
Document Based Context Aware Computing

Kazuki Yokoi∗ Tsubasa Unemura∗ Shigeo Fujiwara†

Nobuhiko Nishio‡

ABSTRACT
In recent years there has been a lot of research in context aware computing. Most research generates
the context through the combination and abstraction of information obtained from sensors. However
higher abstraction level contexts cannot be generated if only sensors are used.

Therefore, we have developed an approach that treats context history and the current context at
a high level of abstraction by not only using sensor information but also by allowing the user to
actively take part in context recognition, by transmitting and thereby specifying the context.

In this paper, we explain how to semanticaly describe the user’s tasks such as reading and writing
mail, business manuals as well as knowledge of the users past actions. In addition, we propose a
method to recognize context using the arrangement of user tasks.

1. Introduction

With the development of wireless technology and
miniaturization of high-powered computers, connect-
ing all objects to the network and embedding com-
putation function ality inside every day environment
is becoming possible. Such a computing environ-
ment is refered to as ubiquitous computing, and it
has been researched to support intelligent and coop-
erative user task since the beginning of the 1990’s [1].
Context aware computing is one area of research
concerning such ubiquitous computing environment.
The purpose of context aware computing is to reduce
the complexity of the process by which services are
presented and provided to users.

There are a lot of approaches [2, 3] concerning sen-
sor based context aware computing that recognizes
the context by using sensors. Because many of them
define context as being obtained momentarily from
the sensors, it is difficult for them to recognize con-
text history. Further, because information obtained
from the sensors is low level, even if information ob-
tained from two or more sensors is combined, it is
difficult to recognize high abstraction level contexts
such as a meeting.

We have feel that this kind of context recognition
has limitations. Therefore, we are conducting re-
search based on the idea that the user is actively
involved in the recognition of context and explic-
itly passes context to the system.Because the user
is actively involved in the recognition of context, the
system can recognize a higher level of information

∗Department of Computer Science, Ritsumeikan University
†UCHIDA YOKO CO.,LTD. Advanced Solution R&D

Center
‡Department of Computer Science, Ritsumeikan University

when compared to using sensors alone. However, the
user’s role in context recognition presents the risk of
transfering the workload to the user. Our research
solves this problem by recognizing context based on
the user’s regular activity.

How to advance user tasks is often decided by
mail, business manuals as well as past knowledge of
user activity in daily life. Users look at such an ar-
rangement of tasks, acknowledge the tasks assigned
to them, performs them, and eventually completes
them as they go about their day. In such a daily
life, if the user can: describe machine readable ar-
rangements of user tasks, pass them to the system,
and notify the system of completed tasks, the system
can recognize: user tasks which a user can face, what
kinds of tasks the user did up until now, and what
kinds of tasks a user will do from now on. We’re con-
templating the possibility of using high-level abstrac-
tion of context in systems because the user themself
describes the arrangement of user tasks. Moreover,
we think that it will become possible to use context
history because, based on the past, the system knows
the arrangements of user tasks to use in the current
and future. Therefore our research examines tech-
niques of describing the arrangement of user tasks
as machine readable, and a framework that binds a
context to services by being passed arrangements of
user tasks and notification of task completion from
user.

Moreover our research is aiming at application to
groupware to be possible to describe the arrange-
ments of user cooperation tasks. In traditional
groupware, when a user shares knowledge or infor-
mation with one or more other users, the user is
forced to input rigidly defined data. Our research

研究会temp
テキストボックス
社団法人　情報処理学会　研究報告IPSJ SIG Technical Report

研究会temp
テキストボックス
2005－UBI－8（48）　　2005／6／10

研究会temp
テキストボックス
－263－



solves this problem by providing a technique to flex-
ibly describe the arrangement of user tasks.

Since our research recognizes context based on the
exchanged description information, we call approach
of such a this research ”document based context
aware computing”.

2. Related Work

The paper [4] proposes the technique that the sys-
tem generates context by making a plan based on
a user’s supplied goal, and binding its services to
the context. This technique is similar to our own
in that the system recognizes context based on the
information that user’s describe. However, our re-
search is different in that the system can also use
context history by using past arrangements of user
tasks. Moreover, the purpose of our research differs
by supporting tasks of two or more users.

The OKAR project [5] is supporting the produc-
tivity drive and knowledge creation in business. This
project propose a format for describing the intellec-
tual operating activity defined by OWL [6]. This
project makes it possible to share operating activity
information that is used in cooperation with a dif-
ferent system or apparatus, to accumulate business
activity knowledge, and to utilize knowledge across
organizations.

3. Proposed Technique

In this section, we describe the details of our pro-
posed technique.

3.1 Outline

We focus on exchanging mail as the technique of
passing context to the system by using that activity
of the user’s daily life. Because mail is using user
supplied task arrangements and passing task modifi-
cations as well as results to other people in it by user
in daily life. We believe that extending the mailer
reduces the time when the user passes context ex-
plicitly. If the user can describe machine readable
arrangements of user tasks by extending a mailer,
the user can pass it to the system as well as other
users who do joint work. Moreover, if the system can
generate text from it, users can pass arrangements of
user tasks in a format that other users easily under-
stand. Users perform tasks by referring to arrange-
ments of user tasks passed with the extended mailer,
filling out the reply, and replying in the new ma-
chine readable description. Thus the user can add to
task arrangement modifications and can inform the
system of task achievements.

For example, Mr. Fu who is an office worker who
might receive the following mail from his boss con-
taining an arrangement of tasks in order to prepare
for a meeting.

'

&

$

%

To: Mr. Fu

From: Your boss

———————————————————
Hello，in preparation for the following meeting,

please decide on an agenda, reserve a conference

room, and create a report.I would like to see

the report, so please send it to me.Also，
please print it．

The arrangement of their tasks can be shown with
a UML activity diagram where tasks are oval-shaped
and task order relationships are shown with an ar-
row. Also, ”report” related to the task can be shown
with dashed lines.

fig 1: Activity diagrams

This research enables the description of relation-
ships such as in Fig. 1 in a machine readable format.
Users decide to impose the arrangement of user tasks,
and pass it beforehand to the system. Further, the
user passes progress modifications and results to the
system as well as which tasks that user is doing and
which have been completed. This way, the system
recognizes which tasks a user can face, namely the
system knows the user’s current context. In the ear-
lier example of sending the machine readable task ar-
rangement description to Mr. Fu, Mr. Fu’s boss de-
scribe arrangement of their tasks and send it to Mr.
Fu. Mr. Fu receives the mail and passes progress
such modifications and results back to the system.
Therefore, as Mr. Fu’s context changes the context
aware service become available.

After Mr. Fu decides on an ajenda, reserves a
conference room, and passes achievement of these
tasks to the system:

1. Mr. Fu sits down in front of his PC. Then, he is
asked whether or not he wants to use the word
processor service from the PC; to which he an-
swers ”yes”. Finally, he is able to write his re-
port using the word processor service.

2. Mr. Fu finishes creating the report and passes
it to the system and leaves the office on some

研究会temp
テキストボックス
－264－



errand. Around that time his boss is asked
whether he wants to view the report on his PC
and he answers ”yes”. Then his boss is able to
see the report with a presentation service.

3. Mr. Fu returns to the office, and he is asked
whether he wants to print the report from the
printer near the entrance of the office. He an-
swers ”yes”, and the printer prints the report.

In our proposed technique, a user describes the ar-
rangement of their tasks in a machine readable for-
mat and passes it in advance to the system. Further,
the user passes progress information such a modifi-
cations and results to the system. This research rec-
ognizes context history by these techniques and en-
ables recognition of cooperative tasks between mul-
tiple users as well as context from considering previ-
ously executed tasks. In this research, we propose a
technique where users describe arrangements of user
tasks as the machine readable ”TaskTemplate”. Fur-
ther, we propose a ContextStackFramework that rec-
ognizes context with the help of user input and binds
the context to service. In this research, we are not
concerned with we describing every arrangement of
tasks in TaskTemplate and we are not necessarily
forced to. For example, although people use a score
in order to play music, people are not necessarily
forced to play according to the score. TaskTemplate
is like the score. It is important for the user to be
able to perform tasks as they wish when using Task-
Template and ContextStackFramework.
3.2 TaskTemplate

The requirements for TaskTemplate are shown be-
low.
3.2.1 Enduser Documenting

Since TaskTemplate is described by user in daily
life, TaskTemplate enables to write easily also by en-
duser. For this reason, we make the structure of
TaskTemplate simple. Besides, TaskTemplate en-
ables to create new TaskTemplate by combining ex-
isting TaskTemplate.
3.2.2 Order Relationship

According to mail from Mr.Fu’s boss, Mr.Fu does
”deciding ajenda” after doing ”reserving a conference
room” or ”creating report”. Thus, arrangement of
user tasks has a defined order. There are two kinds
of order relationships: those which can be performed
in parallel, and those which must be performed se-
quentially. TaskTemplate needs to be able to repre-
sent both in order to give an order relationship to
the arrangement of user tasks.
3.2.3 The Element Which Define The Task

Itself
Task has the elements which defines the task it-

self. For example, the ”creating report” task has
the elements which defines itself such as ”Mr. Fu
(do)” and ”report”. Elements such a ”report” may

be shared by two or more users. TaskTemplate en-
ables to express such an element which constitutes
the task itself.

Although tasks are made up of elements, the el-
ements may not be OK at a certain time. For ex-
ample, although ”report” is an element of ”creating
report”, the ”report” is not completed at the begin-
ning of the task however after the user finishes the
task. Also, although ”report” an element of ”print-
ing report”, ”report” is not available until it is writ-
ten by the user. So task elements may also not be
available until earlier tasks are completed. In other
words, the user is doing task is satisfied element. In
this research, we define task c? as satisfying all the
elements in the task. Therefore, a task is not com-
pleted unless all the elements in the task are com-
pleted. TaskTemplate provides a slot for placing in
the elements related to task. Satisfaction and dissat-
isfaction of the element are expressed by whether or
not the element is contained in the slot. We refer to
a slot as a ”plugging slot”.
3.2.4 Level of Task

User classifies arrangement of user tasks by giv-
ing a level to the task. According to mail from
Mr.Fu’s boss, the ”preparing meeting” task is lo-
cated in a higher rank level than the other tasks.
The other tasks are located in a lower rank level
from the ”preparing meeting” task. In order that
classifies arrangement of user tasks and enables it to
describe, TaskTemplate enables to express level of
task. In this research, a task that is a lower level
than another task is refered to as a subtask.

A slot shared between multiple tasks expresses a
link between subtask slot and the slot of a higher
level task. For example, the ”report” slot in the ”cre-
ating report” task is linked to the ”report” slot in the
high level ”preparing meeting” task.
3.2.5 Semantics of Task

If the system can’t understand the kind of task and
slot, the system can’t bind a context to the appro-
priate service. For this reason, we need to provide
semantics for tasks and slots in TaskTemplate by us-
ing existing ontologies.
3.3 ContextStackFramework

The requirements for ContextStackFramework are
shown below.
3.3.1 Comunication with Users

ContextStackFramework recognizes context based
on TaskTemplate and context accompllshments?
from users. ContextStackFramework allows to comu-
nication with users through mail, web interface, etc.
For example, ContextStackFramework can comuni-
cate with a user through TaskTemplate attached to
mail from the user.
3.3.2 Management of TaskTemplate

Generally, users have a lot of arrangements of
user tasks. For this reason, ContextStackFramework
needs to be able to manage more than one TaskTem-
plate.

研究会temp
テキストボックス
－265－



TaskTemplate has tasks in which more than one
user cooperate by the user. In order for Con-
textStackFramework to obtain context for every
user, it must manages context for every user.
3.3.3 Expression of Context

TaskTemplate is described as a relationship of
task ordering and levels. This characteristic is sim-
ilar to how one describes functions in procedural
programing language. Functions which a computer
can execute are pushed onto the function stack in
the execution management architecture of procedu-
ral source programs. Computer executes calculations
in a function which was pushed onto the function
stack, until the computer finishes exeuting the func-
tion. Besides, the functions whose calculations have
finished are pop off the function stack, and the func-
tion is separated as the processing of a computer.
In other words, the function stack contains func-
tions which the computer can execute. For this rea-
son, ContextStackFramework is likened to a function
stack, and ContextStackFramework expresses con-
text which a user can enter in a TaskTemplate by
using a stack. In this research, we call this stack Con-
textStack. ContextStack is pushed context. Context
pushed onto ContextStack is popped off when a user
do the context and achieve the context. In Task-
Template, the plugging of all of a task’s slots express
completion of the task. For this reason we make sure
that the client can plug slot elements.
3.3.4 Context to Services Binding

ContextStackframework has functionality to bind
contexts to services when users complete tasks at
the request of clients. The function bind context
to service based on the conditions for filling a slot,
task of semantics or slot of semantics. For example,
when ”creating report” is the context, ContextStack-
Framework binds it to a word processor service in
order to plug into ”report”. ”

4. Design
4.1 Design of TaskTemplate

In this section, we explain the design of TaskTem-
plate.
4.1.1 Overall Structure

TaskTemplate is defined as on XML Schema [7]
and on RDF Schema [8]. One task has one XML
and one RDF in a TaskTemplate structure. In the
RDF of the task and task slots are described the
semantics. In the XML, the task described by the
RDF is maintained and the relationship between the
slots of the task and the slots of subtasks as well as
the order relationship of subtasks are described.
4.1.2 XML Description

The XML description elements are shown below.

• task-template

task-template elements has ”using” and
”subtask-template” as child elements. Further,
it has ”value” as an attribute. The ”value”

attribute is specifies the location where the
RDF exists either by relative path or URL.

• using

The using element enables the handling of the
location where the XML of subtasks of the task
specified by ”task-template” as a variable. It
has ”value” and ”name” as attributes. The
value attribute is specified the location where
RDF exists by relative path or URL. The name
attribute is specifies the name of the variable
corresponding to the value attribute.

• subtask-template

The subtask-template element has ”slotlink”
and ”prerequsite” as child elements. Further,
it has ”name” as an attributes. The name at-
tribute specifies the optional variable name of
subtask that specifies the using element.

• slotlink

In order to that slotlink element enables us to
express slots shared between tasks by express-
ing links between a task slot and a subtask slots
specified by the task-template elements. The
slotlink element has ”slot” and ”subslot” as at-
tributes. The slot attribute specifies the URI of
the task slot specified in the task-template el-
ement. The subslot attribute specifies the URI
of the task slot specified in the subtask-template
element.

• prerequisite

The prerequisite element enables us to express
orders relationship of subtasks. It has ”name”
as an attribute. The name attribute specifies the
name variable of the subtask that executed be-
fore the subtask shown in ”subtask-template”.

4.1.3 RDF Description
In the RDF about task and task of slots are de-

scribed. The described information includes: task
semantics, task title and description, slot semantics
as well as slot title and description. In order to en-
sure that the RDF description provides the ontolgy
for expressing task and slot of semantics, it is defined
with RDF.

The vocabulary of RDF description is defined as
an RDF Schema. In this paper, task and slot name
space is described as ”task” and ”slot” respectively.

• Task

The task is expressed as an instance of the
task:Task class. We describe the property which
has this task class in the domain. The task:type
property specifies semantics of task as class of
gerund or class of noun. The task:topicID prop-
erty specifies the unique id of the TaskTem-
plate. The unique id is expressed as a hash of
the mail address of the user and a timestamp

研究会temp
テキストボックス
－266－



at the time they pass a TaskTemplate to the
ContextStackFramework. The task:title and the
task:description property provide human read-
able a title and description, respectively. The
task:slot property specifies the slot which defines
the task itself.

• Slot

The slot is expressed as an instance of the
slot:Slot class. We describe the property which
has this slot class in the domain. The slot:type
property specifies slot semantics as noun class.
For example, the slot should be plugged ex-
ecutor of task when class of slot:Executor is
specified at the slot. We assume that the el-
ement plugged into the slot can be referenced
by the URI. For example, user can be refer-
enced by their mail address. For this reason,
the slot:identifire property is specified by a URI
when the element is plugged into the slot. Be-
sides, it contains an empty string when an ele-
ment is not plugged into the slot. The slot:date
property specifies form of YYYY-MM-DD when
a slot is plugged.

4.2 Design of ContextStackFramework
ContextStackFramework is composed of 3 mod-

ules. They are ContextServerConnector, Con-
textServer and ContextStackManager. In this sub-
section, we explain the design of ContextStack-
Framework.

fig 2: ContextStackFramework

4.2.1 ContextServerConnector
The purpose of ContextServerConnector is to take

full change of communication logic with clients. It
leaves concrete logic to ContextServer as communica-
tion logic is made to be independent of concrete logic.
For some reason, ContextServerConnector is defined
as an interface, it can be accessed by using various
communication techniques such as SOAP, RMI, etc
depending on the implementation.

4.2.2 ContextServer
ContextServer performs the concrete logic that

the ContextServerConnector receves from the client.
Next, we describe it.

• Acceptance of TaskTemplate

ContextServer accepts TaskTemplate that Con-
textServerConnector receves from the client
based on a file or URIuri and then parse it. If
TaskTemplate has tasks performed by multiple
users, ContextServer parses the TaskTemplate
for each user. And, ContextServer searches the
ContextStackManager that manages TaskTem-
plate and contexts for every user transfers the
TaskTemplate.

• Plugging Slot Element Acceptance

ContextServer receives the element for plugging
slot of optional user that ContextServerCon-
nector receives from the client. Besides, Con-
textServer looks up ContextStackManager the
user’s through which it transfers the element to
be plugged in ContextStackManager. At the
time, there are 2 cases: the client transfers
the element specifying the destination slot, and
client transfers the element without specifying
the slot.

• Context to Service Binding

ContextServerConnector receives an optional
user service list from the client and the Con-
textServer transfers it to user’s ContextStack-
Manager. A service is a table of a service id
and a description of service ,and a service list
is a list of services. Service description de-
scribes in the service used the kind of tasks
and slots. ContextServer receives contexts from
ContextStackManager and it binds contexts to
services based on service description in the ser-
vice list. And, ContextServer creates index ta-
bles of context and service id. Additionally,
ContextServer transfers these index tables to re-
questing client via ContextServerConnector.

4.2.3 ContextStackManager
ContextServer exists for every user and Con-

textServer manages TaskTemplate received by Con-
textServerConnector. When ContextStackManager
creates a ContextStack that manages context by
using structure of stack and ContextStackManager
pushed context based on level of task to Con-
textStack. After that, if a context is completed, Con-
textStackManager pops the context and it pushes the
next context based on the task level and order rela-
tionship of tasks of orders and levels.

When ContextStackManager accepts an element
for a plug in slot, ContextStackManager plugs the
element in, if the slot is specified. When the plug
in slot is not specified, a slot that it looks like

研究会temp
テキストボックス
－267－



the element can be inserted into based on the ele-
ment semantics is searched for, and the search re-
sult is returned to the requesting client via the Con-
textServerConnector. When the client receives the
result, the client plugs the element in based on the
result.

5. Current Status
Preparing TaskTemplate schema and implement-

ing ContextStackFramework is finished currently.
ContextSeverConnector is implemented as a service
provider of in the UnitedSpaces [9] that is network
service architecture.

UnitedSpaces in a logical space which manages ser-
vices and users. Users can login to a space by using
client software, obtain a service list for the space,
and can then use services by selecting them. At such
time, it is rack for user to select what kind of service.

By binding contexts to services and providing a
service list we think that we efficiently select ser-
vices based on the user. We implement mechanisms
for this purpose. Unlike the example of the mail
shown in section 3, we embedded the mechanisms
for creating TaskTemplate in everyday software such
as web browser, texteditor, etc. For example, we
embedded the button for creating TaskTemplate in
a web browser. When the button is pushed by a user
who is loggined into space, the button creates Task-
Template for the current web content. The button
press also results in the passing of ”browsing web
content” TaskTemplate to ContextStackFramework
through ContextServerConnector. For this reason,
when user finds interesting web content, they push
a button, and when the user logs into space that
has web browser service, the user obtains service list
that contains a service bound to ”browsing web con-
tent” context. Thus, user can select and use services
efficiently. However in implementations up to now,
we cannot such as ease of TaskTemplate description,
etc.

6. Conclusion and Future Work
In this paper we proposed a technique of recogniz-

ing contexts based on the concept of a user activity
recognizing context and specifying it by describing
an arrangement of everyday tasks in a machine read-
able format.

In section 6, in order to ensure that users can de-
scribe TaskTemplate we describe a mechanism for
automatically creating TaskTemplate. However, this
research also assumes users describe TaskTemplate
during their daily activities such as example of mail
in section 3.1. We believe that in order for the user
to describe TaskTemplate, the user should be able
to easily describe them. However, up to now, al-
though we simplified the description of TaskTem-
plate by simplifying modeling of TaskTemplate, we
cannot determine the complexity of user’s describing
the TaskTemplate in RDF/XML by hand.

In the future, we will examine GUI editor and in-
termediate language for that user can describe Task-
Template. Besides, we will implement the mailer ap-
plication shown in section 3.1 and we enables to eas-
ily describe TaskTemplate. Simultaneously, we will
evaluate usability up until a user enjoys services and
comprehensibility of the modeling of TaskTemplate.

References
[1] M.Weiser: ”The Computer for the 21st

Century,” Sicentific American, September
1991,pp.94-100.

[2] Anind K. Dey, Daniel Salber and Gregory D.
Abowd: ”A Context-based Infrastructure for
Smart Environments, In the Proceedings of the
1st International Workshop on Managing Inter-
actions in Smart Environments (MANSE ’99),”
Dublin, Ireland, December 13-14, 1999. pp. 114-
128.

[3] Albrecht Schmidt, Kofi Asante Aidoo, Antti
Takaluoma,Urpo Tuomela, Kristof Van Laer-
hoven, Walter Van de Velde: ”Advanced In-
teraction in Context, 1th International Sympo-
sium on Handheld and Ubiquitous Computing
(HUC99),” pp. 89-101, 1999.

[4] Maja Vukovic: ”Plan Based Application Mod-
eling for Context Awareness” Doctoral Collo-
quium. The Sixth International Conference on
Ubiquitous Computing (UbiComp). 2004, Not-
tingham, UK.

[5] Ontology for Knowledge Activity Resources,
http://www.labs.fujitsu.com/jp/techinfo/okar/.

[6] OWL, http://www.w3.org/TR/owl-features/.

[7] XML Schema, http://www.w3.org/XML/Schema.

[8] RDF Schema, http://www.w3.org/TR/rdf-
schema/.

[9] Yu Enokibori, Nobuhiko Nishio: ”Realizing A
Secure Federation of Multi-Institutional Service
Systems,” System Support for Ubiquitous Com-
puting Workshop (UbiSys2004), Part of Ubi-
Comp2004, Nottingham, UK, Sept., 2004.

研究会temp
テキストボックス
－268－




