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Abstract The location estimation in sensor networks is of great current interest. A general approach to location estimation
is to gather Time-of-Arrival (TOA) measurements from a number of nodes and to estimate a target location. The two major
sources of range measurement errors in geolocation techniques are measurement error and Non-Line-of-Sight (NLOS) error.
NLOS errors caused by blocking of direct paths have been considered as a serious issue in the location estimation. There-
fore, Iterative Minimum Residual (IMR) method, which identifies NLOS nodes and removes them from the data set used for
localization, has been proposed. IMR improves location estimation precision in comparison with the technique that does not
identify and remove NLOS nodes. However, IMR needs a lot of calculation to identify NLOS nodes. In this report, we propose
a new location estimation method with low complexity NLOS node identification, We show that the proposed method achieves
almost the same root mean square error (RMSE) as the conventional method with lower complexity.
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angle of arrival (AQA), time of arrival (TOA), or time difference
of arrival (TDOA) [1]. One of the main problems for accurate lo-

Location estimation is attracting considerable attention in recent  calization in wireless communication systems is non-line-of-sight
years. The most widely employed location technology is radio loca- (NLOS) propagation caused by blocking of the direct path of ra-
tion system. Radio location system can be based on signal strength, dio signals by obstacles. Range measurements derived from TOA

1. Introduction
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by multiplying the velocity of light, ¢, are corrupted by measure-
ment noise and NLOS errors. The additive NLOS error is the ex-
cess path length traveled by the signal due to reflection or diffrac-
tion. Traditional positioning algorithm, Minimum Mean Square Er-
ror (MMSE) Estimator, is designed to provide accurate location in
LOS environments with relatively small measurement noise. The
NLOS error is relatively large and adversely affects the location ac-
curacy. This has led to the development of several algorithms that
focus on identifying and mitigating the NLOS error [2]-{6].

IMR algorithm is presented in [6], which is the method of NLOS
identification. The IMR algorithm can significantly improve the lo-
cation estimation performance in NLOS environments. However,
the IMR algorithm needs a lot of calculation for NLOS identifica-
tion.

In this report we propose a new low complexity TOA localization
algorithm, which has considerably lower computational complexity
than the IMR algorithm. The proposed algorithm can effectively
remove the measurements with large errors and select the subsets
of the measurement data to perform localization. Through various
simulation results, it is demonstrated that the proposed algorithm
achieves almost the same RMSE as the conventional method with
lower complexity.

The paper is organized as follows. The problem formulation is

given in section II. Section I describes IMR algorithms proposed

in [6]. Section IV describes the proposed NLOS identification al-
gorithms. The performance of the proposed method is evaluated in
Section V. Final conclusion is drawn in Section VL.

2. Problem Formulation

We focus on the case of grid and two-dimensional (2-D) location.
A target node is located at unknown location (z, ) and N reference
nodes are deployed at known locations (&, yx). & = 1,..., N.
The unknown location of the targets need to be estimated based on
the measured distances between the target and nodes. The distance
between two nodes can be measured by estimating TOA.

The LOS range estimates dx, o5 are modeled as unbiased Gaus-
sian estimates of the true measurements:

dkpos = iz =) + (v — ye)? + 7 n

where \/{Z — £x)? + (¥ — yx)? are the true distances between the
target and the kth node, and ny are independently and identically

distributed (i.i.d.) zero mean Gaussian random variables denoting
measurement error, ng ~ N(0, o3). The NLOS range estimates
dinyog are assumed to be positively biased Gaussian estimates of
the true measurements:

digros = V(@ — )2 + (¥ —y)? +ne + b 2)

where nx ~ N(0,0%) and by are the NLOS errors. We assume
that the NLOS errors are uniformly distributed, bx ~ U(0, Buax),
where Baax represents the maximum possible bias. Equivalently,
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we can formulae (1) into the following vector form,
d=g(@)+n+b 3
where

d={d ... dn]”
0=[z,4]"
8(6) = [21(8) ... gn(O))"
gi(0) = V(z — =) + (v — )®
n=fn ... nnl"

b=(b ... bn]" @)

When the distributions of ranging errors and NLOS errors are un-
known, conventional Minimum Mean Square Error (MMSE) algo-
rithm can be employed to solve this location estimation problem.
The MMSE estimator @ for the problem defined in (3) can be cb-
tained by minimizing the MSE,

6 = argmine(d)
]
where e(G) is MSE and described as follows,
£(8) = argminld - g@))"[d - g@®).  ©®

If the distribution of observation data is unspecified, the statisti-
cal performance of the MMSE is unknown. The MMSE is optimal
only in the sense of minimum MSE for the given set of observation
data. However, the MMSE derived using all observation data is not
necessarily the best estimator possible.

1n the next section, Iterative Minimum Residual (IMR) algorithm
proposed in [6] is explained. When more than three distance mea-
surements are available, IMR can identify and remove the measure-
ments with NLOS errors and utilize only accurate measurements in
the MMSE.

3. Iterative Minimum Residual (IMR) Algo-
rithm [6]

In this section, we explain the IMR algorithm for NLOS identifi-
cation.

(1) Initialization:

n = N, Dmin = {dx,1 £ k £ n}. N is the number of sensor
nodes and Dmin is the measurement set of nodes.

(2) MMSE:s for all the nodes:

Find the temporal estimate of target location @ using the observa-
tion data Dyyin and determine the normalized MSE of the estimator
& (émin )'

amin = é
é(émin) = e(émln)/n (6)

(3) Iteration:



Make (") combinations, (Dyn : 1 £ m < n).
Dy have (n — 1) measurements. Find the "™ and the normal-
ized residual error E(@(m)) for each set.

P! i inm é(m) )
e:nm — o(ugmm & )
&(Brmia) = £(Brmun)/(n — 1) )

If |E(Bmin) — é(é:“;.,) > 8|, then Bpmin = Biin ; else return i,
Ifn > 4, thenn =1 — 1, Duin = Dl E(@min) = F:(é:,,i,,),

repeat (3); else return émi,..

In 3), we must calculate temporal estimate of target location using

MMSE to all the coordinates in the field for each set. Therefore, the

calculation quantity becomes enormous.

4. Propose Method

In this section we explain our proposed low complexity TOA
localization algorithm for NLOS environment. Firstly we explain
Lines of Positions (LOP) that is a calculation method of the tempo-
ral estimate of target location and explain the proposed algorithm
next.

4.1 Lines of Positions (LOP)

We explain LOP that is a calculation method of the temporal es-
timate of target location. We calculate an intersection point of LOP
like Fig. I. A calculation method of an intersection point is as fol-
lows,

2, = (ya —y1)Cs — (y3 — 32)Ch

[(z3 = z2)(y2 — 1) — (T2 — 71 )(33 — tha)]
vo = (z2 = 21)C5 — (z3 — 22)C1

(s — v2)(m2 — 1) = (32 — 1) (23 — 22))]

1
G =5zh + 93 ~ (=1 +97) + df - dj]
1
Cs = 5lad +95 — (2 +v3) + dj — dj] @®

where ©(z,,y,) is an intersection point of LOP, (x:,:),di,i =
1,...,3 are coordinates and measurements of each node. In addi-
tion, it is assumed that three nodes do not form a line on a straight
line. MSE for © is as follows.

3

€(8) = Z (d" = Vi{(@s = z:)? + (w5 — yi)2)2 ©

i=1

4.2 Proposed Algorithm

When we calculate a temporal estimate of target location, the pro-
posed method does not search for all coordinates. Therefore, the
proposed method can reduce the amount of calculation. The pro-
posed method can be described as follows.

(1) Initialization

n = N, Dnin = {di,1 £ k £ n}. D, is the measurement
set of nodes.

(2) LoOP:

Make (3),(E, s=1,..,(3)) combinations. Compute
o, 5(6(‘") for each set, and decide 8uin and, é(ém;n) using
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Fig. 1

An intersection point of LOP: ©(zs,¥s)
RWGH (7]

nCs

z 9(5)/5(@(5))

s=1

nCs

> ve©)

s=1

E(émin) = s(émin)/n (10)

Omin =

(3) neration:
Mzke (,",) = n,(Dm : m = 1,...,n) combinations, and ("),

(Bs: s=1,...,("3")) for each set. Compute '™, £(8'™) for
each set using MMSE and decide é:nh,. é(@:,.in)
éi,,j,, = arg m’in e(é(m))
&(Bmin) = £(Brin)/(n - 1). (1

16 |2(Bumin) —E(@rain) > 7|, then umin = Bupyins else return @ where
8 can be described as follows

0 = argmine(0) (12)
(=)

where 8 is the estimated target location by MMSE using n nodes.
Ifn > 4,thenn = n — 1, Dain = Dipyn, &(Brmin) = E(@rmin),
repeat (iii); else return & where & can be described as follows

0 =arg gl‘i:;ew) (13)

where 8 is the estimated target location by MMSE using three nodes
in the minimum MSE set.

The proposed method searches for all the coordinates only once.
Therefore, we can reduce the amount of calculation in comparison
with the IMR method.

5. Simulation results

In this section, we present cur computer simulation results to
show the localization precision of IMR and the proposed method.
Firstly, we compare the amount of calculation of the proposed
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Fig.2 The flowchart of the proposed algorithm

method to that of the IMR method. Secondly we evaluate the NLOS
identification precision of the proposed method. Finally we evaluate
the localization precision of the proposed method. The field is 30 m
x 30 m at intervals of 1 m. We set a target and N nodes.

5.1 Amount of Calculation

Amount of calculation depends on the number of coordinates in
the field for MMSE estimator greatly. The IMR and proposed meth-
ods search all areas for MMSE estimator, therefore we evaluate the
amount of calculation by the number of searches for all areas.

In Fig. 3, we show the maximum value of NLOS error Bmax
versus the number of searches for all areas in IMR. We set the num-
bers of NLOS and LOS nodes to (NnLos, NLos) = (1, 6), (3, 4),
1,9,3. 7N 34, 11,3, 9and o2(k = 1,...,N) = 0% = 1.0.
BMmax is from 0 to 30 m. We can see that the number of searches
for all areas in IMR increases as Bmax becomes larger. On the
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Fig.3 Bpmax versus the number of searches for all areas in IMR
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Fig.4 Byax versus PL(LOS — NLOS) when (NNLOSt NLOS) =(l,
6). Bmax is from 010 30 m

other hand, the number of searches in the proposed method is al-
ways one.Thus, we can see that the proposed method can reduce the
amount of calculation.

In Figs. 4, 5, we show Bmax versus miss determination
probability, Pr,(LOS — NLOS) and PL(NLOS — LOS), where
P (LOS — NLOS) and Pr(NLOS — LOS) are the probabilities
of erroneous decision of NLOS and LOS, respectively. We consider
the case where (Nnvos, Nros) = (1, 6), o3k = 1,...,N) =
o? = 0.5,1.5 and Bmax is from O to 30 m. We can see
that P.(LOS — NLOS) and P.(NLOS — LOS) of the proposed
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Fig. 6 Bwmax versus RMSE of IMR, the proposed method, and without
NLOS identification method, when Bpgax is from 0 to 30 m

method are close to those of of IMR, respectively. Thus, the pro-
posed method achieves almost the same NLOS identification preci-
sion as the IMR with low complexity.

In Fig. 6, we show Bmax versus RMSE of IMR, the proposed
method, and MMSE without NLOS identification. We consider the
case where (Nnros, NLos) = (1,6), 03(k = 1,...,N) = ¢ =
0.5,1.5 and Bmax is from 0 to 30 m. We can see that the RMSE
increases as Baax becomes larger for MMSE without NLOS iden-
tification. On the other hand there is a little increase of RMSE of
IMR and the proposed method. These results clearly demonstrate
that when one of the distance measurements has a large error, IMR

14
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E 1
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172}
2 08
0.6
04 4 5 6 7 8 9

Number of LOS nodes

Fig. 7 The number of LOS nodes versus RMSE of IMR and the pro-

posed method where NnpLos = 1, Npos is from 4 to 9, and

Bmax =10

and the proposed method can significantly improve location estima-
tion accuracy by rejecting erroneous measurement data. No signif-
icant difference is observed between the performances of IMR and
the proposed method in this simulation. Therefore, the proposed
method achieves almost the same RMSE as the IMR with less com-
plexity.

In Fig. 7, we show the number of LOS nodes versus RMSE
of IMR and the proposed method. We consider the case where
Nnros =1, Nposisfrom4t09,02(k=1,...,N) =02 = 0.5,
and Bmax = 10. In Fig. 8, we show the number of NLOS
nodes versus RMSE of IMR and the proposed method. We con-
sider the case where Npos = 10, NnvLos is from 1t0 6, of(k =
1,...,N) = ¢? = 0.5, and Byax = 10. We can see that no
significant difference is observed between the performances of the
IMR and the proposed method for any number of NLOS and LOS
nodes. Therefore, the proposed method achieves almost the same
RMSE as IMR with less complexity.

In Figs. 4-8, we can see that the precisions of NLOS identifica-
tion and localization of the proposed method are close to those of
IMR, respectively. This performance can be explained as follows,
We use only three nodes for calculating a temporal target location
in the proposed method. Therefore, the number of sets that do not
include NLOS nodes increases, and we can get high precision es-
timation of the temporal target location. As a result, the proposed
method can achieve almost the same performance as IMR with less
complexity.

6. Conclusions

In this paper we proposed a low complexity TOA localization
algorithm for NLOS environments and presented the RMSE perfor-
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Fig. 8 The number of NLOS nodes versus RMSE of IMR and the pro-

posed method where Npos = 10, NyLosg is from 1 to 6, and
Bmax =10

mance at the proposed method. The proposed method can reduce
the amount of calculation when a lot of NLOS nodes or total nodes
exist. Also the proposed methed can reduce the amount of calcula-
tion when the NLOS ervor is large. In addition, the proposed method
can achieve almost the same localization precision as IMR without
depending on the number of LOS nodes, NLOS nodes, measure-
ment error, and NLOS error.
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