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This paper addresses the problem of network monitoring, fonj fast detection of
performance problems. The network behavior is modeled as clusters of dependent objects
of the Management Information Base-II (MIB-I). Each cluster is modeled as finite
mixture of simple regression models. Network baseline parameters are identified from
routine operation data. An online residual generation method, based on successive
parameter identification, is introduced. Residuals are shown to be stationary, with mean
zero under normal operation. Performance problems are characterized by sudden jumps in
the mean. Detection is formulated as an online change point problem, where the task is to
process residuals and raise alarms as soon as anomalies occur. An analytical expression
of false alarm rate allows us to choose the threshold, automatically. Experimental results on
a Saitama university and Tokyo international university networks showed that the
monitoring agent is able to detect even slight changes in the characteristics of the network,
while maintaining a low false alarm rate. ’
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2 Introduction

Networks and distributed processing systems have become
an important substrate of modern information technology.
The rapid growth of these systems throughout the work-
place has given rise to a discontinuity in expertise of human
operators to manage them. There is a need for automating
the management functions to reduce network operations
and management cost.

Detection of network problems is a crucial step in au-
tomating network management. It has a direct impact on
the accuracy of fault, performance and security manage-
ment functions. From a control viewpoint, well designed
fault and performance problems detection algorithms en-
hance the network control capability, by providing timely
indication of network incipient problems. The possibility
of early detection of performance degradation can allevi-
ate the constant fire-fighting of network managers. Early
warnings from the monitoring agent can trigger preventive
actions, and serious and expensive outages can be avoided.

In this paper, we address the problem of performance
problems detection in IP-Networks, where the knowledge
about the problems to be detected is not required. The em-
phasis is on fast detection with minimal human supervision
- an important requirement for reducing potential impact
of problems on network services users. We propose a model
of the network operations in terms of MIB objects depen-
dencies, and we show that the parametric characterization
of this dependency can be described as a finite mixture
of simple regression models. Model parameters are iden-
tified from routine operation data, using the expectation
maximization algorithm.

A new method for residual generation, based on succes-
sive parameter identification, is introduced. The residuals
are shown to be approximately multivariate Normal, with
mean zero under normal operations, and sudden jumps in
this mean are characteristics of abnormal conditions. The
detection problem is formulated as a change point problem.
A real-time online change detection algorithm is designed
to processes, sequentially, the residuals and raise an alarm
as soon as the anomaly occurs. We motivate this formu-
lation through a real problem scenario that occurred in
Saitama university network. The proposed approach re-
quires neither the set of faults and performance degrada-
tion nor the thresholds to be supplied by the user. Exper-
imental results showed the effectiveness of the method on
real data. A very low false alarm rate and a high detection
capability has been demonstrated.

This paper is arranged as follows: Section 2 introduces
our proposed model of the network normal behavior, and
the learning algorithm for parameter identification from
routine operation data. Section 3 introduces our proposed
approach for residual generation, and the formulation of
the network problem detection. In Section 4, we present
results of our experiments in a real network. We conclude
in section 5. ’

3 Normal Operations Baselining

MIB objects are designed to reflect the activity of the net-
work at each protocol layer entity. The goal of this section
is to characterize network normal behavior using these ob-
jects, and to identify network model parameters from rou-
tine operation data.

3.1 Network Model

To be able to identify the network operation parameters
from operation data, we have to define a parametric model
for network operations. Our approach to network model
parameterization is to view each cluster (X,Y’) as switch-
ing between different regimes, where each regime is a sim-
ple linear regression model. This is a form of what referred
to in the literature as switching regression [10]. The ob-
servations (zi,y;) are generated by one of the K linear
regression, as shown in the following equations:

‘yi=bf,3i+€ki k=1,...,K (1)
-(y; = bﬁ*i)’
plyile:) = Z \/2_‘”0'): 20.: (2)

For the case of single variables such as the number of
broadcasts IflnNUcastPkts, the model reduces to the finite
mixture model, given by:

'yi=mk+€ki k=1,...,K (3)
*(yz'—mk)’
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The errors €, are assumed to be Gaussian, with mean 0
and variance o¢. The column vector by is made of the slope
and the intercept for the regime k. Abusing the notation
slightly, the integer K denotes the number of regimes, for
both the mixture of regression and Normal distributions.
Each regime k has a mixing probability, denoted by .
Finite Gaussian mixture models are general enough to
approximate any continuous function with a finite number
of discontinuities, under appropriate regularity conditions
[12]. For any cluster of variables (X,Y’) that are linearly
related, or even locally linear with slowly time-varying pa-
rameters, an adaptive algorithm with suitably chosen for-

" getting factor can track the model parameters. In general,

however, breaks in the linear relationship are normal, and
the idea then is to explicitly accommodate these breaks in
the network model. The resulting model is, then, a mix-
ture of regimes, where each regime describe a given mode
of network operations.

The network normal behavior is then characterized by
the parameters of the finite mixture model. In the next
subsection, we show how these parametets are identified.

3.2 Learning Model Parameters

Identifying the network normal operations from routine op-
eration data amounts to estimate the parameter @ of the



switching regression. The vector @ consists of the vectors
by,...,bx, the variances o1,...,0x and the mixing prob-
abilities y,..., mx. Given a training set of N indepen-
dent and 1dentxcally distributed data points (z,,y,) the
Maximum Likelihood (ML) estimator is the vector  that
maximizes the likelihood function L(8), given by:

6 =arg max L(9) (5)

N K
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For the case of mixture of Normal dlstnbutlons fir is given
by:
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Viewing the separation variable z, that assigns each ob-
servation to its corresponding regime, this estimation can
be formally identified with the Expectation Maximization
(EM) algorithm [3]. The EM algorithm {2, 11] estimate
the unknown parameter 8 by iteratively maximizing the
expected log likelihood Q(816’), starting from an initial pa-
rameters 6°,

4 Online Network Problems Detec-
tion

The previous section showed how the dynamics of the net-
works are identified. In this section we turn to discuss
how the residuals are generated, and our formulation of
the problem of anomaly detection.

4.1 Residual Generation

The residual generation method we propose is based on the
algorithm for parameter estimation. -After convergence of
the learning algorithm (Sec. 2.2), we keep updating the
slopes of the models, assuming that only one iteration of
the EM algorithm is used for each new observation (zn, ys).
It can be shown, that:

=5+ (X Win X) " winza (Y — 2 12,)
B =5,

®)
(10)

For the case of mixture of Normal distributions, the mean
my, of each regime k is updated as follows:

n
m:=m:+(2wkg)_lwk,,(yn—m:’l) (11)
i=1
md = iy, (12)

Where b} and m} are the estimate of the slope parame-
ter by and mean m; at iteration n, respectively. X, is a

" K-variate random variable (b" —

n X 1 vector made of the regressor z;, and X}, is its trans-
pose vector. Wi, is the n x n diagonal matrix, made of
the weights wg;. The initial parameters 4° and p° is the
estimates obtained using the batch EM (Sec. 2.2). It is
worth nothing to note that Equation (9) is very similar to
the recursive parameter estimation proposed in [?], where
parameters are updated online for each new observation.

Under normal conditions, the difference between the suc-
cessive values b™ and 5"~ is expected to fluctuate around
zero. This difference should not drift constantly in a fixed
direction. On-the other hand, if this difference drifts sys-
tematically over long duration, then the new observations
are generated by a different model, and the recursion in
Equation (9) will alter the parameter b to its new value.
The idea, then, is to generate the residuals based on the
5"~1). The mean value
of this difference is a good xndlcatot of the health of the
network.

There is two major advantages of the residuals generated
this way. First, successive identification of the parameters
allows the model to adaptively track local changes in its
parameters. It is unrealistic to assume that the model pa-
rameters will remain exactly the same over all the operating
times of the network. Second, the difference (" — b™~1)
does not depend on the "true” value of the parameter b.
This is very important since, in practice, we do not know
this "true” value, and the only available information is the
value b, estunated from the data. Approximating b with b,
and studying the difference (b™ — b) is possible, but our ex-
periments showed that this approach is inefficient. Figure
1 compares both differences for a duration of one hour un-
der the same network conditions. Results are shown only
for one of the two regimes of the cluster, denoted by k. It
can that the difference (b} — bk) is not symmetric around
zero, while the difference (b7 —b7~!) is both symmetric and
very close to zero under normal conditions. )

Under appropriate regularity conditions, we can show
that the K-variate residuals e, given by:

en = (bn - bn-l)TA—l(bn __ bﬂ—l) (13)
diag (et (14)
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For the case of mixture of Normal distributions, the resid-
uals e, are given by:

en = (mn - mn—l)TA-l(mn _ mn—l)

. VWkn &
A= diag (ﬁ)
i=1 t

are approximately Normal, with mean zero under network
normal conditions. Approximating the variance matrix of
en, with A involves an informal argument about the asymp-
totic distribution of the univariate residuals e,. Note that
en given in Equation (13) (respectively Equation (15)) is
simply the difference (6" —5"~1) (respectively (m™ —m"~1)
), scaled such that its variance-covariance matrix becomes
Identity. Figure 2 shows the behavior of the residuals exn

(15)
(16)
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Figure 1: Behavior of the drifts of two typical clusters of objects (a) drifts (b} — 521 and (b7 — bx) under the same
network conditions, for the cluster (IfInPkts, ipInReceives) (b) drifts (mf — mi™") and (m} — #n.) under the same

network conditions, for the variable ifOutNUcastPkts

under the same network conditions as in Figure 1. It can
be seen that these residuals are stable, and their mean is
very close to 0.

In summary, network operations are characterized by the
distribution the residuals e,,. We showed that, under nor-
mal operations, the residuals e,, are Normal with mean zero
and variance Identity matrix. The next section shows the
behavior of the residuals under abnormal conditions, and
how we formulate and solve the detection problem.

4.2 Anomaly Detection

Anomaly detection is determining the discrepancy between
the normal behavior and the predicted behavior. Figure 3
shows the behavior of the residuals generated by the model
under a real abnormal condition that affected Saitama uni-
versity network, due to badly formatted packets. As shown
in Figure 3-a, this abnormal condition causes a sudden
jump in the mean of the residuals. Figure 3-b shows the
behavior of the residuals just before the sudden jump in
the mean. Interestingly, we notice that the sudden jump
is preceded by a slight change in the mean of residuals. If
the detection approach is designed to be sensitive to slight
‘changes in the operating characteristics of the network, we
could have predicted the problem of Figure 3 at least 19
minutes before it became serious. The problem could have
been avoided, or at least addressed immediately after its
occurrence. Obviously, not all problems presents signs to
allow their prediction. In this case, we require our detec-
tion method to raise alarm as soon as change in the mean
occurs.

Consider the residuals ET obtained by observing sequen-
tially the residuals e; from time point ¢ to n. Under the
normal operations of the network, the sample of e, follows
a K-variate Normal distribution with mean 0 and Iden-
tity covariance matrix (Sec. 3.1). At some unknown time
point ¢, a.change happens in the model, and the new gen-
erated residuals shift to a new distribution. The goal is to

find a decision function and a stopping rule that detects
this change and raise an alarm as soon as possible, under
a controlled false alarm rate. This formulation is known
in sequential analysis literature as the disruption problem.
The main difference with classical hypothesis testing is that
the sample size is a function of the observations made so
far (ie. not fixed a priori), and the distribution of the
residuals is known, when the process being monitored, is in
control. The goal is to achieve fast detection of change, by
using the minimum sample size possible to decide whether
an alarm is to be raised or not.

It is well-known that for known probability distribution
after change, Page-Lorden cumulative sum (CUSUM) [9, 6]
test is optimal, in the sense that it minimizes the delay to
detection, among all tests with a given false alarm rate.
However, in the present case of network anomaly detection,
we do not have a priori knowledge about the distribution
probability after change P;,, and the change point c. The
common extension of Page-Lorden CUSUM test consists
of estimating the post-change distribution mean, and the
change point from the data. This approach is known as
the Generalized Likelihood Ratio (GLR) test [1]. That
is, for the unknown parameter 8; of the distribution of
Py, (e;) after change, and the change point ¢ are estimated
from data, using the maximum likelihood estimator. The
resulting decision function is given by:

P(E?Iol)c)

- In e 194, €) 17
Ro = sup SUP 10 5 Er o) "
T, =inf {n: R, > A} (18)

In our case, where pre-change and post-change distribu-
tions are Normal, the maximization problem of Equation
(17) can be worked out explicitly. It has a simple form,
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Figure 2: Residuals plots under the same network conditions as in Figure (1): (a) Univariate residuals ey, for regime &
of the switching regression, as given by Equation (13) (b) e, for finite Normal mixtures, as given by Equation (15)
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Figure 3: Residuals generated by one of the two regimes of (iffnPkts,IpInReceives), under abnormal conditions: (a)
structural break variables relationship (b) slight change in the mean of the residuals just before the break

given by:
n
S0 =(0,...,0)T Sa=) e (19)
=1
T, = inf {n: max 1S — Sell > A} (20)
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The equation assumes that after change, the distribution
of the residuals is still Normal, but with different mean.
For the abnormal case, it is hard to obtain an unbiased fit
of the post-change distribution Py, (e;). Fortunately such
accurate estimation is not crucial. What is needed is that,
when the an anomaly occurs, the closest Normal distribu-
tion, obtained by maximum likelihood estimation, has a
mean significantly different from zero.

4.3 Tuning the Threshold

So far we have introduced the decision function and the
stopping rule used for online detection of network faults
and performance degradation. The remainder of our prob-
lem set-up concerns the choice of the design threshold A.

It can be shown that the expectation of the stopping

rule, under no change denoted by E(T), is given by [13]:
K/3 2

(K /2)2%/2 exp(23/2) as 1)

Eool(T) ~ 8
@) AK 5 2v3(z)dz

A—- o0

2 = 1 —zn!/?
v(z) = 2z° exp (—221:11. B( 2

Dz >0 (22)

Where ¢ denotes the Normal distribution function. For
calculation, see [13] for an approximation of v(z). Not
surprisingly, Equation (21) turns out .}o be the mean time
between false alarms. It follows that, given a desired false
alarm rate, we can recover the design threshold A, by solv-
ing Equation (21). : ‘

5 Eiraluation and Results

The network monitoring algorithms described earlier has
been implemented in a real networks. This section -dis-
cusses how the data is collected, and the results that vali-
date the agent capabilities.



5.1 Experimental Setting

The network traffic is monitored using the standard MIB-II
information base: To ensure reliable data sets, the agent is
implemented to fetch the network statistics directly from
the OS kernel. The agent is written in C++, and cur-
rently runs on both Solaris 2.6 and AIX 4.1. To validate
the agent results, we implemented a program to access the
underlying data-link layer for fault injection. The program
is written using the Data Link Provider Interface (DLPI),
on Solaris 2.6 operating system. The goal is not to sim-
ulate all possible faults, but rather to prove that alarms
generated by the agent are, effectively, due to abnormal
network conditions.

5.2 Implementation Aspects

Unfortunately, Equation (20) can not be written recur-
sively.  Consequently, the number of residuals to be in-
spected can grow large. To circumvent this difficulty, we
use a moving horizon of fixed length, where the starting
point of the horizon moves one step forward as new obser-
vation are made available to inspection. For the mean false
alarm rate ( Sec. 3.3), it is fixed to 8640, which corresponds
to 24-hours period, given that samples are collected every
10 seonds. Finally, for the number of components K, it
was found empirically that at most 4 regimes are enough
to describe the data satisfactorily. Work is underway to
infer the number of components automatically from data.

5.3 Detection Capability

The agent detection capability is first illustrated using the
network problem, introduced earlier in Section 3.2." The

problem showed up as a streaming NIC card sending ex-

cessively badly formatted packets. Figure 4 shows the be-
havior of the residuals and test statistic as detected by the
cluster (iffnPkts, ipInReceives). As shown in the figure, it
takes approximately 30 samples (5 minutes) to detect the
slight change in the residuals. In this particular case, the
threshold is crossed 19 minutes before the sudden disrup-
tion. It could have been possible to address proactively the
problem before it became serious, or at least draw the at-
tention of network operators earlier, before the impact of
the problem is felt by all network users.

Detection capability of the agent is tested with other
problems. The obtained results are shown in Figure 5. For
1P packet loss and excessive outbound broadcasts, appro-
priately assembled packets are sent every two seconds. For
the remaining problems, assembled packets-are injected ev-
ery one second. It can be seen that the agent could detect
all of these problems, with reasonably short delay.

We note that, apart from reasons given in Section 2.1
for defining network model as the parametric characteri-
zation of dependent objects, there is no MIB counter for
ARP operations. Also, for the problem of packet loss in-
duced by assembling Ethernet packets with non-existent
protocol type, some kernels do not have any entry for this
type of errors, even if this object is part of the standard

Clusters Average
alarm rate
per hour

ifInNUcastPhts 033

ipInReceives, 0.50 -

ifInPkis

ipInReceives, 0.08

ipInDelivers

ipForwDatagrams, 0.041

ipInReceive - ipInDelivers

ifOutPkts, ipForwDatagrams + | 0.16

ipOutRequests

ifOutNUcastPhts 0.00

Table 1: ' Average number of alarms per hour for each of
the ‘clusters of network model

MIB-II information base. For IP operations, one can easily
check that IpInDelivers and IpInReceives can be sometimes
very large, without noticing any change in IP related er-
rors. This is true even when we take into consideration the
fact that loopback packets are to be added to IpInReceives.
With current under-instrumented networks, our approach
to network modeling and performance problems detection
can provide useful insights about incipient problems.

5.4 Alarm rate

The final aspect we investigate in our proposed approach is
the false alarms rate. Ideally, we would like to estimate this
rate, given that the network is operating normally. Unfor-
tunately, it is difficult to gain perfect knowledge about all
the subtle changes in the network behavior. Instead, Table
1 shows the average alarm rate per hour, for data collected
during a period of 24-hours.

Some comments are now in order. First, we note that
ifOutNUcastPkts is very stable, recording a zero alarm rate
per 24-hours. In general, alarms are raised only rarely. It
would be more efficient, then, to restrict broadcast rate
monitoring to only output packets only, and not both in-
put and output broadcast packets. This way, not only de-
tection accuracy and low false alarm rate are achieved, but
more importantly, the diagnosis of broadcast problems is
immediate. Second, the results in the Table 1 are not the
minimum alarm rate that could be achieved. In times the
network is almost idle, the alarm rate can be extremely low.
In fact during experiments conducted in summer vacation
(August 2000), only 8 alarms are raised for the 28956 sam-
ples collected by the cluster iflnPkts-ipInReceives. 'This
makes an average of 0.09 false alarms per hour.

1Results are from an internal router of Saitama University network
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6 Conclusion

In this paper, we developed an online technique for fast
detection of performance problems in IP-Networks. We
proposed a model of the network operations in terms of
MIB objects dependencies, and we showed that the para-
metric characterization of this dependency is amenable to
a finite mixture model. Model parameters are identified

from routine operation data, using the expectation maxi-
mization algorithm. A new method for residual generation,
based on successive parameter identification, is introduced.
The residuals are shown to be approximately Normal, with
mean zero under normal operations, and sudden jumps in
this mean are characteristics of abnormal conditipns. A
real-time online change detection algorithm is designed to
processes, sequentially, the residuals and raise an alarm



as soon as the anomaly occurs. The proposed approach
requires neither the set of faults and performance degra-
dation nor the thresholds to be supplied by the user.” Ex-
perimental results showed the effectiveness of the method
on real data. A low false alarm rate and a high detection
capability has been demonstrated.
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