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Disease Definition Based on Spiral Discovery of Exceptions

MASATOSHI Juml,! EINOSHIN SUZUKI,' MUNEAKI OHSHIMA, 't
NING ZHONG,'t HIDETO Yokor't and KATSUHIKO TAKABAYASHI ftt

In this paper, we show our endeavor for defining a disease by removing exceptional patients
in a spiral manner. The removal is based on a likelihood-based criterion and can be sup-
ported by our previously developed data mining methods and medical experts. Two series
of experiments with the chronic hepatitis data showed that our proposed method is effective

and promising from various viewpoints.

1. Introduction

In medical treatment, a case is subject to mul-
tiple diseases and anomalies. For instance. in
the chronic hepatitis data?). several cases ex-
hibit symptoms of acute hepatitis or nefroze.
In diagnosis. a physician understands the sta-
tus of a case by inferring and verifying various
assumptions. On the other hand. in data min-
ing, we try to obtain knowledge based on a hy-
pothesis on the definition of the disease. Such
a definition. which can be obtained by remov-
ing inappropriate cases. is useful in diagnosis.
treatment. and medicine.

Special attention is required for removing
cases with svmptoms dissimilar to typical cases.
Each physician has his/her own image of a dis-
ease and removing atypical cases might just cor-
respond to confirming the image. In such a
case. the obtained definition cannot deal with
the cases outside the image. Selection of typical
cases represents a highly intellectual activity in
which various factors should be considered. As
far as we know. deletion of such cases is left to
the experts under the name of data preprocess-
ing. Few attempts try to systematically sup-
port such activities and fewer reports are found
in the literature.

2. Proposed Method

2.1 Overall Architecture

In order to circumvent the problem in the pre-
vious section. we propose a method based on a
probabilistic approach. The approach can be
supported by our peculiarity-oriented mining
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method!?), our time-series decision tree induc-
tion method!V, and our PrototypeLines visual-
ization method!®). These mainly consider pe-
culiar data, time-series form. and related blood
tests respectively and expected to contribute
to detection of exceptional cases from different
perspectives. v

Our method classifies input cases into typ-
ical cases and exceptional cases. The set of
typical cases is employed in defining a disease,
which, in this paper, corresponds to liver cirrho-
sis (LC) in the chronic hepatitis data. Since two
of us, Takabayashi and Yokoi, who are physi-
cians, feel natural to use a probabilistic defini-
tion for a disease, the judgment is based on the
naive Bayes method?). A naive Bayes classifier
predicts a class énBayes.; of an example e; as-
suming that each attribute a; is independent.
Here v,; represents the value for a; of e;.

m

€N Bayes.i = argmax, Pr(c) H Pr(a; = vi;lc)

1=1

(1)

Another reason for employing the naive Bayes
method is that it enables a use of an estimated
conditional probability pr(c|p) of a class ¢ given
a case p. By comparing Pr(c|p) with his/her ac-
tual class c,, we can detect candidates of cases
with symptoms dissimilar to typical cases and
obtain a more precise definition of the disease.
From above, the overall process is determined
as follows. As data preprocessing. we can
use the peculiarity-oriented mining method, the
time-series decision tree induction method. and
the PrototypeLines visualization method in or-
der to detect candidates of exceptional cases.
These candidates are shown to the medical
experts. who select exceptional cases among



them. Then based on a criterion® defined in
section 2.2, we detect candidates of exceptional
cases, who are either all removed or removed
by medical experts. The last process is iter-
ated until the result of the naive Bayes method
converges.

2.2 Detection Criteria of Exceptional

Cases

Here we present our likelihood-based crite-

rion®. In a classification problem in general,
an example can be intuitively regarded as “typi-
cal” or “atypical”. The typicalness ®(p), which
is based on the right-hand side of Eq. (1), of a
case p represents a degree to which p belongs
to its class ¢ compared with the other class €.
Here v;; represents the value for an attribute a;
of p.
Pr(c) ]_[;nzl Pr(a; = vy | ¢)
Pr(E) H_;nzl Pl'(a] = Ul‘j I E)
The larger ®(p) is, the more certain that p be-
longs to its class c.

If a naive Bayes classifier is relatively accu-
rate for the class ¢, the typicalness ®(p) tends
to be large and vice versa. Thus the typicalness
®(p) is relative since it depends on the precise-
ness of a naive Bayes classifier in terms of the
class c¢. The degree how a naive Bayes classifier
is precise for ¢ can be measured by the degree
of correct classification and the degree of incor-
rect classification. For ¢ and €, we represent
the number of correctly-predicted examples by
the naive Bayes method u and v respectively.
Likewise, for ¢ and €, we represent the number
of incorrectly-predicted examples by the naive
Bayes method p. and v, respectively. The pre-
ciseness ¥ (¢) of a naive Bayes classifier of the
estimated class ¢ represents the ratio of the pre-
cision for ¢ and the precision for ¢, where we use
Laplace correction in order to cope with the 0-
occurrence problem?.

\I’(é): (M+1)(V+Ve+2) (3)
(1 + pe + 2)(ve + 1)

For our LC prediction problem. we define a
degree of exception F(p,é) for a case p and
his/her estimated class ¢ as follows in order
to discriminate exceptional cases from typical
cases. In the definition, [z] represents z if = is
an integer or x + 1 otherwise.

E(p.¢) = [~ logy) 2(p)] (4)
Intuitively, E(p, é) represents an evaluation in-

®(p) = (2)

dex which is equal to the number of upvaluated
digits below the decimal point when we mea-
sure the typicalness ®(p) of a case p in terms of
the preciseness ¥(¢) of a naive Bayes classifier
of the estimated class é¢. When prediction of
the naive Bayes method is accurate, ¥(¢) tends
to be large, and the absolute value of E(p,¢)
is relatively small even if the absolute value of
®(p) is large. This fits our intuition that certain
information rarely leads to an extreme degree
of exception.

In each application of the naive Bayes
method, cases whose degrees of exception are
no less than a user-specified threshold are de-
tected as exceptional. The loop continues until
there are no exceptional cases among the de-
tected examples. As the result, we obtain, for
typical cases, conditional probabilities, which
correspond to the definition of the disease.

3. Experimental Evaluation

3.1 Data Preparation and Initial Ex-

periments

In the experiments. we used data from 180
days before the first biopsy to the day of the
first biopsy following advice of medical experts.
In the first series of our experiment, we used 46
LC cases and 55 non-LC cases each of whom
has test values for all of 14 blood tests in Table
1. In the second series of our experiment, we
used 140 LC cases and 160 non-LC cases and
used 35 attributes in Table 2.

For the classifier, we first averaged each time
sequence then discretized each value following
advice of a domain expert. We use for each
attribute value U: extremely high, V: very high,
H: high, N: normal. L: low, v: very low, and u:
extremely low. Each conditional probability is
estimated using Laplace correction. A missing
value is ignored both in estimating probabilities
and in classifying an example.

We initially performed experiments by em-
ploying Yokoi as the medical expert and ob-
tained preliminary results®). This time, another
expert Takabayashi joined Yokoi in the first se-
ries of experiments.

3.2 Results with the Data Preprocess-

ing and Domain Experts

In the data preprocessing, we first applied
our peculiarity-oriented mining method to the
whole data. 13 cases with no less than 4 pe-



culiar attributes were shown to the medical ex-
perts. and they removed 4 cases. Second. the
medical expert investigated display result of
PrototypeLines from 500 days before the first
biopsy to 500 days after the first biopsy, and
removed four cases among six cases. Third. we
applied our peculiarity-oriented mining method
to non-LC cases, and the experts removed five
cases. Fourth. the medical experts inspected
misclassified cases from the time-series decision
tree. As the result, two cases were removed as
exceptions. Fifth, the medical experts inves-
tigated six cases detected by our peculiarity-
oriented mining method applied to LC cases
and removed two cases.

In the spiral detection, we used 3 as the value
of the threshold. In the first three spirals. the
experts removed 4, 2. 1 cases out of detected
5. 3. 2 cases respectively. Since only one case
who had not been removed was detected in the
fourth spiral, the procedure terminated at this
point.

We show the final conditional probabilities of
the naive Bayes classifier. which corresponds
to the disease definition, in Table 1. 1In
the Table, for each blood test a and a cat-
egory v. “Pr(a=v|non-LC) (n(a=v|non-LC)) |
Pr(a=v|LC) (n(a=v|LC))" are shown, where
n(-) represents the corresponding number of ex-
amples in the data set. For instance. there are 6
non-LC cases and 2 LC cases for ZTT=N. The
probabilities are obtained using Laplace correc-
tion since there are 49 non-LC cases and 33 LC
cases in the data set which corresponds to the
Table. In the Table, we emphasize categories
each of which shows more than 3 times of dif-
ference and no smaller than 10 % with bold-
face and with underline for non-LC predomi-
nant and LC predominant respectively. Since
each blood test is assumed to represent an or-
dinal scale. we marked higher/lower categories
of the categories appropriately. A marked cat-
egory will be called a discriminative condition
in the rest of this paper.

3.3 Analysis of the First Series of Ex-

perimental Results

In data mining, discovered knowledge is typi-
cally more important than high accuracy. Pre-
vious experiments have revealed that detection
of exceptional cases could be done by search-
ing for asynchronisin in blood tests ALB, CHE,

T-CHO. WBC, PLT; and HGB might be ig-
nored. This piece of knowledge was elaborated
in the experiments and the experts first check
whether at least two of CHE, ALB, PLT are low
then ascertain their decisions with results on T-
CHO and WBC. According to them, PLT is the
most important blood test and the value 15 K
is important as a threshold value. They con-
sider that ALB is also important and T-CHO
is relatively unreliable since it tends to be influ-
enced by meals. These facts realized them that
traditional rules of thumb are highly valuable.

They felt as if they were educated by the cases
shown by our data mining method and even
called the process “expert learning/training”
instead of machine learning. The process gave
them novel hypotheses on the LC prediction
problem. but evaluating validness of the hy-
potheses requires systematic experiments fol-
lowed by a traditional statistical approach.
Anyway they were pleased to sharpen their ca-
pability for this problem and have the new hy-
potheses.

After the experiments, the medical experts
inspected the obtained set of typical cases and
found six cases who were recognized as excep-
tional cases. Five of them are due to effect
of relatively unimportant blood tests: similar
stage (i.e. F3) to LC: and effect of inadequate
thresholds for ALB and T-CHO. The last case
shows limitation of using average values: s/he
had known a period with high PLT thus was
recognized as non-LC. We believe that these
mistakes are due to data handling, which is
not directly related with our proposed method.
Anyway, seeing the number of exceptional cases
that our method detected. these results are con-
sidered to confirm effectiveness of our approach.

The separation into typical and exceptional
cases can be also validated by measuring pre-
dictive accuracy with cross validation. For the
prediction problem, we have considered a two-
step process. which we call a separate predic-
tion model®. Given a novel case. the pro-
cess judges him/her as an exception if a similar
case exists using a 1-nearest neighbor (1-NN)
method for time-series classification!?). Oth-
erwise, the naive Bayes method is applied to
predict his/her class.

For the experimental results in the previous
Section. the accuracy of the separate prediction

—39—



Table 1 Conditional probabilities (%) and numbers of examples for typical

cases. where each category shows “Pr(a=v[non-LC) (n(a=v|non-
)) | Pr(a=v|LC) (n(a=v|LC))"

GOT | N:35.8(18) [ 2.7( 0) | H 39.6(20) 137.8(13) | V: 20.8(10) 154 1(19) [ U 38(1) | 54( 1)

GPT N:15.1(7) | 5.4(1) H: 50.9(26) |21.6(7) | V:22.6(11) 162.2(22) | U: 11.3(5) | 10.8( 3)

TTT N: 39.6(20) | 24. 3( ) H: 28.3(14) |45.9(16) | V: 28.3(14) 110.8(3) | U 3.8( 1) |18.9( 6)

ZTT N: 13.2( 6) | 8.1( H: 69.8(36) |70.3(25) | V:13.2(6) |18.9( 6) U:3.8(1) | 2.7(0)

D-BIL | N: 88.7(46) \405 14) H: 7.5(3) 143.2(15) | V:1.9(0) [108(3) | U: 1.9(0) | 5.4(1)

LBIL | N:96.2(49) |75.0(26) | H:19(0) 1194(6) | V. 1.9(0) T 56(1)

T-BIL | N: 96.2(49) |69.4(24) H. 19(0) 1250(8) | V:1.9(0) I 56(1)

ALB 1:13.7( 6) |54.3(18) N 86.3(43) 145.7(15)

CHE | v 19(0) I 81(2) L:3.8( 1) 145.9(16) | N:90.6(47) |43.2(15) | H: 3.8(1) | 2.7( 0)

TP L 38(1) ! 28( o) N: 92.3(47) 183.3(20) | H:3.8( 1) |13.9( 4)

T-CHO L- 3.8(1) |13. N: 86.5(44) |81.1(29) | A 5.8(2) | 2.7( 0) V:3.8(1) | 2.7(0)

WBC | w 1.9(0) | 53( 1) v 1.9(0) | 53(1) L:9.3(4) |13.2( 4) N: 83.3(44) | 71.1(26)
H:3.7(1) | 5.3(1)

PLT w 1.9(0) | 81(2) v: 5.7(2) 145.9(16) | L:28.3(14) 135.1(12) | N: 64.2(33) | 10.8( 3)

HGB L 39(1) 117.1(5) N: 96.1(48) | 82.9(28)

model is 73.7 %. More precisely, the accuracies
for exceptional cases and typical cases were 41.2
% and 80.5 % respectively. The overall accu-
racy is similar to that of a conventional naive
Bayes classifier, but it should be noted that the
predictive accuracy for LC cases is higher than
the predictive accuracy obtained by a conven-
tional naive Bayes classifier. The accuracies for
LC and non-LC cases were 76.1 % and 71.7 %
respectively mostly because the correctly pre-
dicted cases with the 1-NN method were all LC.
Our separate prediction model, which first ap-
plies the 1-NN method for predicting the class
of exceptional cases, regards LC cases impor-
tant since it is adequate in predicting excep-
tional LC cases due to the nature of its dissimi-
larity measure*. This fits the nature of the LC
prediction problem in which overlooking of LC
cases costs more than missprediction of non-LC
cases.

Although it is impossible to detect an excep-
tional LC case who shows good results for all
blood tests, our 1-NN method could detect ex-
ceptional LC cases relatively accurately. A par-
tial LC case who shows partial aggravation of
blood tests was known among medical experts
only empirically, but we have succeeded in de-
tecting several of them. Such cases might suffer
from genetic problems, and detailed inspection
can be expected to reveal their true causes.

“ Exceptional LC cases are relatively stable in their
time sequences and are more easily predicted with
the 1-NN method.

3.4 Results and Analysis of the Auto-

matic Approach

In the second series of experiments, we used
neither data preprocessing nor domain experts.
The value of the threshold was first settled to
3, and was decremented in each subsequent spi-
ral. The stopping condition was defined as a
decrease of predictive accuracy based on a 10-
fold cross validation or a reachment of the pre-
dictive accuracy to 100 %. We show the final
conditional probabilities, which correspond to
the disease definition, in Table 2.

We asked Yokoi, the domain expert, about
the value of discriminative conditions. He clas-
sified most of the conditions as valid and known
though he had never thought about the relation
about AMY (amylase) and hepatitis. One of
his colleagues. who has a better expertise than
him in hepatitis, didn’t know about the rela-
tion neither. Thus Yokoi searched MEDLINE
using amylase and hepatitis as keywords. and
investigated about 40 abstracts among 150 ab-
stracts which were hit. One of the abstracts
(PMID: 10063922) actually confirms our find-
ing, especially its main objective is to report
an interpretation of the finding. Such a piece
of knowledge in MEDLINE can be considered
as reliable and advanced. Yokoi considers that
we might have succeeded in discovering a clue
for a piece of knowledge which goes beyond the
textbook level. It should be particularly noted
that our removal of exceptional cases made the
finding possible since it does not appear in the
original definition.




Table 2 Disease definition of the automatic approach

GOT N:28:3(27) | 4.7( 4) | H:50.5(49) 140.6(42) | V. 19.2(18) 142.5(44) U:2.0( 1) 112.3(12)

GPT N: 11.1(10) | 7.5( 7) H: 44.4(43) 133.0(34) | V:30.3(29) | 43.4(45) U: 14.1(13) 116.0(16)

TTT N: 32.3(31) \ 4 .3(46) H: 37.4(36) |34.9(36) | V:24.2(23) |13.2(13) U: 6.1(5) | 7.5(7)

ZTT N: 14.1(13) | 28.3(29) H: 70.7(69) |57.5(60) | V:12.1(11) |11.3(11) U:3.0(2) | 2.8(2)

D-BIL N: 85.9(84) 132 1(33) H: 12.1(11) !41.5(43) | V:1.0( 0) |14.2(14) U: 1.0( 0) |12.3(12)

I-BIL N: 96.0(94) | 72.6(76) H:2.0( 1) 118.9(19) V:1.0(0) T 3.8(3) U:1.0(0) 1 4.7(4)

T-BIL N: 96.0(94) | 61.3(64) H: 2.0( 1) 128.3(29) V:1.0(0) I 28(2) F 10( 0) | 7.5(7)

ALB v: 1.0( 0) | 3.8(3) L: 14.3(13) 146.7(48) | N:84.7(82) 149.5(51)

CHE v 1.0( 0) | 9.1( 3) L:5.1( 4) 156.8(24) N: 91.9(90) |31.8(13) H: 2.0(1) | 2.3(0)

TP v:10(0) T 1.9(1) L: 4.0(3) 110.4(10) N: 91.9(90) | 80.2(84) H:3.0(2) | 7.5(7)

T-CHO | v: 1.0( 0) | 2.8(2) L: 6.1( 5) |11.2(11) N: 87.9(86) | 73.8(78) H: 3.0(2) | 9.3(9)
V:2.0(1) | 2.8(2)

WBC u: 1.0( 0) | 3.8(3) v: 2.0(1) | 6.6(6) L: 11.0(10) |20.8(21) N: 84.0(83) | 63.2(66)
H: 2.0(1) | 5.7(5)

PLT u: 1.0(0) | 6.7( 6) vi 11.1(10) 134.6(35) | L:26.3(25) |40.4(41) N: 61.6(60) | 18.3(18)

HGB L:3.1(2) 1262(26) N 96.9( 93) T73.8(75)

ALP L: 1.0(0) 110.5(10) N: 59.2(57) 168.6(71) | H:39.8(38) |21.0(21)

CL L 1.1(0) I 2.9(2) N: 96.6(84) 192.2(94) | H:2.3(1) | 4.9( 4)

CRE L: 42.9(41) | 6.7( 6) | N:56.1(54) 187.6(91) | H:1.0(0) | 5.7(5)

K L:23(1) | 8.7(8) N: 96.6(84) 189.3(91) | H: 1.1(0) | 1.9( 1)

LAP N: 99.0(95) |30.7(30) | H: 1.0( 0) ! 69.3(69)

LDH L: 37.8(36) |51.4(53) N: 53.1(51) 128.6(29) | H:9.2(8) |20.0(20)

NA L: 1.1( 0) | 5.8(5) N: 96.6(84) 192.2(94) | H:23(1) | 1.9( 1)

G-GTP | N: 69.1(66) |52.5(52) H: 30.9(29) | 47.5(47)

UN L:51(4) | 1.0(0) N:93.9(91) 189.5(93) | H: 1.0 0) | 9.5( 9)

F-ALB L: 43.8(31) |80.9(75) N: 56.2(40) |19.1(17)

FE L: 40.7(10) |14.0(11) N: 40.7(10) 158.1(49) | H:18.5( 4) | 27.9(23)

G.GL N: 47.9(34) | 18.1(16) H: 52.1(37) |81.9(76)

F-ALGL | L: 48.6(35) | 8.4( 7) | N:50.0(36) |853(80) | H:1.4(0) | 6.3(5)

F-A2.GL | L:18.9(13) | 7.4( 6) N: 77.0(56) |75.8(71) | H:4.1( 2) |16.8(15)

F-B.GL | L:27(1) | 7.4(6) N: 70.3(51) |75.8(71) | H: 27.0(19) 116.8(15)

F-A/G L: 4.1( 2) |44.2(41) N: 60.8(44) 146.3(43) | H: 35.1(25) | 9.5( 8)

UA L 41(3) 118.1(18) N: 92.9(90) 179.0(82) | H:3.1(2) | 2.9( 2)

U-PH L 48(3) 1125(11) N: 83.1(68) 183.3(79) | H:12.0(9) | 4.2( 3)

IG-G N: 37.9(10) | 24.6(16) H: 62.1(17) | 75.4(51)

PT L: 16.5(12) | 1.0( 0) | N:74.7(58) 182.7(80) | H: 8.9( 6) i16.3(15)

AMY N: 83.8(56) | 43.3(38) H: 16.2(10) | 56.7(50)

In overall. Yokoi considers that removal of ex-
ceptional cases seems valid since it strengthens
his image of LC. According to him. most of the
discriminative conditions cannot be used as pre-
dictors of LC since he uses PLT, ALB. and CHE
only for most of the cases. He also pointed out
that they lack of knowledge in judging LC for
the additional 21 attributes compared with the
initial 14 attributes. The automatic removal
with 35 attributes was not exhaustive but was
proved to be highly accurate. Among the 20
cases who were judged as exceptional. Yokoi
judged 18 as exceptional.

4. Related Work

Liu and Motoda classified instance selection
mainly into sampling. methods associated with
classification. methods associated with cluster-
ing. and instance labeling?. Our criterion-
based method in section 2.2 belongs to the sec-
ond approach. The removal of irrelevant data
in classification is mainly pursued in nearest-

neighbor methods and instance-based learn-
ers!)3)8)  However, our objective is separation
of irrelevant examples in classification instead
of reduction of data.

Various methods for density estimation are
based on likelihood, e.g. 5). While these meth-
ods assume that examples are identically dis-
tributed, we assume that our examples follow
either of two distributions. Moreover, instead
of assuming density of the example space. we
consider to which distribution an example be-
longs in the context of medical data mining.

Several supports for instance selection in a
KDD process are considered and presented in 9)
in a general manner. We mainly assume medi-
cal data mining and obtained promising results
in a specific problem related with the chronic
hepatitis data.

5. Conclusions

In this paper, we have described our en-
deavor for disease definition with chronic hep-



atitis data. The motivation is based from our
previous endeavor, from which we had come to
believe that exceptional cases exist for physi-
cians. We used typical cases in defining a
target disease while we believe that each ex-
ceptional case requires individual investigation
then might lead to interesting discoveries.

Selection of exceptional cases represents a
highly intellectual activity in which various fac-
tors should be considered. Thus our use of data
preprocessing and domain experts are justified
when we try to obtain a precise definition of
a disease even with a high cost. The auto-
matic approach, which employs none of them,
was proved to be relatively accurate and this
shows the effectiveness of our criterion. As we
described in section 3.4, Yokoi considers that
we might have succeeded in discovering a clue
for a piece of knowledge which goes beyond the
textbook level thanks to this approach. We ex-
pect that further investigation by fine tuning
various factors can bring discoveries of similar
values.

Acknowledgments This work was par-
tially supported by the grant-in-aid for scien-
tific research on priority area “Active Mining”
from the Japanese Ministry of Education, Cul-
ture, Sports, Science and Technology.

References

1) D. W. Aha, D. Kibler, and M. K. Albert”,
“Instance-Based Learning Algorithms”, Ma-
chine Learning, Vol. 6, No. 1, pp. 37-66, 1991.

2) P. Berka: ECML/PKDD 2003 Discovery
Challenge. Download Data about Hepatitis,

http://lisp.vse.cz/challenge/ecmipkdd2008/ (cur-

rent April 26th, 2003)

3) H. Brighton and C. Mellish: “Advances in In-
stance Selection for Instance-Based Learning
Algorithms”. Data Mining and Knowledge Dis-
covery, Vol. 6, No. 2, pp. 131-152, 2002.

4) P. Domingos and M. Pazzani: On the Opti-
mality of the Simple Bayesian Classifier un-
der Zero-One Loss, Machine Learning, Vol. 29,
No. 2/3, pp. 103-130 (1997).

5) D. Fragoudis, D. Meretakis. and S. Kokothanas-

sis: “Integrating Feature and Instance Selec-
tion for Text Classification”, Proc. Eighth ACM
SIGKDD Int'l Conf. Knowledge Discovery and
Data Mining (KDD). pp. 501-506. 2002.

6) M. Jumi. E. Suzuki, M. Ohshima, N. Zhong,
H. Yokoi, and K. Takabayashi: “Spiral Dis-
covery of a Separate Prediction Model from

Chronic Hepatitis Data”, Proc. Third Interna-
tional Workshop on Active Mining (AM). pp.1-
10, 2004.

7) H. Liu and H. Motoda: “On Issues of Instance
Selection”, Data Mining and Knowledge Dis-
covery, Vol. 6, No. 2, pp. 115-130, 2002.

8) D. Madigan et al.: “Likelihood-Based Data
Squashing: A Modeling Approach to Instance
Construction™, Data Mining and Knowledge
Discovery, Vol. 6, No. 2, pp. 173-190, 2002.

9) T. Reinartz: “A Unifying View on Instance
Selection™, Data Mining and Knowledge Dis-
covery. Vol. 6, No. 2, pp. 191-210, 2002.

10) E. Suzuki, T. Watanabe, H. Yokoi, and K.
Takabayashi: Detecting Interesting Exceptions
from Medical Test Data with Visual Summa-
rization, Proc. Third IEEE International Con-
ference on Data Mining (ICDM), pp. 315-322
(2003).

11) Y. Yamada. E. Suzuki. H. Yokoi, and K. Tak-
abayashi: Decision-tree Induction from Time-
series Data Based on a Standard-example Split
Test. Proc. Twentieth International Conference
on Machine Learning (ICML). pp. 840-847 (er-
ratum http://www slab.dnj.ynu.ac.jp/ erratu-
micml2003.pdf) (2003).

12) N. Zhong. Y. Y. Yao, and M. Ohshima: Pecu-
liarity Oriented Multi-Database Mining, IEEE
Transaction on Knowledge and Data Engineer-
ing, Vol. 15. No. 4, pp. 952-960 (2003).



