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Performance Evaluation of Similarity Search Module

and Application for Cell Simulator

Shohei HIDO † and Hiroyuki KAWANO††

We develop a similarity search module which performs K-nearest search and range query
search in large time series databases. To deal with the high dimensionality of time series data,
we apply the techniques such as Adaptive Piecewise Constant Approximation (APCA), multi-
dimensional index structure (Hybrid-tree) and approximate distance function to our module.
In this paper, we evaluate the performance of the module by using the action potential data
of a cardiac cell, which is produced by simBio cell simulator. Experimental results show that
the module has high performance and applicability.

1. Introduction

In recent years, advanced techniques for data
storing, indexing, query processing and analyz-
ing in large databases have become more im-
portant. In order to discover some information
or knowledge from the flood of data, various
approaches of data mining have been proposed
and investigated by many researchers. Major
mining algorithms are shown in Table 1.

Efficient similar searches for time series data
is one of the important research fields in data
mining. Time series data is the continuously
recorded time and various attribute values of
some target objects. Such kind of data is
very common and produced almost everywhere;
for example, in science, economy and health-
care. Typical data such as population, heart
rate, temperature, stock price and exchange
rate have different meaning and variant unit,

Table 1 Examples of processing on data mining

Name Description

Clustering generate clusters of similar
data

Classification detect features for classifying
data

Association Rule find hidden rules between
multiple data

Motif Discovery discover frequent patterns in
dataset
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but all of them could be treated as time series
data.

The fundamental data processing for time se-
ries data are based on the computation of sim-
ilarity between different data, i.e., the function
of distance. In the case of calculating the dis-
tance between data by considering time series
data which consists of n elements as a point
in the n-th dimensional space, Euclidean dis-
tance is one of the general distance functions.
However, when we apply Euclidean distance
to all distance calculation in similarity search,
the computational cost of it is too expensive.
Therefore, various search space reduction meth-
ods are proposed and developed by using differ-
ent index structures1)∼3) and many waveform
approximation techniques4)∼6). Moreover, time
series decision tree for classification is one of
researches on time series data mining7),8).

The rest of this paper is organized as fol-
lows. In Section 2, we describe the foun-
dation of the approximate distance functions,
multi-dimensional index structures and exist-
ing methods for data approximation. Then we
explain proposed methods, Hybrid-tree3) and
APCA4), which are implemented in our mod-
ule. Section 3 contains the detailed description
of our method for similarity search and its im-
plementation. In Section 4 we utilize the actual
data generated by the cell simulator simBio9) of
the cell/biodynamics simulation project in Ky-
oto University, then evaluate the performance
of our module for K-nearest search and range
query search as examples.
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Table 2 Comparison of multi-dimensional index structures

Structure Division Dimension Bounding face overlap Supplement

R-tree Data N 2N large performance degradation in higher dimension
KDB-tree Space 1 1 none high cost in tree operation

Hybrid-tree Space 1 1 or 2 small robust for higher dimension and tree operation

2. Background and Related Work

2.1 Distance between Data
It is difficult to define the general similarity

between two data points6). In this paper, we
adopt the similarity based on Euclidean dis-
tance considering time series data as a multi-
dimensional vector. Euclidean distance be-
tween two n-th dimensional time series data,
A = {a1, · · · , an} and B = {b1, · · · , bn} is de-
fined as:

DEuclid(A,B) =

√√√√ n∑
i=1

(ai − bi)2 (1)

However, it needs about O(M2) order time
to calculate Euclidean distance between all
pairs in the dataset that contains M ele-
ments. We define approximate distance func-
tion D′ making use of index structure and
waveform approximation mentioned in the fol-
lowing sections. D′ should always satisfy
D′(A,B) ≤ DEuclid(A,B) and its computa-
tional cost should be lower than Euclidean dis-
tance. When the distance between A and B
is compared with the distance between A and
C, if DEuclid(A,C) ≤ D′(A,B) is fulfilled,
it becomes clear that DEuclid(A,B) meets
DEuclid(A,C) ≤ DEuclid(A,B) without calcu-
lating DEuclid(A,B) actually. Therefore, simi-
larity searching can be speeded up.

2.2 Index structure
Popular multi-dimensional index structures

partition the dataset into the smaller area, the
most representative method is R-tree1). It
stores the dataset as a number of Minimum
Bounding Region (MBR) and constructs hi-
erarchical structure. It is necessary to parti-
tion the dataset with as small overlap between
MBRs as possible in order to improve perfor-
mance of similarity search in R-tree. How-
ever, if a dataset has M elements of data, it
needs O(2M−1) order time to examine all con-
siderable ways to split the dataset into two
MBRs. Though there are some excellent tech-

niques such as Quadratic Split, it becomes hard
to avoid overlapping between MBRs in higher
dimensional data.

There are also index structures to split the
data space into two partitions with the bound-
ing face. In KDB-tree2), the boundary is de-
fined as a value of a certain dimension. The
dataset is divided into two partitions that in-
clude the data having larger or smaller value
than the bounding value. Thus we can have
appropriate divisions by KDB-tree, even with
higher dimensional dataset in contrast to R-
tree. However, there is a problem that the cycle
of partition subdividing needs high computa-
tional cost when new data is inserted into the
tree because the partitions have no overlap.

Hybrid-tree3) is a index structure using com-
binational method of R-tree and KDB-tree. It
is essentially based on KDB-tree and using
space partitioning, but it alters the way of split-
ting to use not one but two bounding values and
accept that the partitions have some overlap
like MBR in R-tree in order to avoid the cyclic
subdividing. More than one partition could in-
clude the same data but the cost of tree opera-
tion becomes much lower.
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Fig. 1 Image of partitions (left) and its index

structure (right)

2.3 Approximation of time series
Well-known waveform processing methods

are fourier transform or wavelet transform. In
this section, we introduce the discrete wavelet
transform, Piecewise Aggregate Approximation
(PAA) and Adaptive Piecewise Constant Ap-
proximation (APCA) as the discrete approxi-
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OriginalDWT OriginalAPCAOriginalPAA (cr1,cv1)
Fig. 2 Examples of waveform approximation

mation method for time series data.
2.3.1 Discrete wavelet transform
Discrete wavelet transform is effective for the

data that contains some stable periods with
various duration because it can approximate
non-periodic uneven waveform. Though there
are many mother wavelets, Haar wavelet is the
most typical and easy to implement. Bold curve
in the left chart of Fig. 2 is an example of Haar
wavelet transformation. An transformation al-
gorithm in linear order time and fast approxi-
mate distance function is proposed. However,
if the data length is not power of two, a pre-
processing to add some redundant data until
the length reaches power of two and a post-
processing to remove the redundant data is re-
quired because this method is applicable only
for the data which length is power of two.

2.3.2 PAA
Piecewise Aggregate Approximation sepa-

rates the original waveform into some periods,
whose width is all same, and figure the average
value in each region like center of Fig. 2. It is
a quite simple and fast technique, and a rapid
distance function is also available. The accu-
racy of approximation depends on the width of
period, thus PAA is unsuitable for non-periodic
data which contains the stable and unstable re-
gion, because the wide period for saving data
volume leads to inaccurate approximation. On
the other hand, if the width is too narrow, the
data amount becomes large unnecessarily.

2.3.3 APCA
Adaptive Piecewise Constant Approximation

resolves the issue of PAA by dynamic adjust-
ment of the width of period. The width is ex-
tended at stable range and reduced in unstable
range. Right-hand graph in Fig. 2 shows better
approximation than the others. Similar tech-
niques have been suggested, but Chakrabarti
et al made it possible to apply APCA easily

to the index structure4). APCA data C ′ is ex-
pressed with the pairs of the end point cri and
the average cvi of ith period as:

C ′ = {< cr1, cv1 >, · · · , < crK , cvK >}(2)

3. Techniques for similarity search

3.1 Distance calculation with APCA
3.1.1 Lower bound distance function
We define the fast approximate distance func-

tion between the search target Q and the data
C in database. In pre-processing, C is trans-
formed into APCA data C ′ and also stored in
database. APCA data Q′ is calculated with the
condition qri = cri, in order that C ′ and Q′ has
the same K periods as shown in Fig. 3.

C’
Q’ Q

time

value

cr2cr1
cv1qv1

C qr1 qr2
Fig. 3 Example of DLB(Q′, C′) (shaded region)

(3) is always fulfilled if DLB(Q′, C ′) is defined
as shown in (4)

DLB(Q′,C′)≤DEuclid(Q,C) (3)

DLB(Q′,C′)=

√∑K

i=1
(cri−cri−1)(qvi−cvi)2 (4)

DLB(Q′, C ′) forms the lower boundary of Eu-
clidean distance between Q and C, and can be
calculated rapidly. Therefore, as mentioned in
Section 2.1, it is possible to save the total cost
of the distance calculation in similarity search.
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3.1.2 MINDIST function using MBR
We utilize Hybrid-tree as the index structure

in our implementation of similarity search mod-
ule. Each node in Hybrid-tree has MBR figured
from the dataset included in the node. An ap-
proximate distance function between a time se-
ries data and MBR makes it possible to reduce
the number of traced node in similarity search.

However, as given in Section 2.3, it is impos-
sible to treat APCA data as a simple multi-
dimensional vector because it is constructed as
the pairs of the time period and the average
value. Consequently we implements modified
MBR for APCA data and the distance function
between it and time series data.

G1 G3
G2 C’2

C’1

Q

time

value

t2t1

MBR R = { G1, G2, G3, ….}

G1[4]
G1[1]G1[3]

G1[2]
Fig. 4 MBR of APCA data C′

1, C′
2

We define the set of time series data C as U
and the set of APCA data C ′ with K periods as
U ′. MBR R derived from U is designated with
K rectangles { Gi } as:

R = {G1, G2, · · · , GK} (5)

Gi is expressed with the beginning point
cri−1 +1, the end point cri, the minimum value
cmini and the maximum value cmaxi of i-th
period (Fig. 4)

Gi[1] = min(cmini)

Gi[2] = min(cri−1+1)

Gi[3] = max(cmaxi)

Gi[4] = max(cri)

(∀C ′ ∈ U ′) (6)

Then MINDIST distance function between
R and time series data Q can be given.
Dmin(Q,Gi, t) is the difference between Q and
Gi which meets Gi[2] ≤ t ≤ Gi[4] at time t (7).

Dmin(Q,G, t) =


(G[1]−qt)

2 (qt < G[1])
(qt−G[3])2 (G[3] < qt)

0 (otherwise)
(7)

In this case Dmin(Q,R, t) is the minimum
value among Dmin(Q,Gi, t) (8).

Dmin(Q,R, t) = min(Dmin(Q,Gi, t)) (8)
Finally, MINDIST distance function Dmin(Q,R)

is defined as:

Dmin(Q,R) =

√√√√ n∑
t=1

Dmin(Q,R, t) (9)

Because of MINDIST distance function,
Dmin(Q,R) ≤ DEuclid(Q,C) is satisfied with
all data C in U then the redundant search in
the dataset under the node including R could
be eliminated.

3.2 Indexing with Hybrid-tree
We store the APCA dataset in the root node

in Hybrid-tree, then subdivide the partition
with the dimension which has the largest dif-
ference between the maximum value and the
minimum value until all leaf nodes contain a
less number of data than preset value.

Assuming that the APCA data has K periods,
we compare the widths of K time periods and
K value ranges in order to decide the dimension
to split. But, because the unit of value is ar-
bitrary, there is an issue that the difference be-
tween the scales of time and value could cause
the unfair selection of split dimension. More-
over, Hybrid-tree performs better with equal
dimensional width3). Thus we invoke the co-
efficient to equalize the averages of the width of
time periods and value ranges in pre-processing.

4. Implementation of similarity search
module and performance evaluation

4.1 System architecture
The software and hardware environment

which is used for the implementation and the
performance evaluation is listed below (Table
3).

Table 3 System architecture

CPU Intel Pentium4 3.00GHz
Memory 1GB

OS Debian GNU/Linux (Woody)
Language Java (Sun Microsystem J2SE 1.4.2)
Database PostgreSQL 7.2.1
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4.2 Data generation
simBio is a biological model simulator devel-

oped as Java package by Sarai et al10). The
biological model is composed as a network of
the Reactors (functions) and the Nodes (vari-
ables), and its initial parameters are given in
XML format. The simulator can solve the ordi-
nary differential equations of models by 4th di-
mensional Runge-Kutta method and show the
charts of variation in the parameters such as
membrane potential.

Fig. 5 Execution screen of simBio

Then we added two features to the simula-
tor as preparatory for similarity search in large
database. One of them is the capability to store
time series data in relational database, and the
other is the function to iterate the simulation
many times with changing the initial parame-
ters gradually according to the assignment in
another XML. Due to these new features, we
could obtain the action potential as an exam-
ple of time series data, using a physiological
model of guinea pig cardiac cell called Kyoto
model10),11) and accumulate a massive amount
of the data in database.

4.3 Experiment
At first we stored a large number of wave-

forms, which consist of the values of the ac-
tion potential for every millisecond from 0ms
to 400ms, in PostgreSQL database with the use
of the technique for data generation described
in Section 4.2. Next, all of the original wave-
forms were transformed into APCA data and
saved in the database separately. Then we con-
structed index structures based on Hybrid-tree

with from 5000 to 40000 data under the stip-
ulation that all leaf nodes have less than 500
data. After that, K-nearest searches and range
query searches were performed. In addition, we
compared the result with that of the brute force
approach which need to calculate Euclidean dis-
tance between the target and all data.

4.4 Result
We measured the computational time of 10-

nearest Search to seek the 10 nearest data from
the target in the dataset. Fig. 6 is a chart
of the experimental result. The vertical axis
indicates the execution time and the horizontal
axis represents the number of data.

0100200300400500600700800900
0 5000 10000 15000 20000 25000 30000 35000 40000Data numberExecution time (ms) Brute ForceAPCA&Hybrid-Tree
Fig. 6 Evaluation of K-nearest search

In the same way, we execute the range query
search to find all data which its distance from
the target is less than 10 (out of consideration
of the unit). The result is shown in Fig. 7.

0100200300400500600700800900
0 5000 10000 15000 20000 25000 30000 35000 40000Data numberExecution time (ms) Brute ForceAPCA&Hybrid-Tree
Fig. 7 Evaluation of range query search
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4.5 Consideration
In brute force approach, the processing time

increases significantly in proportion to the num-
ber of data. On the other hand, the growth of
time using APCA and Hybrid-tree is slightly
increased. Above results indicate that APCA
can avoid the redundant calculations of Euclid
distance, we can refine the searching space by
using the index structure of Hybrid-tree and it
is possible to reduce the extension of computa-
tional time in similarity search.

Even if the processing cost of the transfor-
mation to APCA and the construction of the
index is considered, it is still useful to imple-
ment our proposed methods in the module for
acceleration of similarity searches.

5. Conclusion

Now we can conclude that the combination
of APCA and Hybrid-tree could speed up the
similarity search such as K-nearest search and
range query search. Furthermore, the imple-
mentation in Java language which is generally
slower than C language shows sufficient perfor-
mance.

It is believed that there are many way of uti-
lization of this module because of the applica-
bility for any kind of time series data in rela-
tional database.

Developed module and accessory is now used
in the cell/biodynamics simulation project in
Kyoto University. It is embedded in a param-
eter optimization system to decide the appro-
priate initial parameters for estimation of the
drug effects on living thing during drug devel-
opment12).
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