
A Rule-based System for Sense-and-Respond Telematics Applications

SangWoo Lee†, Jonathan Munson‡, DaeRyung Lee†, Gerry Thompson‡, JungSun Park†

†IBM Ubiquitous Computing Laboratory, Seoul
‡IBM T. J. Watson Research Center, Hawthorne, New York

lsw@kr.ibm.com, jpmunson@us.ibm.com, drlee@kr.ibm.com,
gerryt@us.ibm.com, jspark@kr.ibm.com

ABSTRACT
We introduce technology for supporting telematics-
oriented sense-and-respond applications. Those are a
telematics-oriented event detection service, and pro-
gramming framework supporting it, that enables appli-
cation developers to more easily develop applications
based on the sense-and-respond model. The system
provides a rule-based programming model in which the
application is partitioned in two parts: (1) a set of rules
that operate on low-level position-update events and
which, when triggered, produce high-level, application-
defined events; and (2) logic that acts on the high-level
events, which is deployed outside the event detection
service, and typically within the environment of the en-
terprise deploying the rule. Programmers represent
events of interest in the form of rules, which operate on
both input received from the data acquisition systems
as well as data resources provided and managed by the
application programmers. Programmers declare the in-
puts the rules require, and the system is responsible for
acquiring the inputs. A high-level programming
framework assists programmers in defining the set of
rules, and the actions that respond to events from the
rules, and in deploying the rules to the system.

1 INTRODUCTION

In 2003 the Ministry of Information and Communica-
tion of the Republic of Korea formulated a strategy for
the development of information technology, known as
“8-3-9”—introducing and promoting eight services,
building three infrastructures, and development of nine
new growth engines. In 2004 the government of Korea
and IBM jointly created the Ubiquitous Computing
Laboratory in Seoul, where certain projects funded by
the 8-3-9 program are being carried out. Telematics is
both one of the eight services and one of the nine new
growth engines, and is the subject of two of the UCL
projects, which began in August 2004.

In this workshop we introduce one of those projects,
the focus of which is to develop technology for sup-

porting telematics-oriented sense-and-respond applica-
tions. We present an early result of the project, a proto-
type service we call the “Telematics Event Detection
Service.” The service enables application programmers
to define situations of interest in the form of rules, and
to deploy these rules to the Telematics Event Detection
Service (TEDS). The service receives inputs from ve-
hicles and from other data sources and evaluates the
rules over them. When rules “trigger,” notifications are
sent to the applications that deployed them.

To test basic functions of the service, we created a
simple fleet management application around the func-
tion known as “geofencing.” The application expresses
the geofences as TEDS rules, deploys them to TEDS,
and in turn receives notifications when trucks enter and
leave the geofence. The application is described in Sec-
tion 3.1.

Geofencing is but the simplest of scenarios that we
support with TEDS. We have identified a more com-
plete set of target scenarios that TEDS should support,
and then have used these to define the service’s range
of functionality.

1.1 Target Scenarios

IBM has many discussions with customers and poten-
tial customers about applications the customers are in-
terested in. The following set of scenarios, which span
a range of application domains, has been distilled from
some these discussions.

Detecting changes in vehicle population density.
A public-safety organization is interested in monitoring
the deployment of its emergency vehicles to ensure that
a vehicle can be dispatched to any location within a
certain time. It would like to be alerted when the rela-
tive values between local densities change by a certain
amount.

Track vehicle progress with respect to schedule.
An operator of a fleet of delivery vehicles wishes to
track its vehicles’ progress with respect to their sched-
ules, and be alerted when a vehicle is more than a cer-
tain amount behind schedule. It may also wish to be

研究会temp
テキストボックス
社団法人　情報処理学会　研究報告
IPSJ SIG Technical Report

研究会temp
テキストボックス
2005－UBI－8（19）
 　2005／6／9

五味
テキストボックス
－109－

alerted when a truck is returning empty to the ware-
house so that it may begin preparing the truck’s next
load.

Location-based promotions. A marketing company
handling promotions for certain establishments would
like to be able to notify consumers as they approach
those establishments with special promotions in effect
at that time. It wants to send the promotions only to
those who have accepted the service and who have
been receptive to such promotions in the past, and it
needs to avoid sending the promotion repeatedly.

Location-based warnings. A highways department
in a fog-prone area wishes to warn motorists of dan-
gerous fog conditions ahead so that the motorists will
slow down. They need to be able to create such warn-
ings quickly, and they need be able to distinguish be-
tween vehicles moving toward the conditions and those
moving away.

Congestion detection. A highways department
would like to have real-time congestion maps of area
highways, and to be alerted when aggregate speeds in
particular areas fall below a certain threshold.

Monitoring speed of fleet vehicles. An operator of
fleet of delivery vehicles would like to ensure that its
drivers obey posted speed limits Enterprise user defines
the set of vehicles to monitor, and creates rule that will
periodically compare their speeds with the speed limits
in effect at the location where the speed was recorded.

Detection of excessive speeding. Public safety offi-
cials wish to know when aggregate speeds in a region
are excessively high, either because of the accident rate
in the area or because of particular road conditions.

Proximity to other mobile entity(ies). A rule is de-
fined that when a certain number of the friends are
within a given distance, causes a message to be sent to
the user.

Pervasive gaming. An automobile club wishes to
sponsor a combination road rally/treasure hunt, where
members pair up and follow successive clues to a prize,
but are penalized for exceeding speed limits.

1.2 The Value of a Shared Infrastructure

We believe there may be substantial value in a general-
purpose, shared, infrastructure that could support any
and all of the above services, simultaneously, over a
large set of vehicles. Such an infrastructure would en-
able service providers to reach a broad customer base,
without requiring an investment in their own infrastruc-
ture. With many services using the infrastructure, no
one service must bear the entire load.

2 THE TELEMATICS EVENT
DETECTION SERVICE

Reflecting the structure of sense/respond applications,
TEDS offers a rule-based programming model in
which the application is partitioned in two parts: (1) a
set of rules that operate on low-level position-update
events and which, when triggered, produce high-level,
application-defined events; and (2) logic that acts on
the high-level events, which is deployed outside TEDS,
and typically within the environment of the enterprise
deploying the rule. Figure 1 illustrates.

As shown in Figure 1, programmers represent events
of interest in the form of rules, which “trigger” (return
true) when the events are detected. Rules operate on
both input received from the data acquisition systems
as well as data resources provided and managed by the
application programmers. An example of an applica-
tion resource is the geographical polygon describing a
warehouse site’s area, which would be used in a rule
detecting a truck’s entrance to the site. Rules and rule
resources are described in Sections 2.1 and 2.5.

Applications subscribe to a rule to receive notifica-
tions of its triggering. The notification received in-
cludes any results that may have been computed in the
evaluation of the rule. For example, a rule that deter-
mines if a subscriber’s position lies within any zones
that have a promotion associated with them will, if the
position is within any such zones, include the set of
zones (via identifiers) in the notification to subscribed
applications. Applications may optionally choose to be
notified only when the triggering status with respect to
a particular subscriber changes, either from false to
true, or true to false. For example, an application sub-
scribing to a rule that detects entry to a warehouse site
may wish to receive notifications only upon a truck’s
entry and exit of the site.

2.1 Rules

TEDS rules are essentially condition/action specifica-
tions, and may be as simple as a single Boolean expres-
sion, or a more complicated program with internal
state. A rule condition is a logical expression (i.e.,

“Sensing”
rules

“Sensing”
rules

Sensor and Data
Acquisition
Technology

“Sensing”
rules Response

application
Events of interest

Telematics Event Detection Service

Resources

Application Environment

Application
development and

management

Rule deployment,
application subscription,

resource management

Application deployment
and configuration

Figure 1. TEDS Logical Programming Model.

五味
テキストボックス
－110－

evaluates to true or false) composed of spatial and
temporal logical functions joined through AND, OR,
and NOT operators, and scalar functions joined with
the usual relational operators. TEDS offers a number of
built-in functions, which are described below.

Rule inputs include an entity’s location (along with
speed, heading, and accuracy estimates) received from
the positioning technology, and any other input data
available from the data acquisition technology.

2.2 Rule Functions

The spatial rule functions offered by TEDS operate
implicitly on a subscriber position report, and have
parameters associated with them that will also be input
to the function. The polygonID and pointID parameters
are identifiers for polygons and points. Polygons and
points are specific kinds of rule resources, support for
which is discussed in Section 2.5. Table 1 below
defines built-in logical functions of TEDS; Table 2
defines built-in scalar functions.

Table 1. Built-in Logical Spatial Functions.

Name Parameters
Description

containedIn polygonID | polygonSetID
True iff the entity position is contained in one or more of the
given polygon or set of polygons.
within
DistanceOf

(pointID | pointSetID) distance

True iff the entity position is within the given distance from
the given point or set of points.
within
DistanceOf

(entityID | entitySetID) distance

True iff the entity position is within the given distance from
the position of the given entity or one or more of the given
set of entities.
hasIdentity entity | entitySet
True iff the entity has the given identity or is a member of the
one or more of the given entity sets.
<, <=, ==, !=,
>=, >

scalar_expr1 scalar_expr2

True iff the given relation between the two scalar
expressions is true.
elapsed timer_identifier
True iff the timer identified has expired since the last time
the expression was evaluated. Timers are declared, set, and
reset explicitly, outside of condition expressions, in a
language-specific manner.
before/after time
True iff the timestamp of the SPR is before/after the given
time.

Table 2. Built-in Scalar Functions.

Name Parameters
Description
distance
From

point | susbcriber

Returns distance (in meters) from the given entity position to
the specified point or entity.
distance point (route | path)

Traveled
Returns the distance the entity has traveled from the given
point along the given route or path. A route object is a
precomputed route the susbscriber is expected to take; a
path is a series of positions recorded for the entity. Use of a
path object generates an implicit rule that will record the
entity’s positions.
distance
Traveled

time (route | path)

Returns the distance the entity has traveled since the given
time along the given route or path.

2.3 Rule Language

In the course of developing TEDS, we used multiple
rule languages. Our first “language” was the construc-
tion of rules through building Java object structures of
rule objects, much like an expression tree. We consid-
ered this to be not sufficiently easy to use. We then de-
veloped our own rule language and compiler. In the
end, however, we realized that our primary value lay
not in the rule language itself, but rather with the func-
tions we provide outside the rule engine, such as rule
optimization, application resource management, trigger
reporting, and subscriber management (all discussed in
later sections). Thus we adopted the approach of em-
bedding existing rule engines within TEDS. This not
only enables us to leverage the strengths of the particu-
lar rule engine in use, but gives us more flexibility in
deployment as well.

The rule language we currently use is ABLE [3], an
environment for building intelligent agents. ABLE
supports different kinds of rule programming, through
the variety of inference engines it provides. These in-
clude backward chaining, forward chaining, Rete net-
works, and simple sequential evaluation, among others.
Below is an ABLE rule set that triggers when any one a
set of trucks is in a no-standing zone.

ruleset FMGeofence {
 import
com.ibm.locutil.able.SubscriberPositionUpdate;
 import com.ibm.locutil.able.LUContext;
 import com.ibm.locutil.able.LURuleResults;
 import java.util.ArrayList;
 variables {
 SubscriberPositionUpdate sub;
 LUContext luCtx;
 LURuleResults results = new LURuleRe-
sults();
 ArrayList fcnResults = new ArrayList();
 }
 inputs { sub, luCtx }
 outputs { results }
 void process() using Script {
 : if (sub.isMemberOf("DeliveryShift1") &&
 sub.containedInPolygonSet(
 "FM:NoStandZones", fcnResults))
 then {
 results.setDidTrigger(true);
 results.addResult("zones", fcnResults);
 }

五味
テキストボックス
－111－

 }
}

By comparison, the same rule with our own (now
abandoned) rule language is:

memberOf("DeliveryShift1")
&& containedInPolygonSet(("FM:NoStandZones")

Despite the obvious loss in succinctness by embed-
ding a “foreign” rule engine such as ABLE, we still
feel the advantages in flexibility outweigh the disad-
vantages. And for more complex rule sets, such as
those that maintain local state, the disadvantages be-
come less apparent.

We will continue to evaluate other rule languages
and frameworks for use with TEDS, some of which are
described in the section “Related Work.” We are inter-
ested in rule frameworks that provide complementary
value, such as strong support for temporal patterns, and
that enable programmers to produce readable, easy-to-
understand rule sets.

2.4 Subscriptions

Subscriptions to rules exist independently of the rules
themselves. Subscriptions contain a number of parame-
ters, including the rule being subscribed to, the address
to send rule-triggering events to, and the report type,
which is full, or delta. Full reports consist of the cur-
rent set of subscriber position reports for which a rule
was satisfied; delta reports consist only of the sub-
scriber position reports that resulted in a change in the
result of the rule evaluation with respect to a particular
subscriber. Other parameters are not described here.

2.5 Rule Resources

Rules typically involve functions that relate data in the
subscriber position report to other data. This data may
be provided by the application, such as geometries to
compare a subscriber’s location to, or a set speed
threshold to compare the subscriber’s speed to. Or, the
data may be generated by repeated evaluation of the
rule. TEDS provides two forms of data store for these
purposes.

Static Data. TEDS offers a simple data store to
provide persistence for the data referred to in rule
parameters. The global store is accessed implicitly in
the polygonSet and pointSet parameters, and may be
accessed explicitly as well (functions not shown). The
data store may also be accessed from outside rules,
through the TEDS application interface. The data store
is not typed, although geometry types for points and
polygons are stored differently in order to take
advantage of databases with spatial functions and the
spatial indexing supporting them.

Mobile Data. TEDS also provides a form of persistent
data that is associated with particular subscribers. For
example, a rule may wish to record a subscriber’s time
of entrance to a particular geographical area so that it
can determine the total time a subscriber has been in
the area. For purposes such as this, TEDS provides a
data store associated with each subscriber.

3 TEDS FIRST PROTOTYPE

Figure 2 illustrates the architecture of our prototype
Telematics Event Detection Service. The main compo-
nent is the Telematics Event Detection Engine (TEDE).
Through a TEDE client, an application submits rules
and provisions any resources required by the rule. Rule
triggering events are received from the TEDE asyn-
chronously through an interface the application must
provide.

����������	
�����
��

	������

	������

�������
���������

������

�����
���

�
�������

	������

�
������� �
�������

�����
�
�
�

�����
���

�
�
�

��

���
���

������
���
���

	������

�
�������
�����

�������
����

����
���

��
��
����

�
��

�����

����
���

��

��
����

����
���

��

��
����

Figure 2. TEDS Demonstration Prototype.

As we as yet have no actual set of vehicles to re-
ceive input from, we developed a telemetry simulator
that enables vehicle movements to be simulated.
Through a map-based interface the simulator operator
creates paths on the map, giving each segment its own
speed.

3.1 Example: Fleet Manager Application

We developed “Fleet Manager” as an example of an
application that takes advantage of the high-level event
detection capabilities of TEDS. It supports various fleet
management scenarios where fleet operators wish to be
notified when vehicles of their fleet enter or leave cer-
tain geographical areas. It enables operators to quickly
and easily define the areas and the vehicles to be moni-
tored. It then transforms this information into a rule be-
fore deploying to TEDS. One of our objectives in de-
veloping this application is to explore high-level rule
creation tools.

The Fleet Manager Application display (Figure 3)
shows real-time positions of vehicles on the map and
also represents locations symbolically by showing as-
sociations between vehicles and zones, as shown in the
lower right window of Figure 3.

五味
テキストボックス
－112－

Figure 3. Fleet Manager Application.

3.2 Lessons from Prototype

In developing the Fleet Manager application for the
first TEDS prototype, we realized it had a number of
shortcomings. First is that application programming re-
quires a high level of effort to create interfaces to the
TEDS system. TEDS provided no support for inserting
rules into the system or for receiving events from the
system, thereby requiring low-level programming from
the application developer. Second, TEDS provided no
framework to support the sense-respond programming
model. Third, the prototype did not sufficiently support
certain important features, such as subscriber groups.

These shortcomings are being addressed in the sec-
ond prototype. In addition, we are also addressing the
fundamental way input data is acquired, we are ena-
bling rules to operate on a wider range of inputs, we
are enabling the system to acquire input data from a
wider range of sources, and we are also supporting ap-
plication-provided rule functions. This new functional-
ity is briefly described in the following section.

4 TEDS VERSION 2 AND THE S&R
FRAMEWORK

To make it easier to develop applications based on the
sense/respond model, we have developed a framework
providing both develop-time and run-time support. The
framework, called the S&R Framework, relates to
TEDS as shown in Figure 4 below.

4.1 S&R Framework

The S&R Framework is analogous to the Struts
framework for developing Web applications based on
the Model-View-Controller paradigm. With the S&R
Editor, the developer defines the set of rules, and the
actions for responding to events from the rules, that

constitute a sense/respond application. The SNR file
produced by the editor, together with the rule files and
respond-action classes referenced by it, are then de-
ployed to the Subscription Set Manager, which inter-
faces to TEDS to deploy rules and subscribe to them,
and to the S&R Respond Controller, which receives the
rule-triggered events from TEDS and invokes the re-
lated respond classes.

Figure 4. TEDS Version 2 and S&R Framework

4.2 Extended Rule Inputs

The new TEDS architecture enables rule program-
mers to define rules that operate over a range of inputs,
beyond the location input supported by the first proto-
type. Rule inputs may include any sensor data received
from mobile entities such as fleet vehicles, as well as
business-related data such as “pickup needed” signals.

Acquisition of these inputs is the responsibility of
the Data Acquisition Manager, shown in Figure 4,
given the list of inputs a rule requires, and the rule’s
specified evaluation frequency, the DAM is responsible
for acquiring the inputs at the rate specified and sup-
plying them to the Rule Evaluation Manager.

5 RELATED WORK

As a framework for programming sense-and-respond
applications, TEDS is related to a broad array of work
in real-time monitoring, event-driven systems, context-
aware computing, and active databases. However,
TEDS has a focus on those situations involved in
telematics. Furthermore, it does not address applica-
tions where extended and complex patterns of events
are of interest. Space does not permit a full discussion
of related technologies, but we briefly note those that
are most closely related.

五味
テキストボックス
－113－

Chandy et al [4] describe an abstract programming
model for dynamic applications that corresponds
closely with the programming model of TEDS. The
iSpheres Halo [9] platform offers a complete system
for sense-and-respond programming. It does not, how-
ever, offer specific support for spatial events.

Some work has addressed the specific application of
location-based notification. Chen et al [5] describe a
publish/subscribe system for spatial triggering, focus-
ing on efficient matching algorithms. Munson and
Gupta [10] describe another spatial triggering system,
focusing on an architecture for scalable implementation
of this system over millions of users. This work is a
predecessor of the system described here.

A set of spatial predicates and means of composing
them are offered by Bauer and Rothermel [2] and Nel-
son [11] presents a similar a set of spatial predicates,
and extends this with some temporal operators.

Stronger support for event patterns is offered by iQL
[6]. iQL’s functions and operators apply to generic
numeric and textual data, and it does not offer specific
support for spatial data or location input.

Houdini [8] is a rule language and framework used
for user-preferences policy management for telecom-
munication services. As such, it addresses a different
set of applications than TEDS, and does not address
spatial events.

Amit [1] is a rule-based framework for detecting
situations over potentially long-running event streams.
Like Houdini, it could also serve as a base rule engine
for TEDS.

6 CONCLUSIONS AND FUTURE
WORK

We have described the Telematics Event Detection
Service, an infrastructure that we believe can enable a
wide range of event-driven telematics services. The
rule-based programming model of TEDS is a key fea-
ture that we plan to exploit further to address scalabil-
ity. We believe it will enable the units of computation
to be both replicated widely to make efficient use of re-
sources, and pushed out close to the sensors to reduce
communication needs in the wide-area network.

We have also described our initial effort at develop-
ing a high-level programming framework around the
sense-and-respond application model. We believe that
frameworks such as this are an important element in
enabling programmers to exploit this model. We hope
to extend the S&R Framework with high-level support
for the development of rules themselves.

A primary goal for the future is to address the issue
of scalability. We believe the flexibility of our service
may make it attractive for service providers with large
subscriber bases, such as large telematics service pro-

viders or wireless carriers. It would enable them to of-
fer a wide range of services to their subscribers. For
that to be feasible, however, our service must be scal-
able to a subscriber base numbering in the millions,
and the number of services numbering in the hundreds
or thousands. The resulting load on the service could
be millions of rule evaluations per second. We must
therefore have an architecture that can scale to this
load, not only in the computational load of rule evalua-
tion, but in the data transmission load involved in get-
ting inputs to the rule engines. We plan to address this
in a next phase of the project.

7 REFERENCES

1. Adi, A., Etzion, O. Amit – The Situation Manager. The
VLDB Journal, Springer-Verlag, Heidelberg, Vol. 13,
No. 2.

2. Bauer, M., Rothermel, K. Towards the Observation of
Spatial Events in Distributed Location-Aware Systems. In
Proceedings of the 22nd International Conference on Dis-
tributed Computing Systems Workshops, 2002.

3. Bigus, J. P., Schlosnagle, D. A., Pilgrim, J. R., Mills, W.
N. III, Diao, Y. ABLE: A Toolkit for Building Multiagent
Autonomic Systems. IBM Systems Journal, Vol. 41, No.
3, 2002.

4. Chandy, K.M., Aydemir, B.E., Karpilovsky, E.M., Zim-
merman, D.M. Event-Driven Architectures for Distrib-
uted Crisis Management. Presented at the 15th IASTED
International Conference on Parallel and Distributed
Computing and Systems, November 2003.

5. Chen, X.Y., Chen, Y., Rao, F., An Efficient Spatial Pub-
lish/Subscribe System for Intelligent Location-Based
Services. Proceedings of Second International Workshop
on Distributed Event-Based Systems, San Diego, 2003.

6. Cohen, N.H., Lei, H., Castro, P., Davis, J.S. III, Puraka-
yastha, A. Composing Pervasive Data Using iQL. In Pro-
ceedings of the Fourth IEEE Workshop on Mobile Com-
puting Systems and Applications, June 2002, Callicoon,
NY.

7. Federal Communications Commission. Enhanced 911.
http://www.fcc.gov/911/enhanced/

8. Hull, R., Kumar, B., Lieuwen, D., Patel-Schneider, P.F.,
Sahuguet, A., Varadarajan, S., Vyas, A. “Everything Per-
sonal, Not Just Business”: Improving User Experience
Through Rule-based Service Customization. In Interna-
tional Conference on Service Oriented Computing
(ICSOC 2003), Rome, December, 2003.

9. iSpheres Corporation. Halo™. http://www/ispheres.com.
10. Munson, J.P., Gupta, V.K. Location-Based Notification

as a General-Purpose. In Proceedings of the Workshop on
Mobile Commerce, Atlanta, 2002.

11. Nelson, G.J., Context-Aware and Location Systems.
Ph.D. Thesis, University of Cambridge Computer Labo-
ratory, 1998.

五味
テキストボックス
－114－

