B X E S4B 130-2

(1999. 3. 4)

A&EiICBIT 2 HEMNEER-FTRT 51 AVE
A5 T ESF, FLEV—F—IVRI4 >, BAPEHR

R T A

TEEREE LA TS0 FF

T152—-855 2HRABEXKML 2—-12—1
tel:81-3-5734-2831 fax:81-3-5734-2915

FTTANSY b
A TIE, EFESAENFFEREEHEILI=y b (Tmorpho-phonemic unit)) 5 E
L. #FNENDILZY b2RIBTBHANRITT 71 295, T DHEISNEELE
(Tgrapheme]) DFAHZWERICFEZH L. ZOBROMITIINAT S, AFEE2/NMNIEOIE
fBlzy MTk o TEHE L 2#55R, 98.29% DIEMERLE 5Nz,

Incremental Japanese grapheme-phoneme alignment

Slaven Bilac, Timothy Baldwin, Hozumi Tanaka

Tokyo Institute of Technology

Department of Computer Science

2-12-1,00kayama,Meguro-ku, Tokyo, 152-8552, Japan
tel:81-3-5734-2831 fax:81-3-5734-2915
email:{sbilac,tim,tanaka}@cs.titech.ac.jp

Abstract
Given a kanji compound and associated kana-based reading, the proposed system
incrementally segments the kanji compound into morpho-phonemic kanji units, and aligns
each such unit with its corresponding reading. At each step of segmentation the grapheme-
phoneme assignments are remembered for use in subsequent steps, thus forming an array of
grapheme keys with their phonemic attributes. The system was evaluated on a limited
manually segmented sample with 98.29% accuracy.

9

1. Introduction

This paper describes a system for incremental segmentation and alignment of Japanese
graphemes with their corresponding phonemic units. Grapheme-phoneme (“G-P”) alignment
is defined as the task of maximally segmenting a grapheme compound into morpho-phonemic
units, and aligning each unit to the corresponding substring in the phoneme compound (cf.
“grapheme-phoneme translation” — Divay and Vitale, 1997; Bernstein and Nesly 1981; Vitale,
1991). The proposed system is first bootstrapped with the phoneme equivalents of individual
grapheme characters, and then using this information it tries to determine the alignment
scheme of grapheme strings more then one character in length. The process consists of
several parse algorithms that incrementally segment the grapheme strings and store the
phonemic correspondence information for use in subsequent parses, until the complete set of
grapheme strings has been aligned.]

For the purposes of this paper, ‘grapheme string’ refers to the kanji representation of a
given word or a compound, and ‘phoneme string’ refers to the kana (hiragana and/or
katakana) mora correlates. Although kana units (making up the Japanese syllabry) actually
consist of one or more consonants followed by a vowel phoneme as well as the stand alone
vowels ([a],[i],[u],[e] and [o]) and a single stand alone consonant ([n]), we have opted for using
kana as our phonemic units in order to avoid consideration of phoneme combinatorial
restrictions. It is important to note that despite being basically phonemic in nature, kana
can also constitute a necessary part of grapheme strings. That is, kanji by themselves are
not sufficient to represent Japanese language in full, as for example, conjugating suffices can
only be represented by kana. As a consequence ‘grapheme’ representation includes both
kanji and kana where appropriate, while ‘phoneme’ representation is always limited to kana
characters.

‘Maximal segmentation simply means that aligned sections are segmented until they
cannot be further subdivided into smaller meaningful units. Graphemes are segmented in
such a way that each segment is a self-contained morpho-phonemic unit. In other words,
conjugating parts of speech (verbs and adjectives) will be segmented so that the conjugating
suffix is contained in the same unit as the stem. Such partitioning helps avoid discrepancies
resulting from differing grapheme representation of the same basic string as in the case of
wa° ri° bi° ki' “discount” which can be presented by four grapheme variations (5], %] 75|
ki, #151 ki, %] r7 B]), hypothetically resulting in four phonemic assignments.

Furthermore, certain complete word strings cannot be presented in kanji resulting in
basically identical kana representation on both sides of the G-P alignment, as is the case with
postpositions, phonomimes, phenomimes and interrogatives, leaving no room for grapheme
segmentation. As a consequence entries that do not contain full or partial kanji
representation are automatically filtered out before the commencement of the segmentation
process.

Machine-readable dictionaries (MRD") of Japanese provide the G-P tuples needed as

1To make this paper more accessible to readers not familiar with Japanese script, kana
characters are written in Latin seript throughout this paper, with character boundaries
indicated by “*” and segment boundaries indicated by “+”.

input to the system, and in this research, the Japanese component of the EDICT dictionary®
supplemented by entries and partial segmentation data from the Sinmeikai dictionary
(Sinmeikai, 1981) was used. ® To increase the initial assignment accuracy of the system, a
pre-formatted unit kanji list annotated with regular phonological assignments was used as a
seed.* '

By generating a complete set of G-P alignments for dictionary entries we are able to
assign a complete list of phonemic attributes of a given kanji, opening the possibility for major
applications of our research in training a dynamic kanji tester as an aid to learners of
Japanese. Another application would be in the examination of phonological changes,
depending on combinations of kanji in a given grapheme compound(Ito and Mester, 1995;
Tsujimura, 1996).

The remainder of this paper is structured as follows. Section 2 describes the process of
incrementally generating the segmentation of G-P tuples, while the Section 3 provides
evaluation of the system.

2. Grapheme-phoneme alignment

After reading in the initial list of kanji and their phonemic attributes the system also
reads in a list of verbs with their G-P alignment(Ikehara et al, 1997). At a later stage of
processing grapheme segmentation candidates are checked against the entries in the verb list
so as to determine plausibility of morpho-phonemic unit requirement for conjugated verb
forms. At this point, the system preprocesses the dictionary entries to remove lexical
ambiguity. The following step is to segment entries whose phonemic assignment can be

" trivially assigned. Finally, information gathered in previous steps is used to determine the

best alignment for entries with irregular phoneme assignment. ®

One vital aspect of the system is its ability to remember previous assignments of G-P
tuples, and to keep increasing the database so as to include multi-character grapheme keys
with their phoneme alignment. Initially the G-P alignment database consists only of single-
character graphemes (kanji) and their corresponding phoneme representation, but through
each parse the database is fortified with irregular phonemic attributes of the existing
grapheme keys as well as with new grapheme keys and their respective phonemic
assignments. ‘Database’ refers to the collection of all grapheme segments (single or multi-
character) with all their phonemic attributes. '

By preserving all the variations of the grapheme strings the system is able to retain a
larger set of possibly identical phoneme assignments of lexically varied graphemes, and thus
handle a larger number of cases likely to appear in open text, without violating the principle

2 EDICT English-Japanese Dictionary. URL: ftp:/ftp.cc.mona §h,§’dg.gu/pub/nihongo/

3 In the Sinmeikai limited segmentation of the phonemic representation is provided through
an optional single space.

4+ EDICT KANJIDIC. URL: ftp:/ftp.cc.monash.edu.au/pub/mihongo/

5 For the purposes of this paper irregular phonemic attributes of a kanji character are all
phonetically modified readings or special readings that appear only in combination with

of maximally segmenting the phonemes into morpho-phonemic units. In other words, given
phoneme segments will always correspond to the semantic content of the grapheme aligned
with them.

2.1 Pre-processing

Lexical ambiguity refers to the existence of multiple lexical “spellings” for a given
phonetic content, all sharing the same basic semantic and kanji component. This can arise
as a result of the possibility to replace kanji with their corresponding kana, or variations in
okurigana (kana) suffices which can be conflated with or pulled apart from the stem kanji
phonetic content. An example of this latter process can be seen for the verb agaru “to lift,
raise” lexicalisable as either L°ruor L-ga <ru, with the underlined gg kana character
conflating with the kanji stem = in the former case for the same phonetic and semantic
content. It is important to note that alternations never occur as prefixes of kanji. Also,
there are exceptions (mostly in the names of places) where certain kana characters (usually
‘nd and ‘ga’) are omitted from the grapheme component of the tuple while remaining in the
phoneme part, even though they cannot be conflated with the kanji stem. For example,
ya° matnotte can be lexicalized either by IU+F or tli+pet+F even though underlined kana
character no does not form a single morpho-phonemic unit with the kanji (L.

Given that the aim of this research is alignment of a grapheme (kanji) string with its
phoneme content, we will ignore the effects of the possibility of replacing kanji with their
corresponding kana in the grapheme string and take only okurigana-based lexical alternation
into consideration during the analysis. ,

Any grapheme forms sharing the same phonetic content and only differing in
okurigana alternates are first detected by comparing the grapheme and phoneme parts of the
tuple. All alternations are then clustered together to form a single entry which will have a
unique phonemic segmentation aligning with several variations of the grapheme
representation. On completion of the segmentation assignment all the variations are
equivalently aligned. This is achieved by finding the alignment for one of the extreme cases
(either with maximal or minimal kana content in the grapheme string) and then extending
the segmentation to remaining cases. The exception to this rule are phoneme segments
reahized through a process other than strict lexical alternation (see above). Alignment of
such strings results in the possibility of having more segments in the phoneme than in the
grapheme string; in case of ya® ma+ng+te the alignment will read [LI+F rather than {l++F°
since one segment has been completely removed from this variation of the grapheme string.

2.2 Segmentation constraints
The following phonological constraints on the segmentation procedure are used to

certain other characters and are not listed as proper readings of a character.

¢ Note that we require some mechanism for such cases to determine which grapheme segment
delimiters align with which phoneme delimiters. While such indices are not indicated in
alignment examples in this paper, they should be understood as being implicitly described for
sequentially corresponding delimiters.

reduce the number of illegal alignments”:

<p1> A demarkation in script form indicates a segment boundary, except for the case
of kanji-hiragana boundaries [G] :

<p2> Kana in the grapheme string must align with direct kana equivalent in the
phoneme string [G-P] '

<p3> The length of a kanji substring must be equal to or less than the syllable length
of the aligned phoneme string [G,P]

Constraint pl requires that a segment boundary must exist at points where the script
‘changes from kana to kanji and between hiragana and katakana. The exception is

changeovers from kanji to hiragana that may or may not be distinguished as segment
boundaries. This exception is necessary since conjugating parts-of-speech in Japanese
(verbs and adjectives) usually consist of a single or multiple kanji character stem and a
conjugating kana suffix. Therefore, in the case of verbs and adjectives only, kanji together
with kana suffix can be considered a valid morpho-phonemic unit. In lexical alternation
cases, by separating the suffix from the stem, we would get different segmentations
depending on the grapheme realization. To come back to our previous example of agaru two
different G-P alignment would be assigned for. < ft+garu> - <atga*ru> and <l+ru>-
<a-cgatru>.

Constraint p2 makes sure that we are not violating the G-P correspondence of kana by
aligning segments with different phonetic content. In other words, any kana appearing in the
grapheme string must be aligned with its equivalent in the phoneme string. For example, in
the case of abunai “dangerous”alignments such as <fE+5> - <a° bu+na- 1> are illegal.

Finally, p8requires that any character appearing in the grapheme string is aligned with
at least one character in the phoneme string, that is, no character can be aligned with a blank
string. This requirement prevents invalid assignments in cases like kaze “common cold” <
JAFE>-<ka* ze> where <BE+¥B>-<ka-zet> would be a potential assignment since one of the
regular phonemic attributes of & kanji character is given by the complete phoneme string.
As stated above, the reverse does not hold as a character can appear in the phonemic
realization of the string without having proper representation in the grapheme string.

2.3 Parsing and segmentation techniques

After the corpus has been pre-filtered to remove all grapheme strings that do not contain
any kanji characters, an initial parse removes all instances of grapheme strings containing a
single grapheme (kanji) and no kana. Since there is no room for lexical alteration or
ambiguous alignment, the analysis task is trivial for these cases.

As a second step, graphemes containing a single kanji character and kana prefix and/or
suffix are parsed. Constraints p7 and p2 help reduce the number of possible segmentations,

" [G] applicable to grapheme segmentation
[P] applicable to phoneme segmentation
[G-P] applicable to grapheme-phoneme alignment

and the final decision as to proper alignment is made after examining the single segment
delimiter accessed from the Sinmeikai dictionary.® Thus, damarikokuru “fall silent” is
parsed as < -ritkoskusru> rather than < B °ri*kosku*ru> since the phoneme
representation of the this entry in the Sinmeikai contains the segmentation marker.

Next, entries containing two kanji characters and no kana in their grapheme
representation are targeted. At this stage, the system accepts the segmentation provided in
the Sinmeikai for the phoneme component of the tuple as correct. Still, in cases where no
segmentation is provided, the grapheme string is checked against the existing database
contents for possible alignment information before being labeled as a unit entry in the
database. As a result Aannou “reaction” is segmented as <[{+i> - <ha* m+no* > and not <
RJB> - <ha* n° no* u> even though it could be argued that nou reading of i is a phonological
variation of the regular reading ou interacting with han, and thus the full string constitutes a
single morpho-phonemic unit. This decision was made to preserve consistency of keeping the
record of phonological alternations at the smallest unit level possible. On the other hand in
some entries, as in our kaze example above, the new reading is not a result of phonological
change as it cannot be accounted for from unit kanji readings, but a full string-level phoneme
assignment needs to be recorded on the compound level.

All remaining entries are then run through three recursive parsing algorithms
responsible for assigning alignments in the following manner:

The first algorithm looks for maximal length segments of the grapheme possibly
considerable as a morpho-phonemic unit. Segments are compared with the contents of the
database while simultaneously being checked as conjugated forms of verbs or adjectives in
order to evaluate their self-containedness, and recursively removed from the grapheme string
until the whole string is parsed. For example, strings like mitetoru “realize” are successfully
parsed as <H.* te+Bl° ru> - <mi- te+to* ru> with this algorithm.

The second algorithm operates in a similar manner, with the only difference being that
the initial input strings are maximal length lexical alterations as opposed to minimal ones
used in the first algorithm. At this stage, segments whose minimal lexical alternations could
not be recognized by the first algorithm, either because the conjugated form was not
recognized or because the characters contained in the phoneme string could not be accounted
for, are analysed. For example, <H{°z#+3L°te® ru> - <to* ri+ta- te* ru> could not be parsed by
the first algorithm because the conflated te character (<EX* ri+3] < r1>) confused the system.
However, the second algorithm successfully assigns the correct alignment.

Finally, the third algorithm checks possible segments for predictable phonological
alternations resulting in phonemic assignments not previously listed in the database. In
addition, instead of searching for maximal length segment this algorithm checks for any
possible alignment structure that could satisfy the phonological constraints listed above
without making sure that a different alignment could result in a smaller number of morpho-
phonemically complete segments.

® Our system accepts the spacing suggested in Sinmeikai in this stage of the segmentation
process, but ignores it at the later stages of the recursive parse algorithm. This discrepancy
is mandated by the fact that Sinmeikai never provides more than one segment marker per
entry, even though our system assigns up to six segments per entry.

3. Evaluation
The proposed system was tested on all G-P tuples from EDICT dictionary which were also

listed in the Sinmeikai dictionary and contained at least one kanji character. Out of a total
of 60,226 instances, the system was able to align 60,217 entries, with 9 unalignable entries
leftover. An outline of the dictionary used in analysis is given below:

Total number of distinct entries: 60,226

Average grapheme string length: 2.35

Average kanji component of grapheme string: 1.93

Average kana component of grapheme string: 0.42

Average phoneme string character length: 3.98

Average phoneme string syllable length: 3.46

To our knowledge, there does not exist a solution set against which we could test the
proposed system, thus forcing us to create a control set of our own. Due to restrictions on
manpower, a complete annotation of all G-P tuples was deemed unfeasible. Therefore, a
limited set of only 5000 tuples was randomly selected for manual annotation. Given the
direct and indirect interaction between those 5000 tuples and the remainder of the dictionary,
it is plausible to expect the behavior of the system in this restricted evaluation to be
representative of the overall performance. The results of the evaluation are summarized in
Table 1. Some entries (97 instances) could not be matched within the solution set, and are
factored out of the evaluation.

From Table 1, we can see that the system performs exceptionally well in this limited test,
with shorter grapheme strings (up to three characters) reaching accuracy of over 98.81%
while the accuracy decreases with increasing length of the grapheme string. While this was
expectable, it is important to note that if the system was tested against a dictionary
containing a higher number of characters per grapheme string accuracy levels would probably
be lower.

Most of the mistaken assignments are result of the inability to properly recognize
conjugated verb forms (30 instances), thus yielding a higher number of segments than
necessary. Inability to recognize further indivisible two kanji character compounds is
responsible for another 17 instances, while the remainder is caused by a variety of factors.

The system was also tested without using the segmentation clues provided in Sinmeikai,
and the alignment accuracy was 92.90%.

Grapheme string | Annotated solution Correct solutions Incorrect solution Accuracy (%)
length

1 character 401 401 0 100.00
2 characters 3170 3155 15 99.53
3 characters 898 860 38 95.77
4 characters 314 289 25 92.04
5 characters 109 . 106 3 97.25
6 characters 9 8 1 88.89
7 char. and up 2 0 2 0.00
Total 4903 4819 84 98.29

Table 1: Comparison of the G-P tuple segmentation assignments with manually annotated solutions

— 15—

4. Conclusion

The aim of this paper has been to present a system that generates grapheme-phoneme
alignments based on both bootstrapped reading seeds and incrementally learned information.
While the system performs well in the limited test setting it remains to be determined how it
will perform on larger dictionaries containing entries of higher character length.

Continued research is needed as several problems persist. The system is somewhat
dependant on the segmentation provided within the augmented dictionary entries, as well as
being unable to handle many cases of conjugated verb forms with lexical alternates. By
removing all the dependency on partial annotation of the dictionary input, the system would
be able to tackle harder problems like open text with much more success. Problems of
deflated lexical alternates keep evolving as more liberal grapheme representations find their
way into daily language.

Still, it is our hope that the system will prove itself useful in related research topics. For
one, we feel that system can be used as a basis for work on kanji teaching and testing tools for
students of Japanese language and also for further study on phonological changes of kanji
attributes. We intend to make publicly available the complete list of grapheme keys with
their phonemic attributes.

References

Jared Bernstein, Larry Nesly. Performance Comparison of Component Algorithms for the Phonemicization of
Orthography. In Proceedings of the 19 Annual Meeting of the Association of Computational Linguistics, pp.19-22,
1981.

Michel Divay, Anthony J.Vitale. Algorithms for Grapheme-Phoneme Translation for English and French: Applications for
Database Searches and Speech Synthesis. Computational Linguistics, Vol 20, No.4,pp.495-523, 1997.

S. Ikehara, M. Miyazaki, A. Yokoo, S. Shirai, H. Nakaiwa, K. Ogura, Y. Ooyama, and Y. Hayashi. Nihongo Goi Taike: -4
Japanese Lexicon. Iwanami Shoten. 1997. (In Japanese)

Junko Ito, Armin R. Mester. Japanese Phonology in J.A. Goldsmith (ed.) The Handbook of Phonological Theory, 1995.

Sinmeikai Dictionary. Sanseido Publishers, 1981.

Natsuko Tsujimura. An Introduction to Japanese Linguistics -Blackwell Publishers, 1996.

Tony Vitale. An Algorithm for High Accuracy Name Pronunciation by Parametric Speech Synthesizer. Computational
Linguistics, Vol 17, No.3,pp. 257-276, 1991.

