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Abstract

Different sensing technologies have made way to understand user environment which

is a vital task to provide environment-oriented services in an ubiquitous computing sce-

nario. Many sensor devices are expected to be spatially distributed over the user envi-

ronment. In order to understand the precise status of an user in the space, it is very

important to determine the right location of these sensors. Many schemes have been

proposed so far to determine sensor locations by means of signal strength in open space.

However, these schemes are unable to perform well when obstacle appears in the space

like an in-building scenario. In this paper, we propose a location determination scheme

based on accumulated data from the sensor devices and show the simulation results.

1 Introduction

The ubiquitous computing environment depends on many kinds of sensors and devices

to discern the user’s context, a vital piece of information needed to provide environment

oriented services. The accuracy with which the positions of the sensor and devices are

known is a key determiner of service success. When there are no obstructions, such as

outdoors, sensor location can estimated from GPS(Global Positioning System) data.

Unfortunately, GPS is unable to perform well when the sensors do not have a clear

line of sight to the satellites. Alternatives to GPS, the use of RFID tags or wireless LANs,

have been discussed to detect the location of humans within buildings. A representative

research effort is Aware Home[1]. The accuracy of LANDMARC[2] system, which uses

RFID tags, is about 3 meters, while that of the ekahau[3] system, which uses a wireless

LAN, is about 2 meters. Such levels of accuracy are misleading when we consider that 1

meter can mean the difference between being in a smoking space or being in a smoke-free

zone.

We claim that it is not realistic to use wireless devices for detecting human location

and the preferred approach is to place many short-range sensors in each room. This raises

the practical problem of establishing sensor location. This paper proposes a location
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determination scheme based on accumulated data from sensors and shows simulation

results.

2 Our approach

There are two main approaches to handling location information. The most basic

approach is to employ an absolute coordinate system, such as the one employed by GPS.

However, since we consider only in-building environments, we use the semantic location

model[4] and assume that every room has a sufficient number of sensors. In this paper,

”The room” is designated as the unit of position and our goal is to install and group

the many sensors in each room. Each sensor has a unique identity number, its detection

area is circular and does not extend through internal walls. These sensors return 1 when

a human is in the sensing area or else 0. An assumption is that each room has at least

one sensor, the key sensor, that holds the identity of the room.

Our goal is to separate the set of all sensors into subsets of sensors. Each subset of

sensors corresponds to a room and so includes exactly one key sensor.

The direct approach is to group those sensors whose sensed values are similar. This

is because sensors located along a path along which people often walk will be activated

in sequence. That is, two sensors belong to the same group, if their values change in a

predictable manner.

Our approach basically follows this approach. However, it has a problem with clearly

differentiating rooms from each other, because sensor chains can be formed that run from

room to room. So, we have to determine which sensors are located on room boundaries.

What is a boundary sensor? We assume that the rooms have regular doorways and so

the sensors at the door way, the boundary sensors, exhibit greater variation in sensor

activation pattern. For example, the doorway may be entered from either side or directly

from the front. The first step of our proposed algorithm, described in Section 3, observes

the sensor activation patterns from the probability viewpoint, and terminates the group

at such points.

The next step of our algorithm, described in Section 4, calculates a rough physical

length of the distance between such sensors and the grouped sensor, not in a probabilistic

way. In Section 5, we will show simulation results.

3 Grouping sensors algorithm

This algorithm finds the proximity of sensors in the space (refer [5] for details). We

introduce a brief outline below. First, we find the sensors activated when a human moves

within a room.
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Key sensors are defined as K = {K1,K2, · · · , Kn}, and defined S = {S1, S2, · · · , Sm},
the group correspond to each key sensors C = {C1, C2, · · · , Cn}, and defines Ci = {Ki},
The probability of a human entering sensing area Si when the human moves from sensing

area Sa to sensing area Kb is defined as P (Sa → Kb, Si). The probability of a human

entering sensing area Ci when the human moves from sensing area from Sa to Cb is

defined as P (Sa → Cb, Ci).

We show the algorithm which we find the groups C of the proximity of sensors.

For all b (1 ≤ b ≤ n), Ca := Ca ∪ {Si} if P (Sa → Kb, Si) > α.

For all b (1 ≤ b ≤ n, i 6= b), Ci := Ci ∪ {Sa} if P (Sa → Cb, Ci) > α.

This process is continued until Ci stops changing. The result of C is a set of sensor

elements.

4 Distance estimation algorithm

This section describes the position estimation algorithm based on the sensor grouping

algorithm. The sensor grouping algorithm has a weakness in that sensors that lie on

group boundaries are often not grouped. To rectify this omission, we calculate the

distance between boundary sensors and non-grouped sensors.

Moving time can be taken as a simple representation of distance, and the naive

approach is simply to average the recorded values. However, this is not practical since

human movement can be interrupted unexpectedly. Our solution, the distance estimation

algorithm, is to calculate the probability of moving from one sensing area to another in

a predefined period of time.

The sensor reaction sequence At is given as At = {st1, st2, · · · , stn} in time t. Each

sti is 1 if a human is in sensing area sti at time t, but sti is 0 otherwise. We define the

sequence Bi (0 ≤ i ≤ m) when interval time is T (T ≥ 1).

Bi = (max(s(iT )1, s(iT+1)1, · · · , s(iT+T−1)1), · · · , (max(s(iT )n, · · · , s(iT+T−1)n)

Bi is the sensing status sequence discerned from time iT to (i + 1)T − 1, and we

define Bik as the nth element of Bi. Next we define f as follows.

f(i, j, k) = max(Bij , Bik)

We define probability P ′(j, k, T ) which means that a human moves from sensing area

Sj to sensing area Si at time t

P ′(j, k, T ) =
∑m−1

l=0 f(l, j, k)
m
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We calculate the minimum T (P (j, k, T ) > β) and we define the distance d(j, k) = T , and

calculate the average distance Mi between non-grouping sensor Sx and grouped sensor

Ci = {Si1, Si2, · · · , Sik}.
Mi =

∑|Ci|
k=1 d(ik, x)
|Ci|

|Ci| is the number of elements Ci.

We find the minimum Mi, and determine the group of Sx. Group Ci is the group of

Sx.

5 Simulation results

We simulated the following environment using the algorithms introduced in Sections

3 and 4. First, we set 6 rooms in a virtual space as shown in Figure 1. We set one key

sensor at the center of each room; the other sensors were set randomly throughout the

space. We set a human movement pattern as follows.

• The human sets destination randomly in this space and walks straight to the des-

tination.

• The human waits for a definite period of time at the destination.

• Next, the human sets another destination randomly and walks straight to that

destination.

• Walking speed is a constant velocity with a random variation of up to 10% .
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Figure 1: Simulation space

Only one human was present in this simulation space, and we simulated the grouping

of sensors based on the proposed algorithms. In this simulation, threshold value alpha

was set at 0.5.

We define below the correct answer percentage C for evaluating our algorithm.

C = 1− (Erroneous group count) + (non-grouped count)
count of sensors in area A
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Erroneous group count is grouped sensors not in area A. Non-grouped count is non-

grouped sensors in area A. Count of sensors in area A is total number of sensors in area

A. We ran the simulation 100 times, and sensor location was changed randomly in each

trial.

C was 78% if only the algorithm of Section 3 was used. We show one of the simulation

results in Figure 2. Black circles are non-grouped sensors, and white circles are grouped

sensors.

Figure 2: Simulation result (only Section 3 algorithm used)

Section 3 algorithm was unable to achieve full grouping due the random behavior

of the simulated human. In Figure 3, the paucity of human presence meant that some

sensors were not grouped successfully.

Next, we applied the algorithms of Sections 3 and 4, and reran the simulations.

Threshold value beta was set at 0.5. The result is C=92%, which indicates the benefit

of applying both algorithms.

Figure 3: Simulation result (Both proposed algorithms used)

This paper describes the simulation of just one room pattern, but we have checked

many other room patterns and found similar levels of grouping performance.
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6 Conclusion

To automatically group large numbers of sensors spread throughout buildings, we

focused on the patterns of sensor activation created by humans as they walked around

the rooms containing the sensors.

We have proposed an algorithm which groups such sensors according to the room

configuration. Our algorithm consists of two steps, rough grouping using probabilistic

calculation and distance estimation for detail grouping.

The simulation results show that our algorithm can group sensors at 92% accuracy.
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