (b) error rate: 10% 
Fig. 2. Simulation result with λ = 2 in Table 1 

 
 
 

(a) error rate: 0%                        (b) error rate: 10% 
Fig. 3. Simulation result with λ =5 in Table 1 

 

 
 
 

(a) error rate: 0%                    (b) error rate: 10% 
Fig. 4. Simulation result with λ=10 in Table 1 
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Fig 5. Progress of average payoff with changing the value of λ 

 
At Fig.2.(a), and Fig.2.(b), all agents’ payoff average is the same value 1. However, as 

payoff increasesλ>2, the cooperative relationship collapses when the gain increases, and the 
value of the average payoff decreases. It means the agent society becomes a Nash equilibrium. 
Swinging is caused in the inferior state of a Nash equilibrium when the noise is added ten 
percent and the society as a whole faces settling in the state of Pareto optimum. Therefore, 
payoff averages rise, on the other hand, social efficiency rises. 

Fig.5 shows the progress of average payoff. In λ=2 the both value of Nash equilibrium 
and Pareto optimal are the same, and the simulation results achieved the value without no 
error or error  10%. As λ got higher, the simulation results showed difference between 
average payoff with error and it without error. Implementation errors became more effective. 
While the average payoff would not achieve Nash equilibrium without error, the average 
payoff could achieve Pareto optimal with error.  

 
5. What Agents Co-evolved?  

Next, we investigate the effect of implementation error. We show difference of the number 
of the same type agent who has the same strategy in his memory a certain generation in Fig.6. 
It shows that agents’ memory is converged as four types that have common parts in 2000th 
generation, but there are about 400 types in primitive generation. According to this result, 
noise will work convergence of agents’ memory. 
 
 
 
 
 
 
 

Fig.6 The number of different learning rules among 400 agents 
 

Number of different rules 
Generation 

Error rate: 0% Error rate: 10% 

500 400 400 
1000 400 250 
1500 368 30 
2000 238 4 
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We analyze details of such a converged strategy decision rules by state diagrams. This 
simulation results in Fig.7 is the case of λ=10, error rate 10%, 2000th generation, and 
1-history. 400 strategy decision rules in first generation are converged 4 type rules. Each rule 
has the same bits in common place without only 3 places. These 3 places are decision bits of 
the case that agents adopt the same strategy each other. Therefore, this means that agents 
adopt different strategy if agents adopt the same strategy each other. Each rule is called as rule 
type 1, 2, 3, or 4, and the number of agents who have type 1 is 202, type 2 is 114, type 3 is 58, 
and type 4 is 26. 

 
Initial_Strategy 00 01 02 10 11 12 20 21 22 

1 2 2 2 0 2 1 1 0 2 

1 1 2 2 0 2 1 1 0 0 

1 2 2 2 0 0 1 1 0 2 

1 1 2 2 0 0 1 1 0 2 
Fig. 7 Converged strategy decision rules (λ=10, error rate 10%) 

( ): Some commonality of learning rules 
 

6. The Effect of Co-existence of Heterogeneous Agents with Different Rules 
(1) Homogeneous agents 
We investigate a state diagram that an agent of rule type 1 plays with an agent who has the 
same rule in Fig. 8. Fig. 8 has broadly two cycles. Left cycle in the figure has an absorbing 
state via state of 00 or 11. On the other hand, right cycle has no absorbing states and it shows 
efficient cycle that agents win 3 times and lose 3 times eac h other. All 400 agents have 
adopted S2 strategy at first of 2000th generation. Therefore, all agents rule 1 versus rule 1 start 
at state 11, then they go into state 22 and do not acquire payoff efficiently by acquiring 1 
forever. However, if an implementation error happens in state 22, for example, an agent may 
go to state 02. Of course, he may come back to 02 from 22 in inefficient cycle.  

 
Fig. 8 A state diagram of plays among agents with the same rule (rule type 1 versus rule type 1) 

 
The truth is that 2 cycles (one is a draw cycle, another is a winning 3 times and losing 3 times 
cycle) appear as a state diagram if the same agent type play, for example type 2 versus type 2, 
and type 3 versus type 3.  This state diagram means that agents can not acquire the payoff 
efficiently by staying draw state if agents with the same rule play without implementation 
errors from initial state. However, agents escape from the inefficient cycle as they would 
mistake to adopt strategies with probability p, and then they stay in the efficient cycle. 
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Fig. 9 Interaction with the same type of agents 
 

(2) Heterogeneous agents 
Next, we investigate state diagrams of plays among agents with the different rules in Fig. 10. 
Fig. 10 shows a state diagram of type 1 versus type 3. As all 400 agents have adopted S2 
strategy at first the 2000 generation, starting state is 10. Fig. 10 is different from previous 
state diagram in the point that agents can move to efficient cycle without implementation 
errors.  

 
Fig. 10 An example of state diagram of agents with the same rule (rule type 1 versus rule type 3) 

 
If different type agents play, they can move to efficient cycle without implementation errors. 
However, they could not stay in the efficient cycle by implementation error s with probability 
p, and go to inefficient cycle. In this situation, implementation errors would interrupt 
acquiring efficiently the payoff. Therefore, if homogeneous agents rule play each other, they 
can get efficiently payoff because they start at draw cycle, else heterogeneous agents can stay 
the most efficient cycle. How agents with the different rule structure is the most important for 
achieving efficient equilibrium. 
 
 

 
 
 
 
 
 
 

Fig. 11 Interaction with the different type of agents 

 
7. Conclusion 
We analyzed the competitive interactions in a finite population of agents in which agents are 
repeatedly matched within a period to play a stage game. We only imposed a weak 
monotonous condition reflecting the inertia and myopia hypotheses on the dynamics , which 
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describe the inter-temporal changes in the number of agents playing each strategy. The 
hypotheses we employed here reflect limited ability (on the agent's part) to receive, decide, 
and act upon information they get in the course of interactions.  

We examined how efficiency and the fairness of the society changed when the gain that 
was able to be acquired increased. Moreover, what influence the act of making a mistake 
exerted on them was verified. The mistakes of deciding strategy in the society bring an 
important result, besides there is a possibility that the influence not intended conceals oneself. 

We examined how the agents achieved efficient equilibrium and they have acquired 
strategy decision rules by learning and mistake. If agents mistook, age nts acquired ideal and 
efficient cycle of strategic decision. Depending on first strategies, agents start at inefficient 
cycle but the mistakes lead agents to efficient one. We cannot pass that mistakes re-lead them 
inefficient one from efficient one. 
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