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Analysis of Hepatitis Dataset by Using Cl-GBI
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Constructing a classifier for structured data for which the attribute value type data rep-
resentation is not straightforward is challenging. Graph is one such structured data and we
developed DT-GBI in which B-GBI, a graph mining program, is recursively called to construct
attributes in the form of subgraphs. B-GBI, although quite efficient, has some problem due
to non backtracking greedy strategy with pairwise chunking. Overlapping subgraphs can’t be
searched and frequency counting of the same subgraph in a single graph has some ambigu-
ity. Cl-GBI, recently proposed new approach that uses chunkingless chunks as pseud-nodes,
solves this problem at the expense of computation cost. DT-ClGBI is an improved version of
DT-GBI that uses Cl-GBI instead of B-GBI. Experimental results of DT-ClGBI are shown
for hepatitis dataset with some discussion. The work is still in progress.

1. Introduction

Over the last few years there has been much
research work on data mining in seeking for bet-
ter performance. Better performance includes
mining from structured data, which is a new
challenge. Since structure is represented by
proper relations and a graph can easily repre-
sent relations, knowledge discovery from graph-
structured data poses a general problem for
mining from structured data. Some examples
amenable to graph mining are finding typical
web browsing patterns, identifying typical sub-
structures of chemical compounds, finding typ-
ical subsequences of DNA and discovering diag-
nostic rules from patient history records.

A majority of methods widely used for data
mining are for data that do not have struc-
ture and that are represented by attribute-value
pairs. Decision tree10), and induction rules1),8)

relate attribute values to target classes. Asso-
ciation rules often used in data mining also use
this attribute-value pair representation. These
method can induce rules such that they are easy
to understand. However, the attribute-value
pair representation is not suitable to represent
a more general data structure such as graph-
structured data, and there are problems that
need a more powerful representation.

We developed an efficient graph mining pro-
gram, Graph-Based Induction (GBI)6),13). In
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short, GBI is a technique which was devised
for the purpose of discovering typical patterns
(general subgraphs and induced subgraphs) in
a general graph data by recursively chunking
two adjoining nodes. It can handle a graph
data having loops (including self-loops) with la-
beled/unlabeled nodes and labeled/unlabeled,
directed/undirected edges. GBI is very effi-
cient because of its greedy search. GBI does
not lose any information of graph structure af-
ter chunking, and it can use various evalua-
tion functions in so far as they are based on
frequency. Later an improved version called
B-GBI (Beam-wise Graph-Based Induction)7)

adopting the beam search was proposed to in-
crease the search space, thus extracting more
discriminative patterns while keeping the com-
putational complexity within a tolerant level.

Further, we developed a decision tree learner
DT-GBI for graph structured data, using B-
GBI internally to construct attributes2). Since
attributes for graph structured data are not de-
fined in advance, the role of B-GBI is to ex-
tract candidate subgraphs that are discrimina-
tive. DT-GBI has been applied to analyze pro-
moter dataset11) in UCI repository and hepati-
tis dataset provided by Chiba University and
has shown its usefulness.

However, we found some problems in use of
B-GBI in DT-GBI. Admitting that the search
in GBI is greedy and no backtracking is made,
which makes the search incomplete and leaves
many patterns unextracted, one of the draw-
backs of B-GBI is that it cannot find overlap-
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ping patterns due to the nature of chunking.
Further we noticed the counting in B-GBI is not
accurate in some situations. The fact that B-
GBI finds a pattern does not necessarily mean
that it can find all of its subpatterns. What B-
GBI can find must be along the chunking path.
Thus, even if a pattern exists in a graph, B-GBI
is not guaranteed to find it always.

We improved B-GBI using still a notion of
pairwise chunking but actually without chunk-
ing to alleviate these problems. The new B-
GBI is called Cl-GBI (Chunkinless GBI) and
is incorporated into DT-GBI, now called DT-
ClGBI.

In what follows, we briefly summarize prob-
lems caused by chunking, explain Cl-GBI and
DT-ClGBI, and show some results obtained for
hepatitis dataset. The work is still in progress
and what is shown here is preliminary.

2. Problems Caused by Chunking in
B-GBI

B-GBI increases the search space by running
GBI in parallel. A certain fixed number of pairs
ranked from the top are selected to be chunked
individually in parallel. To prevent each branch
growing exponentially, the total number of pairs
to chunk (the beam width b) is fixed at every
time of chunking. Thus, at any iteration step,
there is always a fixed number of chunking that
is performed in parallel. This will prevent some
of the overlapping patterns from being undis-
covered. For example, suppose in Fig. 1 the
pair B – C is most frequent, followed by the
pair A – B. When b=1, there is no way that
a pattern A – B – D is discovered because B-
C is chunked first, but by setting b=2, A – B
can be chunked in the second beam and if A
– B – D is frequent enough, there is a chance
that (A – B) – D is chunked at next iteration.
However, setting b very large is prohibitive from
the computational point of view, and B-GBI
cannot solve the problem of overlapping sub-
graphs completely because chunking process is
involved.

Any subgraph that B-GBI can find is along
the way in the chunking process. Thus, it hap-
pens that a pattern found in one input graph
is unable to be found in the other input graph
even if it does exist in the graph. An example is
shown in Fig. 2, where even if the pair A – B is
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Fig. 1 Missing patterns due to chunking order.

selected for chunking and the structure D – A
– B – C exists in the input graphs, we may not
be able to find that structure because an unex-
pected pair A – B is chunked (see Fig. 2(b)).
This causes a serious problem in counting the
frequency of a pattern.

D
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(a) (b)

Fig. 2 A pattern is found in one input graph but not
in the other.

The complete graph mining algorithms (such
as AGM3), AcGM4), FSG5), gSpan12), etc.) do
not face the problem of overlapping subgraphs
since they can find all frequent patterns in the
graph data. However, these methods are de-
signed to find existence or non-existence of a
certain pattern in one transaction and not to
count how many times a certain pattern appear
in one transaction. They also cannot give us the
positions of each pattern in any graph trans-
action which is required by non-expert users.
GBI (and thus B-GBI), on the other hand, is
designed to find (not all) typical patterns in ei-
ther a large single graph or a set of graphs but
it cannot detect the positions of patterns.

There is another problem of overlapping sub-
graphs. Think of the graph in Fig. 3(a).

Suppose that the problem here is to find fre-
quent connected induced subgraphs that oc-
cur at least 3 times in the graph. Figure 3(c)
shows an example of frequent induced subgraph
which has the support of 3. B-GBI cannot find
this pattern because overlapping patterns can-
not be found due to chunking unless b is set
large enough. This example also explain the
problem of use of downward closure property
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Fig. 3 An example of finding frequent patterns in a
single graph.

of graph subsumption. The pattern shown by
Fig. 3(b) is a subgraph of the pattern (c). How-
ever, it occurs only once in the graph. Thus,
AcGM4) cannot find this pattern because it is
using downward closure property.

We have devised a novel algorithm that can
overcome the problem of overlapping subgraphs
causing problems in B-GBI. The proposed al-
gorithm, called Cl-GBI (Chunkingless Graph-
Based Induction), employs a “chunkingless”
strategy, where frequent pairs are never chun-
ked but used as pseud-nodes in the subsequent
steps, thus allowing extraction of overlapping
subgraphs. It can also give the positions of pat-
terns present in each graph transaction as well
as be applied to find frequent patterns in a sin-
gle large graph or graph datasets.

3. Chunkingless Graph-Based Induc-
tion (Cl-GBI)

3.1 Approach
The basic ideas of Cl-GBI are as follows.

Those pairs that connect two adjoining nodes
in the graphs are counted and the top b (beam
width) frequent pairs are selected. In B-GBI,
graphs in the respective states are then copied
into b states, each of which corresponds to one
of the b selected pairs. The selected pair (in
each of the b states) is registered as one node
and this node is assigned a new label. Then, the
graphs in each state are rewritten by replacing
all the occurrences of the selected pair with a
node with the newly assigned label (pair-wise
chunking).

In Cl-GBI, we also register the b selected

pairs as new nodes and assign b new labels to
them. But those pairs are never chunked and
the graphs are not “compressed”. Thus, there
is no need to copy the graphs into b states as
in B-GBI. In the presence of the pseud-nodes
(i.e., newly assigned-label nodes), we count the
frequencies of pairs consisting of at least one
pseud-node. The other can be either one of
pseud-nodes including those already created in
the previous levels or an original one. In other
words, the other is one of the existing nodes.
Among the remaining pairs (after selecting the
most b frequent pairs) and the new pairs which
have just been counted, we select the most b
frequent pairs again and so on.

These steps are repeated Ne times, each of
which is referred to as a level. Those pairs that
satisfy a typicality criterion (e.g., Information
Gain exceeds a given threshold) among all the
pairs extracted in all the levels (i.e., from level
1 to level Ne) are the output of the algorithm.

A frequency threshold is used to reduce the
number of pairs being considered to be typical
patterns. Another possible method to reduce
the number of pairs is to eliminate pairs whose
typicality measure is below its threshold even
if their frequency count is above the threshold.
The two parameters b and Ne control the search
space. Frequency threshold is another impor-
tant parameter.

As in B-GBI, the Cl-GBI approach can han-
dle both directed and undirected graphs. It also
can handle both general subgraphs and induced
subgraphs.

3.2 Algorithm of Cl-GBI

Input A graph database, two natural numbers
b (beam width) and Ne (number of levels),
and a frequency threshold θ.

Step 1 Extract all the pairs consisting of con-
nected two nodes in the graphs, register
their positions using node id (identifier)
lists, and count their frequencies. Since the
2nd level, extract all the pairs consisting of
connected two nodes with at least one of
which is a newly assigned-label node, the
other can be either a newly assigned-label
node including those already created in the
previous levels or an original one (i.e., the
other is one of the existing nodes).

Step 2 Select the most b frequent pairs from
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Fig. 4 An example of frequency counting.

among the pairs extracted at Step 1 (since
the 2nd level, from among the unselected
pairs in the previous levels and the newly
extracted pairs). Each of the b selected pairs
is registered as a new node. If either or
both nodes of the selected pair are not in
the set of original nodes of the graphs (i.e.,
they are newly assigned-label nodes), they
are restored to the original patterns before
registration.

Step 3 Assign a new label to each pair selected
at Step 2 but do not rewrite the graphs. Go
back to Step 1.

These steps are repeated Ne times (Ne lev-
els). All the pairs extracted at Step 1 in all the
levels (i.e. level 1 to level Ne) including those
that are not newly labeled are ranked based on
a typicality criterion (e.g., Information Gain).
It is worth noting that those pairs that have fre-
quency count below a frequency threshold θ are
eliminated, which means that there are three
parameters b, Ne, θ to control the search.

We use the same canonical labeling employed
in7) to count the number of occurrences of
a pattern in a graph transaction. However,
canonical label alone cannot solve the frequency
counting problem completely as shown in Fig. 4.
Suppose that the pair A → B is registered as
a pseud-node N in Fig. 4(a). How many times
the pair N → B should be counted? If only
canonical label is considered, the answer is 2 as
shown in Fig. 4(b). However, N → B should
be counted once. We solved this problem by
incorporating the canonical label with the node
id set. If both the canonical label and the node
id set are identical for two subgraphs, we regard
that they are the same and count once.

The output of Cl-GBI algorithm is a set of
ranked typical patterns, each of which comes
together with the positions of occurrences in
every transaction of the graph data (given by
node id lists) as well as the number of occur-

rences in each graph transaction.
The above algorithm was implemented in

C++ and tested against artificial data and it
was conformed to work as expected. For exam-
ple, Cl-GBI was able to find all (a total of 35)
frequent induced subgraphs, including the one
shown in Fig. 3(c), in a few seconds.

However, as is easily predicted, this algorithm
can find all the subgraphs by setting b and Ne

large enough. One of the nice aspects of B-GBI
is that the size of the input graph keep reduc-
ing progressively as the chunking proceeds, and
thus the number of pairs to consider also pro-
gressively decreases accordingly. In case of Cl-
GBI, the number of pairs to consider keeps in-
creasing because pseud-nodes keeps increasing
as the search proceeds. Thus, it is important to
select appropriate values for b and Ne.

3.3 Unsolved problem of Cl-GBI
We found that there is still a problem in fre-

quency counting that use of both the canonical
label and the node id set cannot solve. Think
of the graph in Fig. 5(a). The three subgraphs
A – A – A illustrated in Figs. 5 (b), (c), and
(d) share the same canonical label and the same
node id set. Our current Cl-GBI cannot distin-
guish between these three. However, this prob-
lem arises only in general subgraph. It causes
no problem in case of enumerating frequent in-
duced subgraphs.

A A

A

A A

A

A A

A

A A

A

(a) (b)

(c) (d)

Fig. 5 Counting frequency of general subgraphs.

4. Decision Tree based on Chunking-
less Graph-Based Induction (DT-
ClGBI)

Since the value for an attribute is either yes
(the classifying pattern exists) or no (the clas-
sifying pattern does not exist), the constructed
decision tree is represented as a binary tree.
Data (graphs) are divided into two groups,
namely, the one with the pattern and the other
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without the pattern. The above process is sum-
marized in Fig. 6.
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Fig. 6 Decision tree for classifying graph-structured
data

4.1 Feature Construction by Cl-GBI
In DT-ClGBI discriminative patterns are ex-

tracted using Cl-GBI and used as attributes for
classifying graph-structured data. When con-
structing a decision tree, all the pairs (sub-
graphs) in data are enumerated within the
capacity of Cl-GBI and one pair is selected.
The data (graphs) are divided into two groups,
namely, the one with the pair and the other
without the pair. This process is recursively ap-
plied at each node of a decision tree and a deci-
sion tree is constructed while attributes (pairs)
for classification task are created on the fly. The
algorithm of DT-ClGBI is summarized in Fig-
ure 7. Parameters b, Ne and θ can be different
at each node. However, what has been found
in the upstream nodes are passed down below
not to repeat the same finding. Cl-GBI is used
as a method for feature construction, since fea-
tures (subgraphs) useful for classification task
are constructed during the tree construction.

4.2 Pruning Decision Tree
Once the tree is constructed, “pessimistic

pruning”10) is performed to improve predictive
accuracy based on the confidence interval for
binomial distribution.

5. Experiments

We tested DT-ClGBI to hepatitis dataset to
assess its performance. The work is still in
progress and we report here only the initial
results. We used the same dataset of experi-
ment 1 (prediction of fibrosis) and experiment
4 (interferon therapy) reported in9). The av-
erage size of the graph for each experiment is
303 and 75, and the number of graphs for each
experiment is 108 (F0+F1:65, F4:43) and 94
(response:38, non-response:56).

Because the computation time of Cl-GBI that

DT-ClGBI(D)
Create a node DT for D
if termination condition reached

return DT
else

P := Cl-GBI(D) (with b, Ne, θ specified)
Select the best pair p from P
Divide D into Dy (with p) and Dn (with-
out p)
for Di := Dy , Dn

DTi := DT-ClGBI(Di)
Augment DT by attaching DTi as its
child along yes(no) branch

return DT
Fig. 7 Algorithm of DT-GBI

is called from inside of DT-ClGBI is much larger
than our estimation, we had to set the values
of b and Ne small and the value of θ large. For
example, one run of Cl-GBI with b=3, Ne=3,
θ=0.5 took 24 min. by a Linux machine with
1.6 GHz Athlon XP 1900+ and 3GB Mem-
ory for the dataset in experiment 1. However,
Cl-GBI with b=6, Ne=8, θ=0.5 for the same
dataset could not return results after 2 days.
Thus, we only run Cl-GBI at the root node and
set Ne=0 for the other nodes, meaning that we
only used the patterns constructed at the root
node. We were not able to run 10 fold cross val-
idation for these datasets. Thus, we only show
one decision tree for each case with associated
patterns for some nodes.

Figure 8 is an example of decision tree for
experiment 1. The tree size is 29, and its pre-
dictive accuracy is 75%. Figure 9 is an exam-
ple of decision tree for experiment 4. The tree
size is 16 and its predictive accuracy is 78%.
Since the size is large, only the first four lev-
els are shown. The patterns that appear in
the nodes are small. The number of subgraphs
found by Cl-GBI for each experiment is 859 and
4858. However, with the parameters used, the
size of the maximum subgraph is only 4 and
10 for each experiment. This explains why the
tree size is large and the accuracy is not good
enough. Lowering θ is required and for this
to be practical, more efficient implementation
of Cl-GBI and good heuristic for ranking pairs
are required. The more detailed results and the
progress made thereafter will be reported later.

6. Conclusion

DT-ClGBI was introduced as a successor of
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Fig. 8 An example of decision tree for fibrosis
prediction (b=3, Ne=3, θ=0.5)
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Fig. 9 An example of decision tree for interferon
therapy prediction (b=3, Ne=20, θ=0.5)

DT-GBI using Cl-GBI as an attribute construc-
tor. Cl-GBI employs the “chunkingless” strat-
egy which helps overcome the problem of over-
lapping subgraphs and can give correct count-
ing. The initial results obtained by applying
it to hepatitis dataset revealed that the num-
ber of subgraphs discovered is much larger, and
more efficient implementation and good heuris-
tic are required to speed up Cl-GBI to extract
larger subgraphs. We are now working on these
problems.
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