EREA VT —% v b
(2002. 10. 1D

5—14

Security on the Secure Shell

TR ZFaE!

R R

P BRI DA W LR T 192-0982 BURERA £ A AHT 1404-1
T RORERRSERESE T 278-8501 TIEREF M1 2641
E-mail: fsaito@cc.teu.ac.jp

Security on the Secure Shell

Takamichi SAITO' and Toshiyuki KITO't

 Tokyo University of Technology, Katakura 1404-1, Hachioji, Tokyo, 192-0982, Japan.
1 Science University of Tokyo, Yamazaki 2641, Noda, Chiba, 278-8501, Japan.
E-mail: fsaito@cc.teu.ac.jp

Abstract Although some flaws have been found out in the SSH, the Secure Shell, there is not so much discussion

about its architecture or design safety. Therefore, in this paper, considering the SSH’s architecture, e.g. the key

exchange protocol, the user authentication protocols and its total design of the SSH, we not only discuss the SSH’s

architectural safety but show some critical flaws for SSH users. For establishing the SSH connection, before the

user authentication, the SSH sever and client are exchanging a session key, which can make secure communication.

Then, over the secret channel encrypted by the session key, the SSH server are authenticating a user in the SSH

client using with a user’s password or public key. However, owing to the defects in the SSH protocols and its design,

a user can be deprived of its password in the authentication protocol. Moreover, we will show that those who uses

its public key for authentication are exposed to the menace same as password-oriented users are.

Key words System Security, Authentication, Authentication Protocol

1. Introduction

SSH, the Secure Shell [1] ~ [6], is widely used as a secure
remote terminal software. The SSH can make us login to
a remote computer over insecure networks, execute a com-
mand, and transfer a file between a remote computer and a
local computer. As a composition of the system, the SSH
software is composed of the SSH server and the SSH client.
There are two version, i.e. SSH1 and SSH2, which are spec-
ified in the some drafts [2] ~ [6]. Going through the protocol
version exchange phase, the key ezchange phase, and the user
authentication phase in this order, the SSH sever and client
in both SSH1 and SSH2 establish a secure communication
channel. This SSH’s secure channel is considered to guaran-
tee that the a user can communicate with the intended SSH
server secretly.

After the protocol version exchange phase, in the key ex-

change phase, the client confirms the server, and the SSH

sever and client are exchanging a session key, which can make
them utilize an encrypted communication. And then, over
the encrypted communication channel with the session key,
the SSH server authenticates the user in the SSH client. Note
that there executes to exchange the session key before the
user authentication. In a word, the SSH server can’t identify
the SSH client in the user authentication phase. Therefore,
depending on case, there is possibility that the SSH server
can be deceived by the malicious client.

In this paper, we will consider the structure of the SSH,
provide the defects of the SSH in the key exchange phase,
the user authentication phase, and these architectural com-
bination. And more, for confirming in the practical point of
view, we referred to SSH version 1.2.32, SSH version 3.0.2,

and OpenSSH version 3.0.2 as the implementation.

2. Background

2.1 SSH Keys

There are four types of keys used in SSH: Host Key, Server
Key, User Key, and Session Key.

Host Key : All SSH server should have a host key, i.e. a
public key. The host key is used in key exchange protocol to
verify that the client is really talking to the intended server.
For this purpose, the client must have a priori knowledge of
the server’s host key.

Sever Key : A temporary, public key used only in the
SSH1. It is created by the server at regular intervals (by
default every hour) [1] and protects the session key.

User Key : A user key is used for the public key au-
thentication by the SSH server. All implementations of SSH
must support the public key authentication.

Session Key : A session key is a symmetric key gener-
ated in each session. It is used for encrypting the commu-
nication between the SSH client and server, and should be
shared properly by the key exchange method.

2.2 Notations and Terms
Principals : The SSH is composed of the server and client.
The SSH server, represented by S, is a principal executing
the SSH server program, and the SSH client, represented by
C, is a principal executing the SSH client program. More-
over, the intruder or the malicious user is represented by I.
Messages : Let Msg be an arbitrary message. In the case
that the client C transmits a message Msg to the server S,
we write the following: C' — S: Msg

And, the case that the client C and the server S are mu-
tually exchanging a message Msg is described as follows:
C+ 5: Msg

Moreover, we introduce expressions about the intruder pre-
tending the other principal. For example, in case that the
intruder I masquerading the server 'S transmits a message
Msg to the client C, we write the following: I(S) — C : Msg

Encryption and Keys : We write the expression {Msg}y
to denote the resulting of encrypting a message Msg with a
key Y, and {Msg}y -1 that of signing Msg with a private key
Y ~* which is correspoding to a public key Y. In the case
that a message Msg is encrypted with keys Y and Z in this
order, we write {{Msg}v}z

On the other hand, the key Ps denotes the SSH server S’
host key, the key Hgs the SSH server S* server key, and the
key Pc the public key of a user on the client C. KScs or
K Ssc is the session key between S and C.

Key Exchange in SSH2 : p is a large safe prime, g is a

generator for a subgroup of GF(p), ¢ is the order of the sub-
group. Vs is S version string, and Vi is C’s version string.
I¢ is C’s key exchange message, and Is is S” key exchange
message. Random number y,z (1 < z,y < q) are gener-
ated S and C respectively. Ks is g¥ mod p, K¢ is ¢* mod p.
Moreover, K¢s is g°¥ mod p as a seed of session key. In this
paper, this Kcg itself is considered as-a session key.

User Authentication : modulus denotes a part of ar-
bitrary public key, it is for the identifer of the public key.
challenge represents a 256-bit random number created by S.
username and password denotes a user’s login-name and its
password respectively. Especially, when we write modulusc,
usernamec, passworde, they are denoted to be used in C
respectively.
Miscellany : SA denotes lists of encrypting algorithms,
compressing algorithms, authentication ways, and so on.
And, RN represents a random number as a cookie. Sc¢s or
Ssc is the session identifer between S and C. The expression
f(Msg;) represents a hash value obtained from Msg;. Sim-
ilarly, f(Msg:, Msge) shows a hush value obtained from the
concatenation of Msg; and Msgs. Ack denotes an arbitrary

messages for acknowledgement.
3. SSH, Secure Shell

3.1 Architecture

Between the SSH server and client, these following three
phase in this order are executed to establish the connection:
protocol version exchange, key exchange, and user authenti-
cation.

Firstly,
SSH server and client notify their SSH version, such as

"SSH-1.5-1.2.22", and confirm whether they support the

in the protocol wversion exchange phase, the

version .

Nextly, in the key ezchange phase, the server sends the
host key, i.e. its public key, which can make the client iden-
tify the server, and also sends session parameters. Especially
in SSH1, the server also sends the server key with them. On
the assumption that the client obtains proper host keys be-
fore its connection, it can confirm the server with the host
key. When it can’t match the host key in its database, a
user must decide to select if it is accepted or not. If a user
rejects it, the connection ends. Moreover, the most impor-
tant thing is that the session key and session identifer are
exchanged in this phase. The SSH1 client creates the session
key, encrypt it with the server key and the host key, and
send it to the SSH1 server. On the other hand, in SSH2,
the session key is shared by the modified Diffie-Hellman key

exchange, which is represented as diffie-hellman-groupl-shal

in[4]. Another way, not supported in the most version, is
specified in[7). Moreover, the session identifer is made by
the exchanges (explaining later).

Finally, in the user authentication phase, the SSH server
authenticates a user in the SSH client. There are some sup-
ported authentication methods, differed in SSH1 and SSH2.
Here, the SSH server and client must agree an authentication
method. Note that, since the connection ends if both of them
can’t agree, the SSH server can compel the client to agree
an arbitrary method as the server wants. Which means that,
even those who wants to utilize the public key authentication
can be forced to use the password authentication if the user
wants to continue the session.

The followings are user authentications mainly supported
in SSH1 and SSH2 :

Password Authentication : Password authentication
is a method to confirm if the user can show the correspond-
ing secret, i.e. password. So, utilizing this authentication,
the user should type its password to the SSH client.

Public Key Authentication :
tion is a method to confirm if the user holds the correspond-

Public key authentica-

ing private key. There exists two kinds of this confirmation:
the challenge and response scheme, and the digital signature.
Rhosts Authentication :

/etc/hosts.equiv and .rhosts are used to decide if trusted-

For r-commands,

host or not. In this paper, since this method are not consid-
ered secure, it is omitted to deal with.

Rhosts with Public Key Authentication : For same
purpose of the below, the SSH provides this method added
with public key authentication of client. In this paper, it is
also omitted to deal with.

3.2 Key Exchange Phase

In this section, the key exchanging procedures are ex-
plained in details. Although there are differences in SSH1
and SSH2, both servers can be identified by the client in this
phase.

3.2.1 Key Exchnage in SSH1

M1) S —C: Ps,Hs,SA RN
M2) C—S:SA RN, {{KScs}rs}u,
M3) S—C:{ack}ys,,

These above protocol in SSH1 can make the server and
client share the session key and its session identifer, and can
make the client authenticate the server:

After the client conmnection request and protocol version
exchange, ﬁtstly,‘the SSH server S sends, to the client C,
the host key Ps, the server key Hs the session parameter
SA, and the random number RN (M1). The client C con-

firms whether the received host key Ps is same as one in its

database. If both aren’t identified as the same, the client
program warns to the user that the host key is changed, and
the user should decide if accepting it or not. And then, both
sides compute the session identifer Scs, which is the MD5
hash value of a concatenation of RN, Ps, and Hs. Moreover,
the client C randomly creates the session key K Scs that the
server and client support. After encrypting the session key
with the host key and the server key, the client sends it to
the server, with SA and RN (M2). This encrypted mes-
sage can be decrypted only by the proper server. Finally,
by receiving an acknowledgement encrypted with the K Scs,
the client can decide that the session key is shared with the
server properly (M3).
3.2.2 Key Exchange in SSH2

M1) S+ C:SA

M2) C—>S: Ke

M3) S —C: Ks,Ps,
{f(VC,Vs,IC,Is,PS,KC,KS,KS’CS)}PS_l
M4) C— S:{KScs}kscs

These above protocol in SSH2 can make the server and
client share the session key and session identifer. This pro-
tocol is called deffie-hellman-groupi-shal, and can make the
client authenticate the server: Firstly, the SSH server S and
client C negotiate some session parameters with SA (M1).
Next, the client C' creates a random number z, and com-
putes K¢ (= g° mod p), sends it to the server S (M2). Af-
ter receiving it, the server S generates a random number
y, computes the session key KS¢s (= g®¥ mod p). And, it
also computes H, which is the session identifer Scs, a hash
value of a concatenation of Vg, Vs, I¢, Is, Ps, K¢, Kg, and
KScs. Moreover, the server tranmits Kgs(= g¥ mod p), its
host key Ps, and the hash value H signed with its private
host key P5'. When the client receives them, using by its
database, it confirm if Py really is the host key correspod-
ing to the server S. And then, the client also computes the
session key KScs (= g*¥ modp), the hash value H, and
verifies the signature of H with its host key Ps (M3). Fi-
nally, the server and client confirm the session key is shared
properly (M4).

3.3 User Authentication Phase

So far, since the SSH server and client share the session key
K Scs and the session identifer S¢g, they can communicate
over the secure channel encrypted with the key. However, al-
though the server is identified by the client, the server doesn’t
have a confirmation of the client or user. Therefore, there

needs to authenticate the user.

3.3.1 Password Authentication in SSH1
M1) C— S: {username}xsgs
M2) S—C:{acki}kses
M3) C— S : {password}ks.s
M4) S —C: {acka}ises

Firstly, the client C sends its identifer username to the
server S (M1). Receiving it, the server confirms username
within its database. If there exists username, or even if
not, the server notifies the acknowledgement ack; to prompt
the next (M2).

password, (encrypted with the session key) (M3). Finally,

And then, the client sends its plaintext

the server returns the acknowledgement ack,, which denotes

success or failure of the authentication (M4).

3.3.2 Public Key Authentication in SSH1
M1) C — S: {username}kseys

M2) S—C: {acki}kses

M3) C — S :{modulus}rs.g

M4) S—C: {{challenge}PC}Kscs
M5) C — S : {f(challenge, Scs)}kses
M6) S —=C:{acka}kses

Firstly, same as M1, M2 in SSH1 password authentica-
tion, the client C sends its identifer username to the server
S (M1). Receiving it, the server confirms username within
its database. If there exists username, or even if not, the
server notifies the acknowledgement ack; to prompt the next
(M2). Moreover, the client sends its public key’s identifer
modulus (M3). Receliving it, the server searches its public
key according to modulus within its database. Tt also creates
challenge, encrypts it with the public key Pg, returns it to
the client (M4). And then, the client decrypts the encrypted
message with its private key P5", computes the MD5 hash
value of concatenation of challenge and Scs, and returns
the hash value to the server (M5). Finally, the server veri-
fies the response, returns the acknowledgement acks, which
denotes success or failure of the authentication (M6).

3.3.3 Password Authentication in SSH2

M1) C = S : {username,password}ks.g
MZ) S—>C: {ack}KSCS

Firstly, the client C sends its identifer username and plain-
text password to the server S (M1). Note that password is
also encrypted. Receiving it, the server confirms username
and password within its database. Finally, the server returns
the acknowledgement ack, which denotes success or failure

of the authentication (M2).

3.3.4 Public Key Authentication in SSH2

M1) C—S:
{username, Pc, {username, Pc, ch}Pc_x Yrses

M2) S—C:{ack}ksqs

Firstly, the client C sends its identifer username, its public
key Pc, and the message {username, Po, Scs} signed with
its private key P!, to the server S (M1). Receiving it,
the server confirms username and P¢ within its database,
and verifies the signature. Finally, the server returns the ac-
knowledgement ack, which denotes success or failure of the

authentication (M2).
4. Architectural Defects of the SSH

In this section, architectural safety of the SSH1 and SSH2
are considered. It is explained that there exists critical de-
fects in the design of SSH1 and SSH2.

4.1 Security Considerations

After the key exchange phase, the SSH server and client
share the session key, and the client identify the server by
the authentication. This kind of authentication is same as
that of the server-authentication mode in the SSL (Secure
Socket Layer) protocol[12]. Which means that, the server
can’t prove to identify the client in this phase of SSH proto-
col.

According to the requirement of the secure authentication
with exchanging the session key[l11), since the server and
client can’t obtain the agreement of sharing it in secure way,
the method of key-exchange in this phase is not secure to
establish the communication channel between the server and
client. Therefore, the server can be deceived by the intruder
in MITM (man in the middle) attack: when the client con-
nects with the intruder, which masquerades as the mirror
server of the authorized one, the intruder deceives the au-
thorized server. This kind of MITM attack is notorious for
being shown in G.Lowe’s paper [10].

Since the proper mutual authentication is not executed
until the user authentication phase, there needs strong mu-
tual authentication for the secure channel. Therefore, the
naive or careless user can be deprived of its password. In the
following secfion, the example of attack is provided.

4.2 Attack over the SSH1 protocols

For this attack, as it was said, there needs the assumption:
the client firstly connects with the intruder masquerading
the server. You may think, that’s curious! However, if it is
announced as the new mirror server, which can provide file
resources shared by NFS (network file system), some users
may believe it as the authorized mirror server and connect

it. And most important thing is that the intruder does not

have any resource which the proper server has, and, needless
to say, the intruder does not know the user’s password.
4.2.1 Key Exchange Phase

M1) S§—I(C) : Ps,Hs,SA, RN

MY) I—C : P, Hi,SARN

M2) C—1 : SA RN {{KSci}r }u,
M2') I(C)—>S : SA,RN,{{KS]S}}:S}HS
M3) S I(C) : {ack}rs;s

M3) I-C : {ack}kso;

After the client connects with the intruder on the assump-
tion, the server S sends the first messages to the intruder
pretending the client C' (M1). Receiving them, the intruder
sends its original messages to the client (M1’). Then the
client creates the session key KScr between the client C
and intruder I, encrypts it, and returns it to the intruder I
(M2). Receiving it, the intruder also creates the session key
K S5 between the intruder I and server S, encrypts it, and
transmits it to the server S (M2'). And then, by receiving
an acknowledgement encrypted with the K'Sys (M3), the in-
truder sends an acknowledgement encrypted with the KSc;.
The client can decide that the session key is shared properly
with I (M3').

Until now, the session identifer Scy and session key KScr
are shared between the client C' and the intruder I, and
also, Srs and KSis are shared between I and S, The server
S doesn’t care about this situation, because, in this phase,
there doesn’t authenticate the client or user. Let’s assume
this situation, and go next.

4.2.2 User Authentication Phase

Password Authentication in SSH1

‘M1) C-I i {username Yk so;
MV) I(C)— S : {usernamec} g,
M2) S I(C) : {acki}ks;s
M2) I-C : {acki}kse,

M3) C—~1 : {password,}ksc,
M3') I(C) =S : {passwordc}ycs,,
M4) S—I(C) : {ack}xs;s
M4) I-C : {acka}kse;

In this user authentication phase after the previous phase,
the client C sends its identifer usernamec encrypted with
KScr, to the intruder 7 (M1). No caring about the iden-
tifer, the intruder‘ sends usernamec encrypted with KSrg
(M1'). Receiving it, the server confirms usernamec within
its database. The server notifies the acknowledgement ack:
to prompt the next (M2). The intruder decrypts it, sends
ack: encrypted with KSc; (M2'). And then, the client

sends its plaintext password encrypted with KSc; (M3).
The intruder gets its password dexterously. Although it is
unnecessary now, let’s continue it for masquerading the mir-
ror server. It also sends its password encrypted with K Srs
(M3’). Finally, the server returns the acknowledgement ack»
(M4). The intruder also sends the acknowledgement (M4').
Moreover, the intruder can provide the client to read or write

any files it wants.

You may think that, owing to foolishly connecting with
the intruder, the user is not clever. Well, let’s go to see the

way of the public key authentication.

Public Key Authentication in SSH1

M1l) C—1I . {usernamec}ksq,
M1) I(C)— S : {usernamec}ks,s

M2) S—I(C) : {acki}ks;s

M2') I->C . {acki} ks,

M3) C-—1I ¢ {modulusc} s,

M3') I(C)— S : {modulusc}ys,,

M4) S —I(C) : {{challenge}Pc}KS]S
M4) I->C ¢ {{challenge} p_ }KSCI
M5) C—1I : {f(challenge, Scr)}ksc,

Firstly, the client C sends its identifer usernamec to the
intruder I (M1). And then, the intruder I pretending the
client C sends the identifer to the server S (M1'). Receiving
it, the server confirms usernamec within its database. The
server notifies the acknowledgement ack; to prompt the next
(M2). The intruder decrypts it, sends ack; encrypted with
KSc; (M2'). And then, the client sends modulus encrypted
with KScr (M3). It also decrypt it, and sends it encrypted
with K Srs (M3'). Receiving it, the server creates challenge,
encrypts it with the public key Pc, returns it to the intruder
pretending the client (M4). Note that, since challenge is
encrypted with the public key Pc, the intruder can’t de-
crypt to obtain challenge. Therefore, the intruder sends
{challenge} p, to the client (M4'). And then, the client de-
crypts the encrypted message with its private key Pg 1 com-
putes the hash value of concatenation of challenge and S¢;,
and returns the hash value (M5). Well, since the intruder
and server shares the session identifer Srs, the intruder
should make the message such as {f(challenge, Srs)}rs;q-
However, since the intruder doesn’t know challenge, 1t can’t
make the message! Therefore, the SSH1 protocols with pub-
lic key defeat the intruder!! If the intruder continue the ses-
sion, the server can detect its existence. ‘

4.3 Attack over the SSH2 protocols

As well as SSH1, there needs the assumption: the client

firstly connects with the intruder masquerading the server,
e.g. the mirror server.
4.3.1 Key Exchange Phase

M1l) S+ I(C) : SA4

Ml) IeC : SA

M2) C—1 : Kc

M2) I(C)—=S : K;

M3) S—I(C) : Ks,Ps,
{f(‘/lyVS)IlaIS;PSyKI)KS)KSIS)}Ps—:l

M3) I-C . Kr, Pr,
{f(Vc,V],Ic,b,P],KC,KI,KSCI)}Fl_l

M4) C—=1 : {KSci}kse:

M4') I(C)— S : {KSis}ks;s

Firstly, the client C and intruder I negotiate some ses-
sion parameters with SA (M1), similarly, the intruder pre-
tending the client and server S negotiate (M1’). Next, the
client C computes K, sends it to the intruder I (M2), and
the intruder also computes K, and sends it to the server S
(M2'). After receiving it, the server S computes the session
key KS;s. And, it also computes H, which is the session
identifer, a hash value of a concatenation of Vi, Vs, I, Is,
Ps, K1, Ks, and KS;s. Moreover, the server sends Ks, the
host key Ps, and the hash value H signed with Pg' (M3).
And also, the intruder computes the values, and sends K7,
the host key Pr, and the hash value signed with its private
host key P;' (M3'). When the client receives them, using
by its database, it confirm if P; ! really is the host key corre-
spoding to I. and then, the client also computes the session
key KScr, and verifies the signature of H with its host key
P;. Finally, the client and server confirms the session key is
shared (M4 and M4').

Now, the session identifer S¢; and session key K Sc1 are
shared between the client C and the intruder I, and also,
Srs and K Sis are shared between I and S.

4.3.2 User Authentication Phase

Password Authentication in SSH2

M1) C-—I : {usernamec,passwordc} g,
M1) I(C)— S : {usernamec,passwordc}ys,
M2) S—=I(C) : {ack}ks;s
M2) I—»C : {ack}kse;

In' this user authentication phase, the client C sends
usernamec and passworde encrypted with KScr, to the
intruder I (M1). The intruder obtains its password in this
step. For masquerading the mirror server, it continues the

session. The intruder I sends usernamec and passwordc

to the server S (M1'). Receiving it, the server confirms
usernamec and passwordo within its database. Finally,
the server returns the acknowledgement ack, which denotes
success or failure of the authentication (M2). And also, the

intruder notifies the acknowledgement (M2').

Public Key Authentication in SSH2

M1)C —1:

{usernamec, Pc,{usernamec, Pc,Sc1} p-1}xs0;
C

The client C sends its identifer usernamec, its public key
Pc, and the message {usernamec, P, Scr} signed with its
private host key P5', to the intruder I (M1). For mas-
querading the client C, in the next step, the intruder I should
make the message {usernamec, Pc, S1s} o Since the in-
truder does not have the C’s private key P35, it can make
the message. Note that the session identifer Srs in this mas-
The SSH2

protocols with public key prevent the intruder’s attack.

sage is different from one in the C’s message.

5. Discussions

5.1 For Improvement

As it was explained in the section 3.1, the intruder mas-
querading the server can compel the client to decide the way
of authentication proposed by the intruder. Therefore, as the
password authentication holds defects, the intruder can force
to utilize the password way if the user continue the session.
On one side, user authentication with the public key can
prevent the above intruder, on the other side, user authen-
tication with password can’t prevent it. This inconsistency
obviously is caused by the defect of the SSH.

Well, to prevent the attack on password authentication,
for example, one of the following changes is essential in the
password authentication phase:

(1) The plain text password must not be transmitted.
Naturally, the session key and the server’s public can’t be
trusted.

(2) The server utilizes the challenge and response
scheme: after the server sends the random challenge en-
crypted with the password, it can identify the client if re-
ceiving the proper modified response.

5.2 Related Work

There is the dsniff package[13], which can execute the
MITM attack to the SSH1 protocols. This pack includes the
programs sshmitm and dnsspoof. The former can snatch the
session from the client C to the server S, and transmit its
public key for pretending the server S. The latter can rewrite
the entry in the DNS (domain name system) server.

The following is the dsniff’s attack scenario:

MO) C —I(S) : requestc

MO') I(C)— S : requestc

M1) S§—I(C) : Ps,Hs,SA,RN

M1') I(S)—C : Py, Hy,SA RN

M2) C-—I(S) : SA, RN, {{KScr}p, }u,
M2) I(C)- S : SA,RN,{{KSJs}pS}HS
M3) S§—I(C) : {ack}ks,s

M3') I(S)— C : {ack}ksy,

Firstly, when the client C' connects to the server S, using
dnsspoof, the intruder deprives the session to connect with
sshmitm on its machine (MO and M0’). Nextly, the server
sends its reply (M1), and the intruder also sends the corre-
sponding messages (M1’). In this step, importantly, since
the client C intends to the server S, it thinks that the host
key must be Ps. However the received host key Py is differ-
ent from the key in its database, so the client program warns
the change. A nervous or careful user may perceive danger,
but someone may not. Moreover, the SSH design may not
guarantee to protect such optimistic user.

Well, we confirm our attack over SSH1 can be executed
by using this tool. However, there is a big difference: the
intruder assumed in the dnsspoof pretends the server. Since
this tool is designed for the session hijack attack to pretend
the server S, it transmits S’ environment parameters, e.g.
the server’s identifer. So, there needs to modify the tool for

our attack.
6. Conclusion

In this paper, we consider the architecture of the SSH,
provide the defects of the SSH in the password user authen-
tication after the key exchange phase. And more, owing to
the SSH design, the user using the public key authentication
may be force to expose its password if it wants to continue
the session. Possibly the SSH designers may predict this at-
tack and say no problem. However, it must cause a kind
of damage to its user, and this is the defect which can be

avoided in its design.
X m

[1] Daniel J. Barrett, Richard E. Silverman: SSH, The Secure
Shell, O'REILLY, February 2001, ISBN:0-596-00011-1.

[2] T.Ylonen: The SSH (Secure Shell) Remote Login Protocol,
Internet Draft,Network Working Group, November 1995.

[3] T.Ylonen, T Kivinen, M.Saarinen, T.Rinne, and S.Lehtinen:
SSH Protocol Architecture
draft-ietf-secsh-architecture-11.txt, Internet Draft,
Network Working Group, November 2001.

[4] T.Ylonen, T.Kivinen, M.Saarinen, T.Rinne, and S.Lehtinen:
SSH Transport Layer Protocol
draft-ietf-secsh-transport-11.txt, Internet Draft, Net-
work Working Group, November 2001.

[5] T.Ylonen, T Kivinen, M.Saarinen, T.Rinne, and S.Lehtinen:
SSH Connection Protocol
draft-ietf-secsh-connect-14.txt, Internet Draft,Network

Y|

(12]

n3)

Working Group, November 2001.

T.Ylonen, T.Kivinen, M.Saarinen, T.Rinne, and S.Lehtinen:
SSH Authentication Protocol
draft-ietf-secsh-userauth-13.txt, Internet Draft,Network
Working Group, November 2001.

M.Friedl, N.Probos, W.Simpsom : Diffie-Hellman Group Ex-
change for the SSH Transport Layer Protocol
draft-ietf-secsh-dh-group-exchange-00.txt, INTERNET
DRAFT, Network Working Group, April 2001.
http://www.ssh.com/
http://wwu.openssh.com/index.html

G.Lowe : Breaking and Fixing the Needham-Schroeder
Public-Key Protocol Using FDR, Tools and Algorithms for
Construction and Analysis of Systems, ppl147-166, 1996.
T.Saito, M.Hagiya, F Mizoguchi: On Authentication Pro-
tocols Using Public-Key Cryptography, IPSJ (Information
Processing Society of Japan} Journal, Vol.42, No8, pp2040-
2048 (in Japanese), 2001.

A.Freier, P.Kaltorn, and P.Kocher : The SSL Protocol Ver-
sion 3.0,

http://home.netscape.com/eng/ss13/draft302. txt
http://www.monkey.org/ dugsong/dsniff/

