
Ontology-based High Level Event Subscription Method for RFID Middleware

Jong-Yun Jung*, Ki-Yeol Ryu*, Jung-Tae Lee*

*Graduate School of Information and Communication,

Ajou University, Korea
{jongyun, kryu, jungtae}@ajou.ac.kr

ABSTRACT

The content-based publish/subscribe system provides an

efficient method for the event subscription in RFID
environment. Applications should inform the event broker
of their demands for receiving the interested events.
Therefore this way is well suited to the RFID system and
also provides an efficient way for processing tremendous
events generated between applications and event brokers.
But the procedure of event subscription is a difficult and
complex work for application developers or users to
understand and utilize. To address this problem, we
proposed the ontology-based high-level event subscription
method, which adopted ontology technique to define the
entities and their relations in RFID application environment.

Keywords: Ontology, Publish/Subscribe, Ubiquitous, RFID
middleware, Event Subscription,

1. INTRODUCTION

The barcode system has been widely applied to various

industry fields, such as manufacturing, supply chain
management, and warehouse management, etc. The barcode
scanner is directly linked to application, so a bridge-
software so called middleware does not have been
highlighted generally. However the barcode will be
gradually replaced by the electric tag like RFID(Radio
Frequency Identification) tag in ubiquitous environment.
Unlike the barcode scanner, the RFID reader should have an
ability to identify lots of tags simultaneously and also
quickly transmit those data to the connected application.
These works increases the communication cost in RFID
network, and needs more computing power for application
to process those received data from readers. It is also not
easy for application developers to understand the new
technique well. This is the new burden for application
developers which are only concerned with business logic. 1

To solve above problems, the concern with RFID
middleware has been growing for the last several years. The
middleware in RFID environment sits between RFID
readers and enterprise applications. The RFID middleware
performs many operations on behalf of applications. The
main works of RFID middleware is to collect tag IDs from

*This research is supported by the Ubiquitous Autonomic
Computing and Network Project, the Ministry of
Information and Communication 21 Century Frontier
Project R&D Program in Korea

readers and decide the destination of those data [8]. The
decision process means that RFID middleware selects tag
IDs that application wants to receive. So applications inform
RFID middleware of their interest in advance. The
description method for application’s demand is similar to
the event subscription in content-based publish/subscribe
system. The problem is how to describe the subscription
which can express application’s requirements well. The
event subscription methods should be simple and easy for
application developer or user to use. Therefore we adopt the
ontology to define the entities and their relations in RFID
application environment [7]. Ontology enables the high-
level event subscription. The ontology-based subscription is
more understandable and familiar to human because the
subscription can contain high-level semantics.

This paper proposed the ontology-based high-level event
subscription method for RFID middleware. To define all
entities and their relations in RFID application domain, we
utilized the OWL Web Ontology Language developed by
the World Wide Web Consortium [9]. In chapter 2 we
present a discussion of related works. We then describe our
approach to the ontology-based high-level event
subscription method in chapter 3. In chapter 4 we present
the implementation strategy and conclude in chapter 5.

2. RELATED WORKS

2.1 RFID Middleware

The RFID middleware collects tag identifiers(IDs) which

is the 64bit or 94bit binary value(may be other format) and
sends those collected data to applications. Besides tag IDs,
applications receive the additional information such as
reading time and readers’ location etc. Auto-ID Center is the
leader of RFID technology including middleware. Auto-ID
center published the specification of Savant, which was the
first trial to define the function of RFID middleware [8].
Savant is a data router that performs operations such as data
capturing, data monitoring, data filtering, and data
transmission etc. The savants basically are organized in a
hierarchical tree structure. It is not appropriate to apply
Savant to various applications in wide-area network like
internet. The problem results from the structure of Savant.
The RFID middleware can select tag IDs what application
wants to receive before application informs their
requirement. But Savant does not satisfy various
applications’ needs because of the absence of subscription
methods that express application interest.

研究会temp
テキストボックス
社団法人　情報処理学会　研究報告IPSJ SIG Technical Report

研究会temp
テキストボックス
2005－UBI－8（13） 　2005／6／9

研究会temp
テキストボックス
－73－

Figure 1: Publish/Subscribe Architecture

2.2 Content-based Publish/Subscribe

A content-based publish/subscribe service is considered

as a useful mechanism to support integrating distributed
components or applications on a wide area network. It can
be implemented as a network of servers that route and
deliver event notifications to those clients that are interested.
Event subscribers subscribe a category of events to the event
servers and publishers publish events to them. The event
servers carry out selection process (determining which
events match which subscriptions) and event delivery
(routing matched events to interested subscribers). A
content-based publish/subscribe systems provide a highly
flexible selection process. The selection means that
published events can be compared with event subscriptions
based on their contents rather than predetermined addresses
or channels.

These features facilitate for content-based systems to
support the integration of highly loosely-coupled,
heterogeneous, and asynchronous distributed components.
For this reason, content-based subscribe/publish method
provides a foundation of communication between RFID
middleware and applications. Figure 2 shows the general
architecture of publish/subscribe system. The content-based
publish/subscribe system has already been implemented and
experimented in various systems such as SIENA [1][2], and
Gryphon [3]. Especially, our approach is highly influenced
by SIENA which can be applied to general peer-to-peer
networks.

2.3 Ontology

Ontology is one of emerging technologies and many

researchers in computer science would introduce this
technique into their studies. Ontology is typically a
hierarchical data structure containing all the relevant entities
and their relationships and rules within a certain domain.
Ontology is the term used to refer to the shared
understanding of some domain of interest which may be
used as a unifying framework [5][6]. Our approach adopts
the ontology to define the entities and their relations in
RFID application environment. The World Wide Web

RFID ReaderRFID
Tag

Antenna Antenna

RFID
Tag

Figure 2: Reader, Antenna and RFID Tag

Consortium(W3C) developed the OWL Web Ontology
Language for use by applications that need to process the
content of information instead of just presenting information
to humans. OWL facilitates greater machine interpretability
of Web content than that supported by XML, RDF etc [9].
The OWL is one of best tools to build the shared data
structure for RFID system.

3. HIGH-LEVEL EVENT SUBSCRIPTION

3.1 Event Broker Network

We can consider two approaches to process events from

in RFID environment. One is the application-oriented and
another is the middleware-oriented. The former is the
conventional approach that has been generally applied to
barcode system. But this way is not appropriate to RFID
applications because tremendous data are delivered from
readers. As we said earlier, this causes increase of
communication cost and burdens applications. Therefore, it
is essential to locate a middleware between RFID readers
and applications.

After a RFID tag is detected by a RFID antenna is
connected to a RFID reader in figure 2, the antenna
transmits an identified tag ID to RFID reader. The reader
transforms the received analog signals to the digital signals
and creates message including additional data. Events are
originated from situation where RFID antenna detects RFID
tags. We consider these events are the basic event. That is,
one basic event is correspondent to one detected RFID tag
with the unique ID value(64bit or 96bit binary). After
detecting tag, a RFID reader creates one event message and
sends it to RFID middleware. This event message includes
additional data such as the reading time and the reader
identifier which reports the identified object’s location.

Receiving events from reader, the RFID middleware
should select events according to each application’s
requirements and forwarding selected data(tag IDs) to
applications. The selection process is similar to the event
matching in content-based event publish/subscribe system.
The event publisher, event subscriber, and event broker are
the main elements of publish/subscribe architecture. Above
three components are correspond to RFID reader,
application, and RFID middleware in RFID system. RFID
middleware should support functions of an event broker. To
receive interested events, applications must register their
interests to middleware. This step is called event
subscription in publish/subscribe system. The subscription
message should include application’s demands. It is almost
similar to an event filter in the publish/subscribe system. We
use the term of event broker instead of RFID middleware.

研究会temp
テキストボックス
－74－

Event Broker

Jeju Area

Subscription

Figure 3: Low-Level Event Subscription

Many Event brokers are usually distributed in wide area,

so they organize a kind of network in RFID Environment.
Each event broker is logically linked to one or more event
brokers, and some of them may be connected to one or more
RFID readers directly. We call this network as event broker
network. There are various ways to support communication
among event brokers. It is reasonable to employ the event
broker architecture to the RFID middleware.

An event subscription has predefined attributes which is
name-value pair in the publish/subscribe system. When
applications subscribe a subscription message to the event
broker network, they must know the address of the event
brokers in certain area, the identifier of reader, and tag IDs
etc. For examples if application wants to receive events
about ‘certain goods stored in Jeju area’, it should be aware
of all event brokers in Jeju area, all readers connected event
brokers, and tag IDs related to the some goods. If an
application wants to receive events about ‘Trucks arrived at
Jeju area today’, it should create a subscription message
containing ‘(location=EB1 or location EB2 or location EB3)
and (tag => 1001 ^ tag <=1999)’. Figure 1 shows the low-
level event subscription on the event broker networks. The
low-level event subscription means that subscription is
described in detail. This is very inconvenient and difficult
way for application developer to understand. This may be
suited to applications for small-area, or applications in
limited domain, but not to applications for wide-area, like
nation. To help developer or user work easily, it is necessary
for to provide new methods for event subscription. We
designed high-level event subscription methods combined
with ontology technique. We will discuss the high-level
description method in the next chapter.

3.2 High-Level Event Subscription

To subscribe a subscription message to RFID

middleware, application must describe the low-level
subscription using tag ID, subfields in tag ID, and reader ID
etc. It is difficult for application developers or users to know
above all matters when they implement or use applications.
The low-level event subscription is generally described by
combination of primitive elements, which are attributes,
values and operators. Attributes are specified by reader IDs,
manufacturer IDs, object class IDs etc. Operators are
specified by equality(=), inequality(!=), greater than(>) etc.
If application wants to receive events about ‘the exact time
that truck loaded with computers pass the main gate’, the

subscription message is described containing a content like
‘Tag id is 2, event broker’s id is a, and reader’s id is 100 and
200’.

However if the event broker supports high-level event
subscription, we can describe the subscription message
containing ‘notify someone(e.g. application) when truck
loaded with computers pass the main gate’. The high-level
event subscriptions have a common pattern in respect of the
content of subscription. The content of most subscriptions
can be described by ‘any object with any tag arrives at any
areas’ or ‘any object with any tag is identified by any reader
at any areas. These subscriptions consist of three main parts;
‘area or region’, an ‘action’, and ‘object’ with RFID tag.
The Action is highly relevant to the objects identified by
readers.

1. area : actually represents the event brokers in the area
2. action : represents ‘storage in warehouse’, ‘delivery’,

in domain like physical distribution and logistics. This
means the RFID readers

3. object : represents real objects like truck, pallet, and
box etc.

The shared data is the data structures contain above

entities, sub-entities, and their relations. It is reasonable that
applications require more data in addition to Tag ID in
ubiquitous environment. Applications would need
temperature, humidity, or other environmental data in any
area when RFID tags are identified by readers. Therefore, it
is necessary for the event broker to provide more expressive
method for the event subscription. The ontology definitions
for above entities and the subscription message will be
discussed in next chapter.

3.3 Processing Subscription Message

The process of event subscription begins when

application sends a subscription message to an adjacent
event broker. The subscription messages actually delivered
to the event subscription helper. The subscription helper
offers common functions used by all event brokers.
Subscription helper can be implemented as an independent
service and be the part of event broker as a common
module. The subscription helper analyzes the subscription
message and propagates it to several event brokers which
are relevant to the content of message. To analyze the
subscription message, subscription helper refers to the
shared data which is a hierarchical data structure containing
all predefined entities in application domain. We will
discuss the shared data in the following chapter. Using
subscription helper, applications transparently sends a
subscription message to even brokers though they do not
know which event broker receives the subscription message.
Figure 5 shows the message flow of processing event
subscription in the event broker network.

As we mentioned above, the high-level event subscription
provides the power of expressiveness and the better
readability.

研究会temp
テキストボックス
－75－

Event Broker Network

Middle Layer Shared DataSubscription
Helper

Event Subscriber(Consumer)

Event Publisher

Application

RFID Reader

Inference
Engine

High-level
subscription

Low-level
subscription

Figure 4: Architecture for Ontology-based High-level

Event Subscription

Application developer or user can easily understand how to
describe the contents of subscription and create a
subscription message. However, the question is that the
high-level subscription should provide same semantics and
expressiveness as low-level subscription does. The
expressiveness of event subscription message is highly
dependent on application domain.

4. IMPLEMENTATION

4.1 Proposed Architecture

Figure 4 shows our proposed architecture for ontology-

based high-level event subscription method. The event
broker network holds the middle layer, which includes the
subscription helper and the shared data. The subscription
helper provides the transparent service to applications. This
means that applications do not need to know where to send a
subscription messages. The middle layer receives the high-
level subscription messages and also propagates the low-
level subscription messages to event brokers.

If an application wants to receive the events from Jeju
area and Korea, it must send two subscription messages to
the event broker. This is inefficient way. To remove the
unnecessary subscription, we choose the ontology
technique. The shared data is a hierarchical data structure
containing all relevant entities and their relations. It is
appropriate to include the function of the extendible
inference for high-level event subscription. The subscription
helper makes use of the shared data to analyze and reason
the subscription. Subscription helper also converts high-
level subscription to low-level subscription which event
broker can understand. Using high-level event subscription
methods decreases the number of unnecessary and
redundant subscription messages in the event broker
network. This decreases total cost of communication
between event brokers and applications and eliminate the
burden of event broker.

4.2 Process of High-Level Event Subscription

After subscription helper analyzes and reasons the

subscription message using ontology for high-level
subscription, it forward the message

Jeju Area

1. Subscribe(“Jeju”, “Arrival”, “Trucks”)

Shared DataSubscription Helper

2 5
5

5

3. Query

4. Result

Event Broker

Subscription

Reader

Application

Inference
Engine

Figure 5: Message Flow of High-Level Event
Subscription

to the actual event brokers collecting events from RFID
readers. Table 1 shows the sequence of action performed by
subscription helper. This is the internal logic of the
subscription helper just receiving the subscription message.

Table 1: Pseudo-Code about subscription process

1) Application(A1) subscribe an adjacent event
broker(EB1)
ex) Subscribe(“area”, “arrival”, “all truck”)

2) EB1 send subscription message(SM) to the subscription
helper(SH)

3) SH analyze SM and obtain event brokers using the shared
data, SM’s receiver.
ex) query name : area

query : EventBroker.location is(contains, begins with,
ends with) “Jeju area”
search results : EB4 v EB5 v EB6

4) To find all readers connected to obtained event brokers,
send query message.
ex) query : (Reader.alias is “arrival”) ∧

(Reader.EventBroker is “EB4” ∨
Reader.EventBroker is “EB5” ∨
Reader.EventBroker is “EB6”)
Search results : R2.EB4 ∨ R1.EB5 ∨ R2.EB5 ∨
R5.EB6

5) Convert the contents of subscription to actual sentence..
ex) query name : all truck

query : tag ≥1001 ∧ tag ≤ 1999
6) Create a subscription message for event borker.

ex) “If tag id’s value ranges from 1001 to 1099 in
[EB4:R2] [EB5:R1,R2] [EB6:R5], then publish events
to EB1” (this sentence can be expressed by XML)

7) Send the message to event broker.

If one event broker is located in JeJu, it also is located in
Korea. Therefore, if both ‘Event broker(EB1) is in Jeju’ and
‘Event broker(EB1) is in Korea’ are described in the
subscription message, the inference engine can find out the
relation that Jeju is a local area of Korea. This way removes

研究会temp
テキストボックス
－76－

unnecessary search and comparison work about whether an
event broker is in Jeju or Korea.

4.3 Subscription Message

There are four message types for subscription. They are

closely related to the area of event creation and the way of
describing events. The message has three parameters, area,
object, and action.

1) 0 – parameter subscription message
This message has no parameter. If application subscribes

this message, all events are delivered to the subscriber. This
way will cost more computing power, network resource, and
communication cost etc.

ex) subscribe()

2) 1 – parameter subscription message
1-parameter message has one parameter about area

information. The area indicates event brokers located in the
area. Those event brokers send all received event to the
subscriber.

ex) subscribe(‘area’)

3) 2 – parameters subscription message
The action is added to 1). The action indicates all readers

connected to event brokers in the registered area. The action
parameter is dependent on the application domain.

ex) subscribe(‘area’, ‘action’)

4) 3 – parameters subscription message
The Object identified by readers is added to 3). This

parameter indicates tag IDs.
sx) subscribe(‘area’, ‘action’, ‘object’)

4.4 Ontology for Physical Distribution &

Logistics

We designed ontology definitions for the application

domain of physical distribution and logistics because it is
difficult to define general-purpose ontology. The ontology
definitions are showed in the following tables. The targets
are main entities in RFID environment. They are the event
broker, the reader, the area, and the action. Firstly, the area
class can have one or more aliases and be included to other
wide area. The event broker class is included to one or more
areas and has one or more readers. This has communication
channels for subscriber. The reader class has one name and
one or more actions. The action class has one or more
aliases. For writing ontology definitions, we use the
ontology editor, Protégé-2000, which is a graphic-based tool
[7].

The proposed approach needs the further investigation
about the shared data. A large of data for reasoning the
subscription message should be pre-constructed in advance.
The shared data is a complex and large ontology structure.
Therefore the efficient storage method and the fast search

ability to process queries from the subscription helper are
critical issues.

Table 2: Ontology Definition about Area(Region) Class

<owl:Class rdf:ID=”Region”>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource=”#hasName” />
<owl:minCardinality>1</owl:minCardinality>

</owl:Restiction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource=”#hasSuperSet” />
<owl:minCardinality>0</owl:minCardinality>

</owl:Restiction>
</rdfs:subClassOf>

</owl:Class>

Table 3: Ontology Definition about Event Broker Class

<owl:Class rdf:ID=”EventBroker”>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource=”#belongRegion” />
<owl:minCardinality>0</owl:minCardinality>

</owl:Restiction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource=”#hasReader” />
<owl:minCardinality>1</owl:minCardinality>

</owl:Restiction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty
rdf:resource=”#hasSubscribeChannel” />
<owl:minCardinality>1</owl:minCardinality>

</owl:Restiction>
</rdfs:subClassOf>

</owl:Class>

Table 4: Ontology Definition about Reader Class

<owl:Class rdf:ID=”Reader”>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource=”#hasName” />
<owl:minCardinality>1</owl:minCardinality>

</owl:Restiction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource=”#hasAction” />
<owl:minCardinality>0</owl:minCardinality>

</owl:Restiction>
</rdfs:subClassOf>

</owl:Class>

研究会temp
テキストボックス
－77－

Table 5: Ontology Definition about Action Class
<owl:Class rdf:ID=”Action”>

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource=”#hasName” />
<owl:minCardinality>1</owl:minCardinality>

</owl:Restiction>
</rdfs:subClassOf>

</owl:Class>

5. CONCLUSION

The content-based publish/subscribe system provides an
efficient solution for event subscription in RFID
environment. Applications should inform the RFID
middleware of their demand for receiving the interested
events. This way is well suited to the RFID system and
provides an efficient way for processing tremendous events
generated between readers and event brokers. The approach
decreases total cost of communication between event
brokers and applications and eliminate the burden of event
broker. For this reason, we applied the content-based
publish/subscribe method to the RFID middleware and
design event broker architecture for the high-level event
subscription. But the process of event subscription is
difficult and complex work for application developer or
user. To address this problem, we proposed the ontology-
based high-level event subscription method. Using high-
level subscription methods decreases the number of
unnecessary and redundant subscription messages in the
event broker network. Our approach also adopts the
ontology to define the entities and their relations in RFID
application environment. We designed ontology definitions
for the application domain of physical distribution and
logistics because it is difficult to define general-purpose
ontology. The ontology definitions define the event broker,
the reader, the area, and the action. We will study the
forwarding method for event broker and data structure for
storing forwarding information. A continuous examination
of the subscription method is needed to clear the structure of
the subscription message. Another direction of this study
will be about the high-level event model.

REFERENCE

[1] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf, "Design
and Evaluation of a Wide-Area Event Notification
Service," ACM Transactions on Computer Systems,
19(3), Aug. 2001, 332-383.

[2] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf, "Design
and Evaluation of a Wide-Area Event Notification
Service," ACM Transactions on Computer Systems,
19(3), Aug. 2001, 332-383.

[3] M. K. Aguilera, R.E. Strom, D.C. Struman, M. Astley,
T.D. Chandra, "Matching Events in a Content-Based

Subscription System," 18th ACM Symposium on
Principles of Distributed Computing(PODC1999),
Atlanta, GA May 1999, pp. 53-61.

[4] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao,
R.E. Strom, D.C. Sturman, "An Efficient Multicast
Protocol for Content-Based Publish-Subscribe system,”
IBM T.J. Watson Research Center.

[5] M. Uschold and M. Gruninger, “Ontologies:principles,
methods and applications,” The KnowledgeEngineering
Review, 11(2)93-136, 1996.

[6] T. R. Gruber, “Toward principles for the design of
ontologies used for knowledge sharing,” Int. J.Humna-
Computer Studies, 43:907-928, 1995.

[7] N. Noy, M. Sintek et al., “Creating Semantic Web
Contents with Protege 2000", IEEE Intelligent Systems
vol 16 No.2, 2001.

[8] Auto-ID Center, Auto-ID Savant Specification 1.0 –
Version of 1 September 2003,
http://www.epcglobalinc.org/standards_technology/Secu
re/v1.0/WD-savant-1_0-20030911.doc

[9] W3C, Web Ontology Language (OWL),
http://www.w3.org/2004/OWL/

研究会temp
テキストボックス
－78－

