
1

Distributed Lagrangean Relaxation Protocol for

the Generalized Mutual Assignment Problem

Katsutoshi Hirayama†

The generalized assignment problem (GAP) is a typical NP-hard problem and has been
studied for many years mainly in the operations research community. The goal of the GAP is
to find an optimal assignment of jobs to agents such that the assignment satisfies all of the re-
source constraints imposed on individual agents. This work provides a distributed formulation
of the GAP, the generalized mutual assignment problem (GMAP), to deal with the problems
of task/job assignment in multi-agent systems. Then, we present a distributed lagrangean
relaxation protocol that enables the agents to simultaneously solve a GMAP instance with-
out any global control mechanism nor globally accessible communication medium like shared
memory. In the protocol we introduce a parameter that controls the range of “noise” mixed
in with the increment/decrement in a lagrangean multiplier. This parameter can be used to
make the agents quickly agree on a feasible solution with reasonably good quality. Our ex-
perimental results imply that the parameter may also allow you to control a tradeoff between
the quality of a solution and the cost of finding it.

1. Introduction

The generalized assignment problem (GAP)
is a typical combinatorial optimization problem
and has been studied for many years mainly in
the operations research community. The goal
of the GAP is to find an optimal assignment
of jobs to agents such that a job is assigned
to exactly one agent and the assignment satis-
fies all of the resource constraints imposed on
individual agents. Since the GAP is NP-hard,
numerous attempts have been made to develop
not only exact methods for finding an optimal
solution but also heuristic methods for finding
a near optimal solution4).

This work provides a distributed formulation
of the GAP, the generalized mutual assignment
problem (GMAP), to deal with the problems
of task/job assignment in multi-agent systems
(MAS). We can view the GAP as a problem
where a coordinator tries to optimally assigned
his jobs to a set of agents. On the other hand,
the GMAP can be considered to be a prob-
lem where a set of coordinators/agents, each
of which having an individual set of jobs, try to
optimally assign their jobs to each other.

The GMAP could be solved by a central-
ized method if all of the agents agreed to pass
on their jobs and related information to the
super-coordinator who is responsible for a so-

† Faculty of Maritime Sciences, Kobe University

lution of the entire problem. However, the cen-
tralized method, even though being efficient in
many cases, is generally considered inappro-
priate for MAS problems, because it ends up
forcing the agents to reveal their private in-
formation and gives the administrator at your
site extra labor of building and maintaining the
super-coordinator. Thus we seek for distributed
solution to the GMAP in this work. We
present a distributed lagrangean relaxation pro-
tocol that enables the agents to solve a GMAP
instance without any global control mechanism
nor globally accessible communication medium
like shared memory.

In the literature of distributed problem solv-
ing, distributed task assignment protocols have
been widely studied and many of them have
their root in the well-known contract net pro-
tocol6). To the author’s knowledge, no studies
have ever tried to develop such a protocol under
the distributed formulation of GAP. Further-
more, only few attempts have so far been made
at the decentralized solution of combinatorial
optimization problems, with notable exception
of the work by Androulakis and Reklaitis on
the decentralized solution of the optimization
problem1).

The paper is organized as follows. First, in
Section 2 we formalize the GMAP as a col-
lection of integer programs sharing some de-
cision variables with each other and introduce
a lagrangean relaxation obtained by dualizing

研究会temp
テキストボックス
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会temp
テキストボックス
2004－ICS－138　(13)

研究会temp
テキストボックス
2004／12／4

研究会temp
テキストボックス
－73－

2

the assignment constraints. Then, in Section
3 we provide key ideas of the distributed la-
grangean relaxation protocol. We also intro-
duce a parameter in order to make the agents
quickly agree on a feasible solution with reason-
ably good quality. Next, in Section 4 we report
our experiments being conducted to see the ac-
tual performance of the protocol, and finally
conclude this work in Section 5.

2. Formalization

2.1 Generalized Mutual Assignment
Problem

The GAP can be formulated as the following
integer program

GAP : max.
∑

i∈A

∑

j∈J

pijxij (1)

s. t.
∑

i∈A

xij = 1, ∀j ∈ J, (2)

∑

j∈J

wijxij ≤ ci, ∀i ∈ A, (3)

xij ∈ {0, 1},∀i ∈ A,∀j ∈ J, (4)
where A = {1, . . . , m} is a set of agents, J =
{1, . . . , n} is a set of jobs, pij is the profit of
assigning job j to agent i, wij is the resource
requirement for agent i to perform job j, and
ci is the available resource capacity of agent i.
Decision variable xij takes 1 if agent i is to per-
form job j and 0 otherwise. The objective is
to maximize the profit of the assignment such
that each job is assigned to exactly one agent
(the assignment constraints (2) are satisfied),
the total resource requirement of each agent
does not exceed the available resource capacity
of it (the knapsack constraints (3) are satisfied),
and each job is assigned or not assigned to an
agent (the 01 constraints (4) are satisfied). The
maximal value of the profit is called the optimal
value and an assignment that gives the optimal
value is called an optimal solution. The prob-
lem of finding an optimal solution to the GAP
is known to be NP-hard.

The GMAP consists of a set of agents, each
of which (say agent k ∈ {1, . . . , m}) has its own
GAP including a set of agents Ak and a set of
jobs Jk. Obviously, agent k wants all of the jobs
in Jk to be assigned to the agents in Ak. If we
view

⋃m
k=1 Ak as A and

⋃m
k=1 Jk as J , we can

easily formulate this problem as the GAP.
However, since we seek for distributed solu-

tion to the GMAP, this formulation must be de-
composed into pieces, each of which is uniquely
mapped to an agent. We can obtain one natural
decomposition based on the idea that the value
of decision variable xkj should be determined
by agent k (∈ A) (in other words agent k has
the right to decide whether it will undertake job
j or not), where agent k (∈ A) has

GMPk : max.
∑

j∈Rk

pkjxkj

s. t.
∑

i∈Sj

xij = 1, ∀j ∈ Rk,

∑

j∈Rk

wkjxkj ≤ ck,

xkj ∈ {0, 1}, ∀j ∈ Rk,
and tries to determine the values of xkj (j ∈
Rk). In this formulation, Rk is a set of all jobs
that may be assigned to agent k and Sj is a
set of all agents that job j may be assigned
to. The other elements are same as the ones in
the GAP formulation. Note that, in the assign-
ment constraints, GMPk includes the decision
variables whose values are to be determined by
other agents. Thus, agent k is unable to solve
GMPk without referring to the values of these
variables.

Lemma 1 All of the optimal solutions to
{GMPk | k ∈ A} constitute an optimal solution
to the GAP.
Proof: This obviously follows from the fact
that the feasible region of the GAP is equal to
the intersection of all of the feasible regions of
{GMPk | k ∈ A} and the fact that the objective
function of the GAP is equal to the sum of the
objective functions of {GMPk | k ∈ A}. �

2.2 Lagrangean Relaxation
By dualizing the assignment constraints (2)

of the GAP, we obtain the following lagrangean
relaxation problem:

LGAP(µ) : max.
∑

i∈A

∑

j∈J

pijxij

+
∑

j∈J

µj(1 −
∑

i∈A

xij)

s. t.
∑

j∈J

wijxij ≤ ci,∀i ∈ A,

xij ∈ {0, 1},∀i ∈ A,∀j ∈ J,
where µ = (µ1, ..., µn) is the lagrangean multi-
plier vector whose elements (called lagrangean
multipliers) take real numbers. It is well known

研究会temp
テキストボックス
－74－

3

that the optimal value of the LGAP(µ) provides
an upper bound for the optimal value of the
GAP.

As with the decomposition of the GAP into
{GMPk | k ∈ A}, the LGAP(µ) can be decom-
posed into a set of problems, where each agent
k (∈ A) has
LGMPk(µ) : max.

∑

j∈Rk

pkjxkj

+
∑

j∈Rk

µj

|Sj | (1 −
∑

i∈Sj

xij)

s. t.
∑

j∈Rk

wkjxkj ≤ ck,

xkj ∈ {0, 1},∀j ∈ Rk,
Lemma 2 All of the optimal solutions to

{LGMPk(µ) | k ∈ A} constitute an optimal so-
lution to the LGAP(µ).
Proof: This also follows from the fact that
the feasible region of the LGAP(µ) is equal
to the intersection of all of the feasible re-
gions of {LGMPk(µ) | k ∈ A} and the fact
that the objective function of the LGAP(µ) is
equal to the sum of the objective functions of
{LGMPk(µ) | k ∈ A}. �

Theorem 1 The sum of the optimal val-
ues of {LGMPk(µ) | k ∈ A} provides an upper
bound for the optimal value of the GAP.
Proof: This follows from Lemma 2 and the fact
that the optimal value of the LGAP(µ) provides
an upper bound for the optimal value of the
GAP. �

Note that, in the above, different upper
bounds result from different values for µ. An
upper bound should be lower (closer to the op-
timal) and hopefully being minimized by set-
ting appropriate values for µ. This minimiza-
tion problem, whose goal is to minimize an up-
per bound for the optimal value of the GAP, is
called the lagrangean dual problem.

Theorem 2 If all of the optimal solutions
to {LGMPk(µ) | k ∈ A} satisfy the assignment
constraints,

∑
i∈A xij = 1, ∀j ∈ J , for some

values of µ, then these optimal solutions con-
stitute an optimal solution to the GAP.
Proof: Theorem 1 proclaims that these optimal
solutions constitute a solution that provides an
upper bound for the optimal value of the GAP.
On the other hand, since these optimal solu-
tions satisfy the assignment constraints, each
of which is an equality constraint relaxed in

LGMPk(µ) for any agent k, they also constitute
a feasible solution that provides a lower bound
for the optimal value of the GAP. Hence, these
optimal solutions constitute an optimal solution
to the GAP. �

3. Protocol

3.1 Neighborhood
To solve the primal problem, agent k needs

to be informed of the values for the variables
in the second term of the objective function
of LGMPk(µ): for each job j in Rk (a set of
all jobs that may be assigned to k), (a) la-
grangean multiplier µj , (b) the size of set Sj

(a set of all agents that j may be assigned to),
and (c) decision variables {xij | i ∈ Sj , i �= k}.
The values of these variables can be obtained
through communication with a set of agents de-
noted as

⋃
j∈Rk

Sj . On the other hand, agent k
also needs to communicate with the same set of
agents in order to solve the dual problem. We
therefore refer to the set as agent k’s neighbors
and make an agent communicate only with its
neighbors in the protocol.

3.2 Primal Problem
When knowing the values of the associated la-

grangean multipliers, the size of Sj for any of its
jobs, and the decision variables of its neighbor-
ing agents, agent k is to search for an optimal
solution to LGMPk(µ) to determine the values
of {xkj | j ∈ Rk}. This search problem is equiv-
alent to the knapsack problem whose goal is to
pick up the most profitable subset of Rk such
that the total resource requirement of the sub-
set does not exceed ck. Note that, for each job
j in Rk, the profit is pkj − µj

|Sj | and the resource
requirement is wkj . Since the knapsack prob-
lem belongs to the NP-hard problems, an effi-
cient exact solution method virtually does not
exist. However, the recent progress in exact
solution methods for the knapsack problem is
so remarkable that the problem instances with
around 10,000 jobs are now readily solved3).

Then, agent k is to adopt the optimal solu-
tion as its current job assignment and inform
its neighbors of the assignment. The assign-
ment (along with other information related to
the convergence detection process) is sent via a
assign message in the protocol.

研究会temp
テキストボックス
－75－

4

3.3 Dual Problem
When knowing the current job assignments of

its neighbors, agent k solve the lagrangean dual
problem to update the values of {µj | j ∈ Rk}.
In this work we adopt the subgradient optimiza-
tion method, which is a well known technique
for systematically updating a lagrangean multi-
plier vector5). In our method, under the current
values of decision variables, agent k first cal-
culates subgradient Gj for the assignment con-
straint on each job j ∈ Rk as follows:

Gj = 1 −
∑

i∈Sj

xij .

Then, using step length lt which decays at rate
r (0 < r ≤ 1) as time t, the round in this case,
passes (i.e., lt+1 = rlt), agent k updates µj as

µj = µj − ltGj . (5)
We should notice that since µj is attached to

job j all of the agents in Sj must agree on a
common value to µj . If the agents in Sj assign
different values to µj , then neither theorem 1
nor 2 holds any more. To set a common value
to µj , we give all of the agents a common ini-
tial value for µ, a common value for initial step
length l0, and a common value for decay rate
r, and prohibit each of the agents from working
at round t + 1 until it receives all of the assign
messages issued from its neighbors at round t.
By doing this, without performing explicit com-
munication among Sj , we can make agents au-
tomatically set a common value to a lagrangean
multiplier.

3.4 Convergence Detection
We can terminate the protocol when all of

the optimal solutions to {LGMPk(µ) | k ∈ A}
satisfy the assignment constraints,

∑
i∈A xij =

1, ∀j ∈ J , for some values to a lagrangean
multiplier vector µ, because theorem 2 sug-
gests that these optimal solutions constitute
an optimal solution to the GAP. The prob-
lem of detecting this fact is virtually the same
with the solution detection problem which typ-
ically arises in the distributed constraint satis-
faction7). The solution detection process is eas-
ily implemented for a locally-synchronized type
of distributed constraint satisfaction solver such
as the distributed breakout algorithms2). Thus,
we incorporate a similar detection process into
the protocol.

3.5 Convergence to Feasible Solution
In the protocol, a feasible solution, which is

also an optimal solution according to theorem
2, is found for the first time when the termina-
tion condition is met. That is, until the termi-
nation condition is met, the respective assign-
ment at each round is not feasible (although,
according to theorem 1, an upper bound for
the optimal value of the GAP may be calcu-
lated using the assignment). The question is
whether the protocol always converges to a fea-
sible solution that is also an optimal solution.
An answer is unfortunately no, and thus you
should have forced the protocol to terminate at
a certain number of rounds without obtaining
any feasible solution.

For the combinatorial optimization problems
in a centralized context, even if being termi-
nated on the way to an optimal solution, the
lagrangean relaxation method can usually find
a feasible solution because it equips a domain-
specific technique, called the lagrangean heuris-
tics, to transform the “best” infeasible solution
into a feasible one. However, it may be difficult
to devise such a heuristic in our protocol, be-
cause such the “best” infeasible solution, which
we think belongs to global information, is inac-
cessible in a distributed context.

Therefore, we introduce a simple technique
to make the agents quickly agree on a feasible
solution with reasonably good quality. This is
realized simply by replacing the multiplier up-
dating rule (5) to another. As mentioned in
Section 3.3, for any job j, all of the agents in Sj

must agree on a common value to the respective
multiplier µj . This is necessary for theorems 1
and 2 to be true. On the other hand, we observe
that a common value to µj sometimes yields an
oscillation, where some of the agents in Sj re-
peat to “cluster and disperse” around job j, and
makes the protocol fail to find an optimal solu-
tion. Thus, we relax this requirement by letting
the agents in Sj assign slightly different values
to µj . In this work, we introduce a parameter
δ (0 ≤ δ ≤ 1) that controls the range of “noise”
mixed in with the increment/decrement in a la-
grangean multiplier. The noise, denoted as Nδ,
is a random variable whose value is uniformly
distributed over [−δ, δ]. The multiplier updat-
ing rule (5) is thus replaced by

µj = µj − (1 + Nδ)ltGj . (6)
This rule diversifies agents’ views on the value
of µj , which is sometimes interpreted as the

研究会temp
テキストボックス
－76－

5

price of job j, and thus being able to break an
oscillation. On the other hand, since this rule
violates the theorems, the protocol may con-
verge to a feasible, but not optimal, solution.
Note that the rule (6) is equal to the rule (5) if
δ is set to zero.

4. Experiments

We observed the relation between the values
of δ, which controls the degree of noise, and
the performance of the protocol. In the exper-
iments we used problem instances, where there
exist m ∈ {3, 5, 7} agents that are numbered
from 1 to m, each of which has 5 jobs, meaning
that the total number of jobs, n, was 5m, and
tries to assign each of its jobs to some other
agents (including myself) using one of the fol-
lowing assignment topologies.
chain The ith agent (i ∈ {2, . . . , m− 1}) tries

to assign each of its jobs to the (i − 1)th

agent, the (i + 1)th agent, or myself. On
the other hand, the 1st agent does to either
the 2nd agent or myself; the mth agent to
either the (m − 1)th agent or myself.

ring The ith agent (i ∈ {2, . . . , m−1}) tries to
assign each of its jobs to the (i−1)th agent,
the (i + 1)th agent, or myself. On the other
hand, the 1st agent does to the mth agent,
the 2nd agent, or myself; the mth agent to
the (m−1)th agent, the 1st agent, or myself.

cmplt Each agent tries to assign each of its
jobs to any of the agents (including myself).

rndm3 Each agent tries to assign each of its
jobs to any of the three agents, two of which
are randomly selected from the other agents
for each job and the other of which is my-
self.

We generated a random instance consisting of
m agents with one of the above assignment
topologies by randomly selecting an integer
value from [1, 10] for both wij and pij . On the
other hand, we fixed ci to 20 for any agent i
in every instance. To ensure the feasibility of
a problem instance, we checked if a generated
instance is feasible by using a centralized exact
solver to screen out infeasible ones.

The protocol was implemented in Java. The
agents in the protocol can exchange messages
using TCP/IP socket communication on a spe-
cific port. In the experiments, we put m agents
in one machine and made them communicate

using its local port. The parameters for the
protocol were fixed as follows: cutOffRound =
100n, l0 = 1.0, and r = 1.0, where cutOffRound
is the upper bound of rounds at which a run is
forced to terminate, l0 is an initial step length
for the agents, and r is a decay rate of the
step length for the agents. The parameter δ
controlling the degree of noise is ranged over
{0.0, 0.3, 0.5, 1.0}. For each problem instance,
20 runs were made at each value of δ (except
for 0.0) and the following data were measured:
Opt.R the ratio of the runs where optimal so-

lutions were found;
Fes.R the ratio of the runs where feasible so-

lutions were found;
Avg/Bst.Q the average/best value of the so-

lution qualities;
Avg.C the average value of the numbers of

rounds at which feasible solutions were
found;

Note that, in the Avg/Bst.Q, the solution qual-
ity was measured as the ratio of the profit of an
obtained feasible solution to the optimal value.
Note also that, when a run finished with no
feasible solution, we did not count the run for
Avg/Bst.Q, but did count using the value of
cutOffRound for Avg.C. On the other hand,
when the value of δ is 0.0, we made only one
run because there is no randomness in the pro-
tocol with δ = 0.0.

The results are shown in Table 1. The Pr.ID
column shows a label of a problem instance
meaning, from left to right, assignment topol-
ogy, the number of agents, the total number
of jobs, an available resource capacity, and an
instance identifier.

As we mentioned in Section 3.5, the rule (6)
is equal to the rule (5) when the value of δ is
0.0. The protocol with this setting, therefore, is
to terminate only when an optimal solution is
found (otherwise, it is forced to be terminated
when the cutoff round, 100n, is reached). How-
ever, in the experiments, we observed that the
protocol with that setting failed to find opti-
mal solutions within the cutoff rounds for al-
most all of the problem instances (for 19 out of
20 instances).

On the other hand, the performance of the
protocol was dramatically changed when δ was
set to one of the non-zero values. The results
show that Opt.R, Fes.R, and Avg.C are ob-

研究会temp
テキストボックス
－77－

6

Table 1 Experimental results
Pr.ID δ Opt.R Fes.R Avg.Q Bst.Q Avg.C Pr.ID δ Opt.R Fes.R Avg.Q Bst.Q Avg.C
chain-3-15-20-002 0.0 0/1 0/1 N/A N/A 1500 rndm3-5-25-20-000 0.0 0/1 0/1 N/A N/A 2500

0.3 13/20 20/20 0.990 1.000 82.0 0.3 8/20 20/20 0.977 1.000 527.3
0.5 8/20 20/20 0.984 1.000 93.2 0.5 6/20 19/20 0.965 1.000 428.8
1.0 6/20 20/20 0.962 1.000 69.8 1.0 2/20 20/20 0.951 1.000 288.6

chain-3-15-20-004 0.0 1/1 1/1 1.000 1.000 22 rndm3-5-25-20-001 0.0 0/1 0/1 N/A N/A 2500
0.3 16/20 20/20 0.988 1.000 70.5 0.3 19/20 20/20 0.998 1.000 40.6
0.5 14/20 20/20 0.993 1.000 32.7 0.5 17/20 20/20 0.994 1.000 66.6
1.0 6/20 20/20 0.943 1.000 74.1 1.0 10/20 20/20 0.957 1.000 53.8

cmplt-3-15-20-000 0.0 0/1 0/1 N/A N/A 1500 chain-7-35-20-000 0.0 0/1 0/1 N/A N/A 3500
0.3 4/20 20/20 0.974 1.000 224.3 0.3 3/20 19/20 0.969 1.000 810.7
0.5 1/20 20/20 0.977 1.000 93.4 0.5 1/20 19/20 0.965 1.000 505.3
1.0 1/20 20/20 0.952 1.000 57.2 1.0 0/20 19/20 0.959 0.986 473.8

cmplt-3-15-20-001 0.0 0/1 0/1 N/A N/A 1500 chain-7-35-20-001 0.0 0/1 0/1 N/A N/A 3500
0.3 6/20 20/20 0.972 1.000 216.9 0.3 5/20 20/20 0.983 1.000 359.0
0.5 8/20 20/20 0.978 1.000 93.4 0.5 2/20 20/20 0.977 1.000 223.1
1.0 0/20 20/20 0.933 0.980 91.7 1.0 3/20 20/20 0.966 1.000 283.5

chain-5-25-20-000 0.0 0/1 0/1 N/A N/A 2500 ring-7-35-20-000 0.0 0/1 0/1 N/A N/A 3500
0.3 5/20 20/20 0.989 1.000 269.6 0.3 3/20 18/20 0.959 1.000 993.7
0.5 2/20 20/20 0.978 1.000 177.9 0.5 2/20 20/20 0.955 1.000 359.5
1.0 1/20 20/20 0.964 1.000 148.0 1.0 0/20 20/20 0.946 0.996 164.0

chain-5-25-20-001 0.0 0/1 0/1 N/A N/A 2500 ring-7-35-20-001 0.0 0/1 0/1 N/A N/A 3500
0.3 11/20 20/20 0.995 1.000 84.2 0.3 1/20 20/20 0.949 1.000 1013.0
0.5 13/20 20/20 0.993 1.000 146.3 0.5 0/20 20/20 0.939 0.992 479.1
1.0 3/20 20/20 0.985 1.000 72.4 1.0 0/20 20/20 0.935 0.983 278.3

ring-5-25-20-000 0.0 0/1 0/1 N/A N/A 2500 cmplt-7-35-20-000 0.0 0/1 0/1 N/A N/A 3500
0.3 1/20 19/20 0.966 1.000 832.6 0.3 0/20 20/20 0.929 0.977 559.3
0.5 1/20 20/20 0.966 1.000 478.9 0.5 0/20 20/20 0.919 0.984 298.8
1.0 1/20 20/20 0.957 1.000 362.9 1.0 0/20 20/20 0.865 0.928 151.4

ring-5-25-20-001 0.0 0/1 0/1 N/A N/A 2500 cmplt-7-35-20-001 0.0 0/1 0/1 N/A N/A 3500
0.3 5/20 20/20 0.970 1.000 373.6 0.3 0/20 20/20 0.938 0.987 488.4
0.5 2/20 20/20 0.968 1.000 176.8 0.5 0/20 20/20 0.911 0.970 288.1
1.0 1/20 20/20 0.939 1.000 161.6 1.0 0/20 20/20 0.883 0.960 179.9

cmplt-5-25-20-000 0.0 0/1 0/1 N/A N/A 2500 rndm3-7-35-20-001 0.0 0/1 0/1 N/A N/A 3500
0.3 0/20 20/20 0.934 0.980 423.9 0.3 1/20 18/20 0.971 1.000 1213.0
0.5 0/20 20/20 0.923 0.980 208.6 0.5 0/20 18/20 0.962 0.996 735.2
1.0 0/20 20/20 0.881 0.959 182.5 1.0 1/20 18/20 0.951 1.000 966.3

cmplt-5-25-20-001 0.0 0/1 0/1 N/A N/A 2500 rndm3-7-35-20-002 0.0 0/1 0/1 N/A N/A 3500
0.3 1/20 20/20 0.954 1.000 245.7 0.3 3/20 16/20 0.967 1.000 1507.0
0.5 0/20 20/20 0.944 0.981 121.3 0.5 0/20 20/20 0.939 0.996 735.2
1.0 0/20 20/20 0.908 0.953 111.4 1.0 1/20 20/20 0.916 1.000 507.9

viously improved while Avg/Bst.Q is kept at
a reasonable level. This suggests that using
the protocol with those settings the agents can
quickly agree on a feasible solution with reason-
ably good quality.

It is also the fact that the protocol with
δ �= 0.0 may fail to find an optimal solution.
In the experiments, it failed to find an opti-
mal solution at every non-zero value of δ for
3 instances (cmplt-5-25-20-000, cmplt-7-35-20-
000, and cmplt-7-35-20-001). However, for each
of the other instances, an optimal solution was
found in at least one run at some value of δ.

For many instances (12 out of 20 instances),
when the value of δ increses we can see that
both Avg.C and Avg.Q get lower. In other
words, increasing the value of δ may generally
have an effect to rush the agents into reaching a
compromise, i.e., a lower-quality solution. This
implies that the parameter δ may allow you to
control a tradeoff between the quality of a so-
lution and the cost of finding it.

5. Conclusion

We have presented the generalized mutual as-
signment problem (GMAP) and a solution pro-
tocol for solving the GMAP. In the protocol,
we have also introduced the parameter control-
ling the degree of noise mixed in with the in-
crement/decrement in a lagrangean multiplier.

In our future work, we would like to pursue
more sophisticated techniques to update a la-
grangean multiplier vector and the method that
would realize distributed calculation of the up-
per bound for the optimal value.

References

1) I. P. Androulakis and G. V. Reklaitis. Ap-
proaches to asynchronous decentralized deci-
sion making. Computers and Chemical Engi-
neering 23, pp.341–355, 1999.

2) K. Hirayama and M. Yokoo. The distributed
breakout algorithms. Artificial Intelligence (to
appear).

3) S. Martello, D. Pisinger, and P. Toth. New
trends in exact algorithms for the 0-1 knapsack
problem. European Journal of Operational Re-
search 123, pp.325–332, 2000.

4) I. H. Osman. Heuristics for the generalised
assignment problem: simulated annealing and
tabu search approaches. OR Spektrum 17, pp.
211–225, 1995.

5) C. R. Reeves. Modern heuristic techniques for
combinatorial problems. Blackwell, 1993.

6) R. G. Smith. The contract net protocol:
high-level communication and control in a dis-
tributed problem solver. IEEE Transaction on
Computers 29(2), pp. 1104–1113, 1990.

7) M. Yokoo, E. H. Durfee, T. Ishida, and
K. Kuwabara The Distributed constraint satis-
faction problem: formalization and algorithms.
IEEE Transactions on Knowledge and Data
Engineering 10(5), pp. 673–685, 1998.

研究会temp
テキストボックス
－78－

