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Scientific Discovery of Dynamic Hidden States and Differential Law Equations

FuMIiNORI ADACHI, TAKASHI WASHIO and HIROSHI MOTODAT

This paper proposes a novel appropach to discover dynamic hidden states and simultaneous
time differential law equations from time series data observed in an objective process. This
task has not been addressed in the past work though it is essentially important in scientific
discovery since any behaviors of objective processes emerge in time evolution. The promising
performance of the proposed approach is demonstrated through the analysis of synthetic data.

1. Introduction range by bi-variate fitting under a given lab-

Many of the conventional approaches to iden-
tify numerical models from measurement data,
e.g., system identification theory?) and artificial
neural network?), derive an “asymptotic model’
of an objective process over a narrow range of
its state. Their plausibility is based on the as-
sumption that the characteristics of the objec-
tive process over the state range can be suffi-
ciently well captured by the presumed structure
of the adopted equations such as linear and/or
logistic formulae. However, this assumption
usually does not hold over a wide range of states
in the objective process because the presumed
structure is merely an approximation within the
narrow range. Accordingly the conventional ap-
proaches usually do not identify the law equa-
tions to represent the first principles governing
the objective process over a wide state range.

In contrast, the main goal of scientific law
equation discovery is to discover the first prin-
ciple based law equations from measurement
data. The most well known pioneering sys-
tem to discover scientific law equations is BA-
CON?). This system searches for a “complete
equation” governing the data measured in a
continuous process, where the complete equa-
tion is an equation constraining n quantities
with n — 1 degree of freedom ”. It tries to
figure out an invariant and its associated re-
lation between two quantities over a wide state
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The equation 712 4+ 232 4+ ...+ 2 = 0 is not com-
plete, since the values of all n quantities is 0, i.e.,
n quantities are constrained with no degree of free-
dom. On the other hand, z1 + 2 + ... + z, = 0 is
complete.

oratory experiment where some quantities are
actively controlled. The found bi-variate rela-
tions are successively composed with the other
relations, and finally a complete equation rep-
resenting the multiple measurement quantities
is resulted. FAHRENHEIT®, ABACUS® and
IDS®) are the successors that use basically sim-
ilar algorithms to BACON in searching for a
complete equation.

However, one of the drawbacks of the BA-
CON family is the low likeliness to discover the
equations representing the first principles un-
derlying the objective process, since they do not
use any criteria to capture constraints induced
by the first principles. The second drawback
i1s so high time complexity due to the uncon-
strained search space of equation formulae that
equations contain only a few quantities can be
searched within a tractable time. The third
drawback is the considerable amount of ambi-
guity in their results for noisy data even for the
equations containing a few quantities”)®). To
alleviate these difficulties, some systems, e.g.
FAHRENHEIT, ABACUS and COPERY), in-
troduced some naive constraints imposed by
unit dimension of quantities to prune the mean-
ingless solutions. An example of the constraints
is the “dimensional homogeneity’ that every
terms in a candidate law equation must have an
identical unit, otherwise it 1s pruned. A prob-
lem of this approach is its narrow applicability
only to the quantities whose units are clearly
known. To further overcome this difficulty,
SDS has proposed 9. Tt discovers scientific
law equations by limiting its search space to
mathematically admissible equations in terms
of the constraints of “scale-type” and “identity”’.
These constraints come from the basic charac-
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teristics of the quantities’ definitions and the
relations necessarily standing in the objective
processes. The admissible equations discov-
ered by SDS are considered to represent plau-
sible relations among quantities reflecting the
first principles governing the objective process.
The detailed characterization of the first prin-
ciple equations can be seen elsewhere'?). Since
the knowledge of scale-types is widely obtained
in various domains, SDS is applicable to non-
physical domains including biology, sociology,
and economics. In addition, an extra strong
mathematical constraint named triplet check-
ing is introduced to check the validity of those
bi-variate equations. By these constraints, the
complexity of the algorithm remains quite low,
and the high robustness against the noise in the
measurements is provided.

The power of the systems must be further ex-
tended to discover scientific law equations in
real world. An issue is to discover “multiple
equations” governing given measurement data.
This is because the most of the real world pro-
cesses consist of multiple mechanisms, and are
represented by multiple equations in terms of
given quantities. Some past studies have par-
tially addressed this issue. The aforementioned
FAHRENHEIT and ABACUS identify each op-
eration mode of the objective process and tran-
sition conditions among these modes, and they
derives an equation to represent each mode. For
example, they can discover state equations of
water for solid, liquid and gas phases respec-
tively from experimental data. However, many
processes such as large scale electric circuits are
represented by “simultaneous equations”. The
model representation in form of simultaneous
equations is essential to grasp the dependency
structure among the multiple mechanisms in
the processes'?)13) . To address this issue, SSF
has been proposed to discover a valid simulta-
neous equation structure governing the objec-
tive process based on the identification of “min-
wmal complete subsets” of simultaneous equa-
tions embedded in data measured under exper-
imental environments'®. SSF combined with
SDS enables the discovery of quantitative si-
multaneous law equation models.

The second issue is the ability to discover law
equations under “passive observations.” The
aforementioned approaches require interactions

to control and measure the objective process
states under experimental environments. How-
ever, the number of controllable quantities is
quite limited, and even none of them are con-
trollable due to some practical reasons in many
scientific and engineering domains. For in-
stance, the astronomical experiments to con-
trol the parameters of fusion reactions in dis-
tant huge stars are impossible. The econom-
ical experiments to cause financial panics are
unacceptable for our society. The discovery of
the first principle equations under the passive
observation will play highly important role to
understand the fundamental mechanisms un-
derlying the variety of the objective processes.
Only a limited number of law equation dis-
covery systems have addressed the application
to passively observed data. The aforemen-
tioned SDS and SSF have been extended to
be applicable to the passively observed data
by introducing novel principles of “quasi-bi-
variate fitting’*®) and “quasi-experiment on de-
pendency’®) which identify the dependency
and the bi-variate relations among quantities
under the passively observed data without per-
forming actual experiment. It demonstrated
excellent features of the robustness against ob-
servation noise and the limited computational
complexity.

The third issue is to discover “simultaneous
time differential equations” reflecting the first
principles governing the dynamics of objective
processes. This task plays a highly important
role in scientific discovery, since any behaviors
of objective processes emerge in time evolu-
tion under their first principles. However, all
aforementioned approaches are limited to dis-
cover law equations representing static behav-
iors of objective processes. An effort to de-
velop a law equation discovery system called
LAGRANGE has been made to automatically
discover dynamic models represented by simul-
taneous time differential equations!™. It can
discover the model equations from passively
observed time series data based on an ILP-
like generate and test reasoning on an objec-
tive process. Its drawback is very high com-
plexity of the search since vast number of the
candidate equation formulae are generated and
tested. Subsequently, its further extended ver-
sion called LAGRAMGE was developed to in-
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troduce background knowledge in the domain
of the objective process!®. The introduction
of the appropriate domain knowledge can effi-
ciently limit the search space of the equations
and provide the right model equations of the
first principles underlying the objective pro-
cesses. However, the right model equations may
be missed in the search, if the given background
knowledge is inappropriate.

Its more essential limit is the lack of the abil-
ity to discover “hidden state quantities,” be-
cause 1t assumes the direct observation of all
quantities representing states required to model
the dynamics of the objective process. For ex-
ample, consider a rocket having its mass M
[kg] and producing its thrust by the fuel jet of
m [kg/sec] and v [m/sec] in space. Then its
dynamics is represented by the following three
time differential equations.

Cil—‘t/:%,d—X:V, andd—M:—m,
where V' [m/sec] and X [m] are the velocity and
the position of the rocket. m and v are the pa-
rameters known from the design specification
of the rocket. X and V can be measured from
the outside of the rocket. But M is not ob-
servable unless the rocket has a specific mass
sensor. In fact, the measurement of M for a
real space rocket is so hard that it must be in-
directly estimated from the measurement of X
and V. In this case, M is called a hidden state
quantity since it is unobservable but has its in-
dependent dynamics represented by the third
differential equation. Without any background
domain knowledge, we do not know the number
of hidden state quantities, ¢.e., the number of
differential equations to be required to model
the objective process. The identification of the
hidden state quantities from observed data is an
essential task to discover the simultaneous time
differential equations reflecting the first princi-
ples underlying the objective process.

In this paper, we propose a novel method to
discover a model of an objective process having
the following features.

(1) The model is a simultaneous time differen-
tial equations representing the dynamic be-
havior of an objective process.

(2) The model is not an asymptotic approxi-
mated model but an model representing the
first principles governing the objective pro-

cess.

(3) The model can include hidden state quan-
tities and their governing differential equa-
tions.

(4) The model is discovered without using
background domain knowledge specific to
the objective process.

(5) The model is discovered from passively ob-
served data.

First, our proposing scientific equation discov-

ery approach is outlined. Second the perfor-

mance evaluation of our approach through nu-
merical experiments on synthetic data is shown.

2. Discovery Method

2.1 Basic Problem Setting

We adopt the following “state space expres-
ston” to model objective processes and mea-
surements without loss of generality.

& =h(x)+v (v~ N(0X,)), and

y(k) = Ca(k) + w(k) (w(k) ~ N(0,5,)),
where the first equation is called a “transition
equation” and the second a “measurement equa-
tion.” x is called a “state vector”, h a transition
function, v a process noise vector, y a measure-
ment vector, C' a measurement matrix, and w a
measurement noise k a time index. h is nonlin-
ear in general, and any state transition of @ can
be represented by this formulation. While C' is
a linear transformation representing measure-
ment facilities to derive the measurement quan-
tities in y from the state quantities in @, the
facilities are artificial and linear in most cases.
Thus, this does not reduce the generality of this
expression. If C is a unit matrix, all state quan-
tities are directly observable through the mea-
surement. However, if C is not full rank, some
state quantities may not be directly observed.
Such state quantities are called “hidden state
quantities.”
rocket M 1s an example of this hidden state
quantity. C 1is generally known since it is ar-
tificial, whereas h and some elements of & are
unknown. Our proposing method identifies the
number of elements in x, i.e., the dimension of
@ from given measurement data at first. Subse-
quently, it searches h based on the data within
mathematically admissible formulae.

2.2 OQutline of Approach

The approach is outlined in Fig. 1. Given
a set of measurement data and knowledge on

The aforementioned mass of the
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Fig.1 Block Diagram of Approach.
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scale-types of measurement quantities, the di-
mension of x is identified through a statisti-
cal analysis called “correlation dimension anal-
ysis.” The measured values of y(k) are mapped
to a phase space of time delayed trajectory, and
the degree of freedom embedded in measured
time evolution behavior is estimated by com-
puting the relation between a time lag and the
time lagged correlation. Once the dimension
of @ 1s known, scale-types of the elements in
x are estimated as many as possible based on
scale-type constraints and the information of
the scale-types of the elements in y. The scale-
type constraints are mathematical admissibil-
ity condition on the relation among measured
quantities by the nature of the measurement
process. Once the scale-types of the elements in
@ are obtained, the candidate equation formu-
lae of h admissible by the scale-type constraints
are generated, and the validity of the candidate
is tested through a certain tracking simulation
on the given measurement data which is called
a “particle filter” approach. Then, the candi-
date h providing highly accurate tracking, in
terms of “mean square error (MSE)” is selected
through the iteration of the candidate genera-
tion and testing. Finally, the most accurate h
in the data tacking simulation is selected as the
discovered dynamic model of the objective pro-
cess.

3. Performance Evaluation

The performance of our proposing approach
has been evaluated through two types of numer-
ical experiments using synthetic data. One is

to evaluate the basic search of candidate equa-
tions through the generation and test approach.
A dynamic behavior of an objective system 1s
simulated, and the time series data of measure-
ment quantities which are the direct observa-
tion of all state quantities of the objective sys-
tem are recorded. Hence, no hidden state exits.
Another is to evaluate the ability to discover a
hidden state quantity in correlation dimension
analysis and the search of candidate equations
including the hidden state quantity. Time series
data recorded in the simulation are the mea-
surement quantities on a part of the state quan-
tities. In each simulation, measurement noise w
having 0.1% relative amplitude of the measure-
ment g is introduced to evaluate the robustness
of the approach against noise distortion whereas
the process noise v is set to be negligible. A per-
sonal computer having 2.0GHz Pentium IV and
1GB main memory was used for the simulation
and the evaluation.

3.1 Evaluation of Basic Search

First ,the approach 1s applied to the time se-
ries data of the measurement quantities pro-
duced by the simulation of the following two
dimensional nonlinear system, where the scale-
types of both y; and ys are ratio scale, and
those of x; and xzo are also ratio scale.
Transition Equation

dl‘l

W = —0.51‘1 (l‘l(O) = —1),
dx
d—tz =TT (z2(0) = 1), and

Measurement Equation

Y1 1 0 r1 wq

b=l VIR L) o
Table 1 shows the top five results of the discov-
ered transition equation in the ascending order
of MSE. The top four show the successful dis-
covery of the original equations. The values of
MSE are almost comparable with the amplitude
of the measurement noise which is 1.0 x 107,
The required computation time to complete the
search was almost three days.

Next, the approach is applied to the time se-
ries data of the measurement quantities pro-
duced by the simulation of the following two
dimensional nonlinear system, where the scale-
types of y; and x; are ratio scale, and those of
y» and x, are interval scale.

Transition Equation
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Table 1 Ratio Scale Observations.
Equations MSE

e oo 107
dnfmasn g 07
G ey 2TITX107C
dfacsason g 75710
day [dt==0.51221 4 yrr o 105

dzg [dt=—0.81922

Results are in the ascending order of MSE.

Table 2 Ratio and Interval Scale Observations.
Equations MSE

G002 (rat o aT0) 5.320 x 10~
dml/dtdzmg'/ojtgz(mfofolégn)_a 1.125 x 10~%
dff/ld/titfg;éiij;g;j;?;g%l) 1.231 x 10~*
e )™ 4945 x 10~
dzy [dt=—0.365z (w5 +5.962) "2 5.690 x 10—+

dzo [dt=—0.0042,

Results are in the ascending order of MSE.

d

% = 0.4l‘1(l‘2 + 0.2) (l’l(o) = _1)’

d

% = —0.1(1‘2 + 0.6) (l’Z(O) = 1)’ and

Measurement Equation
n 1 0| |= wy
b= Lo VIR ) e

Table 2 shows the top five results of the dis-
covered transition equation. The top shows the
successful discovery of the original equations.
The values of MSE are higher than the level of
the measurement noise. This may be because
the equation search becomes more sensitive to
the noise due to the increase of the number of
fitting coefficients in the equation. The required
computation time to complete the search was
almost seventeen days. This is also consistent
with the fact that the variety of candidate equa-
tion formulae is higher in case of the mixture of
ratio and interval scale quantities.

3.2 Evaluation of Hidden State Search

The approach is applied to the time series
data of the measurement quantity y; produced
by the following two dimensional nonlinear sys-
tem, where the scale-types of y; and x; are ratio
scale, and x4 is a hidden state quantity.
Transition Equation

25

N an.\

N/
R

\_\/\‘___

05

Estimated Correlation Dimension: r

LR I N AR T S N 4
Vector dimension of phase space: P

Fig.2 Correlation Dimension Analysis.

d

2 0dmyws (21(0) = 0.25),
dt

d

% = —0.2521  (22(0) =4), and

Measurement Equation
L1 wy
]

Because the number of the hidden state quanti-
ties and their time differential equations is not
known in advance without the knowledge of the
simulation, the correlation dimension analysis
i1s applied first. Figure 2 is the plot of vector
dimension of phase space P vs. estimated corre-
lation dimension. Because the maximum value
of the estimated dimension is 2.14, the dimen-
sion of the objective process, i.e., the number
of time differential equations i1s judged to be
the nearest integer 2. Consequently, the can-
didates consisting of two differential equations
are search under the scale-type constraint. Ta-
ble 3 shows the top five results of the search.
The top, third and fourth shows the success-
ful discovery of the original transition equation
while the coefficients are not very accurate. In
contrast, the value of MSE is almost compara-
ble or less than the amplitude of the measure-
ment noise. This is because the less number
of measurement quantities allows slight overfit-
ting of the equations, but leads the result more
erroneous. The required computation time to
complete the search was almost seventeen days.
This 1s consistent with the fact that unknown
scale type of the hidden state quantity z, signif-
icantly increases the variety of candidate equa-
tion formulae.

4. Conclusion

We showed a novel method to discover a si-
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Table 3 Hidden States and Ratio Scale Observation.
Equations MSE

dzq [dt=0.04421 zo -7
dws[dt=—0.5702; 9.240x 10
dzq /dt=0.15z1 22 -7
dws [dt=—0.245 9.390 x 10
dzq [dt=0.026x1 x5 -7
dzo/dt=—0.58821 9.550 X 10
dzq [dt=0.033%1 x5 9.590 x 10—7

dzo [dt=—0.6832,
dzq /dt=0.098%1 zo

-7
dzy/dt=—0.03323 27" 9.660 x 10

Results are in the ascending order of MSE.

multaneous time differential equations repre-
senting the first principles governing dynamic
behavior of an objective process from passively
observed data. The significant features of this
approach are the discovery without strong bias
of the domain knowledge due to no use of
knowledge specific to the objective process and
the wide applicability to the cases including
hidden state quantities in the objective process.
The remained major issue is to overcome the
computational time complexity of the search.
Under the current environment, the derivation
of models consisting of more than a few dif-
ferential equations are not very practical. The
study to significantly increase the search speed
is currently underway.
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