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Restricted Path Consistency Enforcement for any Constraint Network

AHLEM BEN HASSINE' and Tu BAao Hoft

Local consistency techniques (LC) are in the core of the constraint programming paradigm
due to their preminent role in its success. The main objective of these techniques is to prune
the search space and consequently to enhance the efficiency of the constraints solver. Several
levels were proposed among which arc consistency (AC) is the most used one due to its low
time and space complexities. However, recently few efforts were directed to enforce local
consistency in an entirely distributed manner. Nevertheless, most of these works are limited
only to AC property due to the effective-cost of the other existing more powerful levels. For
some hard CNs applying only AC enforcement may be fruitless, case of problems initially
arc-consistent.

In an attempt to overcome these limitations, the main contribution of this paper is to
propose a refinement of the DRAC approach (Distributed Reinforcement of Arc-Consistency)
to achieve higher level of local consistency, the restricted path consistency (RPC) in a dis-
tributed manner with the minimal amount of additional constraint checks. A comprehensive
empirical study was performed to highlight the benefit of using the collected knowledge for
enforcing arc-consistency on any binary constraint network (CN), especially for hard arc-

consistent problems.

1. Introduction

Constraint Satisfaction Problem (CSP) for-
malism is ubiquitous in representing and solv-
ing many practical combinatorial applications,
such as planning, resource allocation, time
tabling, frequency allocation and scheduling.
The great success of the CSP paradigm is due
to its simplicity in specifying many kinds of
real-world applications. A CSP is defined by
a set of variables, a domain of values for each
variable and a set of constraints between these
variables. Solving a CSP involves finding as-
signments of values to variables that satisfy all
the constraints. This type of problems is known
as NP-Complete for which the solving task is
hard. Many significant researches are focused
on improving the efficiency of finding solution.
Reinforcing local consistency is worthwhile for
pruning the search space and consequently im-
proving the efficiency of constraints’ solvers.

Hence, several levels of local consistency have
been proposed in the literature. The ma-
jority of the proposed enforcing techniques
are centralized and addresses mainly arc-
consistency!!) and partial forms of arc consis-
tency. This can be vindicated by two main rea-
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sons: the first is that arc consistency cheaply
removes some values that cannot belong to
any solution for binary CSP. The second rea-
son is that higher levels of consistency (path
consistency or k-consistency with k>3) require
high space and time complexities and also can
change the structure of the constraint network
(CN). However, the best centralized proposed
algorithms for enforcing PC proposed in the
literature are PC-5 in 13) with O(n®d?) worst-
case time complexity and O(n®d?) worst-case
space complexity, and PC-8 in 7) with O(n?d)*
worst-case time complexity and O(n®d*) worst-
case space complexity (n is the total number of
variables in the problem and d is the size of the
largest domain).

Therefore, many lesser levels of local con-
sistency have been defined for binary con-
straint satisfaction problems®. According to
the stronger than property defined in 8), some
of these levels are situated between AC and
PC. The main advantage is that they can
prune more inconsistent values than AC while
avoiding the drawbacks of PC. The restricted
path consistency (RPC) property proposed by
Berlandier in 2) is one of these levels. The un-
derlying centralized proposed technique for en-
forcing RPC does not remove only the arc in-

* As mentioned in 8) this algorithm still requires
0O(n2d?) data structure for the constraints repre-
sentation.
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consistent values but in addition it checks the
path consistency of the pairs of values involv-
ing a weakly supported value. The RPC cen-
tralized algorithm has O(end®) worst-case time
complexity and O(end+ed?) worst-case space
complexity with e is the number of constraints.

In this paper, we are interested in the dis-
tributed approaches due essentially to the nat-
ural distribution of many real CSP applications.
The few distributed approaches proposed in the
literature concerns in a great part, the enforce-
ment of AC. One such approach is DRAC ap-
proach in 5)~6) that is a distributed approach
to enforce arc consistency on any constraints.
However, for some hard CNs performing only
arc-consistency is fruitless. Therefore achiev-
ing more local consistency pruning levels, with
reasonable cost, can be worthwhile. Thus, we
should find the best compromise between the
cost of the filtering process and the amount of
deleted values. The main contribution of this
paper is to refine the DRAC approach to per-
form restricted path consistency (RPC) with
the minimum amount of additional constraint
checks. The main idea of the new generic ap-
proach, that we called DRACTT is to profit
from the collected information while enforcing
arc-consistency to prune more non-viable values
for any CNs.

This paper is organized as follows. First we
present some preliminaries. Second, we de-
scribe DRACT™ generic approach. Third, we
discuss the experimental results. Finally, we
conclude the paper.

2. Preliminaries

In this section we will introduce some useful
definitions and notations.

Definition 1. Informally, a CSP'?) is com-
posed of a finite set of n variables X={Xj, ...,
Xn}, each of which is taking values in an as-
sociated finite domain D={D(X;), ..., D(X,)}
with |D(X;)|=d, i.e. d is the size of the largest
domain and a set of e constraints between these
variables C={C;;, ...}. We assume a total or-
der <4 on the values of each domain without
loss of generality.

Solving a CSP consists in finding one or all-
complete assignments of values to variables sat-
isfying all the constraints.

A CSP can be associated to a constraint-
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graph, the nodes of which (respectively arcs)
represent variables (respectively constraints).
As for high-order constraints, they can be rep-
resented according to primal constraint-graph
or dual constraint-graph?.

Definition 2. A binary CN is Restricted
Path Consistent (RPC)?) if and only if:

e For all variable X; € X, D(X;) is a non-

empty arc consistent domain and,

o For all value a € D(X;), for all X; € X such

that @ has a unigue support b € D(X;),

e For all X;, € X linked to both X; and
X;, there exists ¢ € D(Xy) such that
(a, c) satisfies C;, AND (b, c) satisfies Cj,
(Cik(a, C)/\C]'k(b, C))

Following Montanari in 12), a binary relation
C;; between variables X; and X; can be rep-
resented by a (0, 1)-matrix with |D(X;)| rows
and [D(X;)| columns by imposing an order on
the domains of the variables. A zero entry at
row a column b means that the pair consisting
of the a** element of D(X;) and the b** element
of D(X;) is not permitted; a one entry means
that the pair is permitted. However for the case
of constraints in intension, to determine all the
allowed couples of values requires high time and
space cost.

In the following, we propose a new property
based on restricted path inconsistency that we
will use in the proposed protocol in order to
prune more inconsistent values from the CN.
The main objective is to improve the efficiency
of DRAC approach without loss of correctness.

Property 1. For each path of three variables
P3={X;, X;, X} of an arc-consistent CN. For
each X; € Pj3, for each value ¢ € D(X;) and
its arc-consistent support* b € D(X;), a is an
inconsistent value and consequently should be
removed from D(X;) if and only if:

e There is no common support ¢ € D(Xy)

such that SPx, x,[a]=SPx,x,[b]**=c.

e For all b’ € D(X;) with b’# b and

for all ¢’ € D(Xy), SPx,x,[b’]=a’ with
o’ first support of b’ and ¢’ > @ and
SPx, x,[c']=a” with a” first support of ¢’

* This support can be the first support or one sup-
port, by using bidirectionality property in 3)~4),
depending on the used order between variables.

** SPx, x; represents the collected knowledge result of
performing AC.
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and a” > a.

Note that by using bidirectionality between
two variables X; and X; while enforcing AC,
we can have knowledge about the first sup-
port of X; in X; and not the inverse. There-
fore, in case it is not possible to check this
condition, we need to perform more con-
straint checks to verify the inconsistency of
a by applying RPC property as mentioned
in the following condition,

e The value b € D(X;) is the only support
of a € D(X;) and there is no common value
support ¢ € D(X},) such that the pair (a, ¢)
and the pair (b, ¢) are simultaneously arc-
consistent.

The two first conditions of the above mentioned
property are used to infer the oneness of sup-
ports for the value a to detect whether it is
path inconsistent or not without performing ex-
tra constraint checks.

3. DRAC** Generic Approach

3.1 Global Dynamic

The proposed model for the new approach
DRAC™™ involves (as for DRAC model) two
kinds of agents, Constraint agents and the
Interface agent, communicating by exchang-
ing asynchronous point-to-point messages. For
transmission of messages, we assume that they
are received in the same order they were sent
and in a finite delivering time.

The main goal of DRAC++ is to transform
any CSP P (X, D, C) into another CSP P’(X,
D’, C) equivalent via interactions among the
Constraint agents, which are trying to reduce
their domains. The underlying new proposed
protocol is divided into two steps

e First, enforce arc consistency on the prob-
lem (the same as DRAC protocol),

e Second, use the knowledge collected from
the previous step to remove some additional
values that cannot belong to any solution
by enforcing RPC property.

At the initial state, the Interface agent creates
all the Constraint agents and activates them.
Each agent C;; reduces the domains of its own
variables by computing local first viable value
for each variable.

Lets recall that for each variable X;, for each
value a € D(X;), if its first support b € D(;)
is found, then (a b y) is added to the list of
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tuple supports SPx, x,, i.e. y=0 (resp. y=1), if
b € D(X;) (resp. a € D(X;)) is the first support
of a € D(X;) (resp. b € D(X;)).

We must note that b is the first value support
for a but they are also values support for each
other by applying the bidirectionality property
of relations associated to constraints. A value
a is deleted from D(X;) if and only if it has
no viable value support. Each obtained set
of deleted values for a variable should be an-
nounced immediately to the concerned acquain-
tances in order to save fruitless consistency
checks for these values by the other agents.
Obviously, reducing domains on an agent may
cause an eventual domains’ reductions on other
agents. The same process, domains’ reduction
and exchange of deleted values, should resumes
until the full global arc-consistency is achieved
or a domain wipes out, i.e. the problem is then
detected as inconsistent.

Hence, all the agents starts the second step
in order to prune more non-viable values. Each
agent C;; checks first if it belongs to a path
formed by three variables. This is can be
done by checking its list of constraint acquain-
tances. The same agent may belong to more
than one path. First for each path, each agent
C;; asks its path acquaintance agents* (C;x, and
Cy;) for their sets of first support (SPx;, x, and
SPx, XJ.). For each received set, the agent C;;
determines first the boolean matrices M;;, and
My; corresponding to SPx,x, and SPx, x; re-
spectively. Second, performs the multiplication
of these two matrices. Fach entry of the ob-
tained matrix M proq4;; indicates the existence
(entry equal to 1) or not (entry equal to 0) of a
path of length 2 between the two variables X;
and X; of the agent C;; through the variable
Xy Finally the agent performs the convolution
of M proq;; and its first support matrix M;; by
applying the multiplication operator as follows:

Vvme{l,..,D(X;)} and
Vied{l,..,DX;)}
M ges[m][l]=M proa;;[m][l] * Mi;[m]]l].

To illustrate the principle of the proposed
protocol, let us consider the example in Figure
1 formed by three variables (X;, X5 and X3).
Figure 2 shows the proposed model correspond-

* All the constraint agents belonging to the same
path.
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Fig.1 (a) Example of arc-consistent problem, (b) the
corresponding graph of first support values.
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Fig.2 The corresponding model for the proposed
approach.

ing to the above example. Let us consider the
agent Cy3 (SPx, x,={(a1 ¢1 0) (a2 c2 0) (a3 c2
0) (a2 ¢3 1)}), it will receive the set of first sup-
port from its two acquaintances (SPx, x,={(a1
b2 0) (a2 b1 0) (a3 b3 0)} and SPXZXSZ{(bl Co
0) (by ¢1 0) (b3 c3 0)}). It will determine the
corresponding following matrices:

010 010
Mlg = 1 0 0 5 M23 = 1 0 0
0 01 0 01
1 00
and M13 = 0 1 1
010
Then, it will settle the product of the two first
matrices:
1 00
Mo x Ma3 = Mproay; = 0 1 0
0 01

Finally the agent should determine M g.s us-
ing M prod,s and M3 as mentioned above.

00
Mges=1 0 1 0
0 00

For each a € D(X;) (resp. b € D(X;))
If ElhD(Xj)‘ M gesla][br]<1 (resp. X

| D(X3)]
h=1

0 820

M Res[an][b]<1)

Then the agent should check if the value a
€ D(X;) (resp. b € D(X;)) is restricted path
inconsistent or not and this by using the third
criterion of the property 1. Each value that
does not satisfy the property conditions should
be deleted and consequently propagated. For
our example, we have to check only a3 and cs.

The same process is repeated for the other
paths. However, enforcing local RPC on an
agent may lead to AC enforcement, which in
its turn leads to more RPC enforcement. Thus
the same process should continue until the sta-
ble equilibrium state is reached. This state can
be defined by the satisfaction of all the agents
of the system. An agent is satisfied if and only
if it has no arc inconsistent or restricted path
inconsistent value. It is noticeable that we can
be content with enforcing Lazy RPC, one pass
of RPC, in order to reduce the complexity of
the pruning process.

Note that this dynamic allows a premature
detection of failure: absence of solutions. Thus,
in the case of failure, the constraint (which
has detected this failure) sends a message to
the interface in order to stop the whole pro-
cess. The maximal reinforcement of global re-
stricted path-consistency is obtained as a side
effect from the interactions described above.

3.2 Termination

The global dynamic of DRAC** approach
stops when the system reaches its finite stable
equilibrium state. The state where all the re-
stricted path inconsistent values are pruned or
when one of the domains wipes out. At this
state, all the agents are satisfied. However, in
this second case, the problem is inconsistent i.e.
no instantiation satisfies all the constraints.

The detection of the stable equilibrium state
in a distributed system can be achieved by tak-
ing a snapshot of the system, using the well
known algorithm of 10). Termination occurs
when all the agents are waiting for a message
and there are no messages in the transmission
channels. The cost, of the termination process,
can be mitigated by combining snapshot mes-
sages with our protocol messages.

4. Experimental Comparative Evalua-
tion

In this section, we provide experimental
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tests on the performance and efficiency of
the distributed filtering new generic approach
DRACT*. The experiments were performed
over randomly generated instances using four
parameters: n is the number of variables, d is
the domain size of each variable, p is the graph
connectivity (the proportion of constraint in
the network, p=1 corresponds to the complete
graph) and ¢ is the constraint looseness (the
proportion of allowed pairs of values in a con-
straint). The implementation was developed
with Actalk!) under Smalltalk-80 environment.

We randomly generated a list of instances
according to the following parameters, n=20;
d=10; p € {0.2; ...; 0.9} with a step of 0.1
and ¢ € {0.35; 0.38; 0.42; 0.45; 0.47; 0.48;
0.5; 0.5}. We carried out our experiments on
the most complex arc-consistent problems. The
main goal of these experiments is to highlight
the usefulness of using meta-knowledge inferred
from the set of first support to prune more in-
consistent values on hard CN, with the mini-
mum amount of additional constraint checks.
For each (p, ¢), 10 CNs instances were tested,
for which we performed only lazy RPC (one
pass RPC) in order to show that for some in-
stances only partial RPC is enough to prove
the inconsistency especially of most hard over-
constrained problems.

The results reported below represent the av-
erage of the obtained outcomes in terms of three
criteria: the CPU time in milliseconds, the per-
centage of pruned values, and the number of
constraint checks (ccks).

We bought out two versions of DRACT:
DRAC**-1 and DRACT'-2 for respectively
without and with the proposed property (see
Section 2). At first glance the result in Fig-
ure 3a shows that DRACTT-2 required little
more CPU time (~14%) than DRAC**-1. This
additional CPU time is used in order to de-
crease the number of constraint checks. Fig-
ure 4 shows that the use of the proposed prop-
erty leads to save almost the half (~45%) of the
needed number of ccks (Figure 4). The saving
of ccks increases hand-in-hand with the hard-
ness of the problem.

The difference in the percentage of deleted
values noticed between the two versions of
DRACTT (Figure 3b) is vindicated by the fact
that the used instances include restricted path
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Fig.4 Results in terms of the required number of
ccks.

consistent instances and inconsistent instances.
Therefore, the number of pruned values vary for
both approaches. Table 1 shows that almost
in all cases DRACT*-2 prunes less values to
prove the inconsistency of the instances. While
for restricted path consistent instances, the two
approaches prunes the same non-viable values.

Thus, performing partial RPC on arc-
congsistent hard instances allow us to discard
more values (less than 10.00% for DRAC and
more than 55.00% for DRAC*T).

For the exchanged number of messages
DRACTT may require a higher amount of mes-
sages to enforce RPC; this result can be vindi-
cated by the fact that in the beginning of the
second step, all the agents implied in at least
one path should exchange their set of first sup-
port.

At this point, we can say that DRACtT
is worthwhile especially for over-constrained
problems. This can be justified by the fact
that for such problems, the probability of hav-
ing a path of 3 variables in the CN is high com-
pared to under-constraint problems leading, to
the discovery of more path inconsistent values
and consequently to more reductions.

5. Conclusion

Enforcing local consistency techniques has
been shown to be very useful in improving solv-
ing process especially for hard CNs. How-
ever, only few distributed techniques are pro-
posed but the majority of them tackle only arc-
congsistency property. Nevertheless, the harder
the CN, the more useful and worthwhile the
higher pruning level of local consistency tech-
niques. Therefore, the objective of this paper
is to achieve full global restricted path consis-
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Fig.3 Results in mean of CPU time and percentage of deleted inconsistent values.

Table 1 Results of the percentage of deleted values for the inconsistent instances

{0.2; 0.35) | (0.3; 0.38) | (0.4; 0.42) | {0.5; 0.45)
DRACT*-1 54.33% 71.4% 65% 62.5%
DRACTT-2 49.16% 67% 65.5% 76%

{0.6; 0.47) | (0.7; 0.48) | (0.8; 0.5) | (0.9; 0.5)
DRACTT-1 71.7% 71.83% 78% T4.07%
DRACTT-2 70.4% 70.83% 77.12% 72.85%

tency (RPC), for any binary problem and with
the minimal amount of constraint checks.

Our approach consists of Constraint agents,
which exchange their local restricted path in-
consistent values in order to help themselves
to reduce the domains of their variables. This
process is performed until an equilibrium state
is reached and corresponds to a failure relative
to an absence of solutions or to a full global
RPC. The experimental comparative evaluation
shows that this approach is worthwhile espe-
cially for over-constrained problems.

In a future work we will try first to apply this
protocol to any general CN, second to improve
the enforced level of local consistency with low
complexities.
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