
P2P環境における機能並列性に着目した分枝限定法の評価
田頭 茂明 水戸 将弥 藤田 聡

広島大学 大学院工学研究科

本稿では分枝限定法の新しい並列化手法を提案し，その手法の有効性を評価する．提案手法では，従
来のデータ並列に代わり機能並列に着目した並列化手法を導入し、ネットワーク上に分散した自律
エージェントの集合を利用することにより，異質で不規則な並列化を支援する．幾つかの実装事項を
検討した後，8台の PC上に実装したプロトタイプシステムの詳細について述べる．プロトタイプシ
ステムを用いた実験の結果から，提案手法では，システムに参加する各エージェントが採用する探索
方針を適応的に選択することにより，性能の飛躍的な向上を確認できた．

　Evaluation of a Parallel Branch-and-Bound Scheme
Based on Functional Parallelism in P2P networks

SHIGEAKI TAGASHIRA MASAYA MITO SATOSHI FUJITA

Graduate School of Engineering, Hiroshima University

This paper proposes and evaluates a new class of parallel branch-and-bound (B&B) schemes. The
main idea of the scheme is to focus on the functional parallelism instead of conventional data
parallelism, and to support such a heterogeneous and irregular parallelism by using a collection of
autonomous agents distributed over the network. After examining several implementation issues,
we describe a detail of the prototype system implemented over eight PC’s connected by a network.
The result of experiments conducted over the prototype system indicates that the proposed par-
allel processing scheme significantly improves the performance of the underlying B&B scheme by
adaptively switching exploring policies adopted by each agent participating to the problem solving.

1 Introduction

According to the recent advancement of network tech-
nologies, it emerges an increasingly strong requirement
for high performance computing over the large-scale in-
terconnection networks. In general, a high complexity of
server procedures will limit the scalability of distributed
systems, and it motivates the study of fully distributed
systems such as grid computers and pure peer-to-peer
(P2P) systems. A P2P system consists of a collection of
host computers called nodes or peers, and those nodes
are connected with each other by an interconnection
network such as the Internet. In recent years, a lot
of important services such as shared file systems and
Domain Name Systems (DNS) are constructed over the
P2P model, and they have been used in many appli-
cation fields, such as electronic bulletin board, network
auction systems, and so on.

In this paper, we propose a new application field for
such fully distributed systems, and discuss several im-
plementation issues to realize it in actual distributed
environments. As the concrete target of our research,
we will focus our attention to a distributed execution of
parallel branch-and-bound (B&B) schemes [1, 4], which
have been applied to many important fields as a generic
solver to generate an optimum solution to computation-

ally hard optimization problems in a relatively short
computation time. In addition, as the concrete prob-
lem to be solved, we will focus on the Winner Determi-
nation Problem (WDP, for short) in combinatorial auc-
tions, which has also been studied extensively in recent
years to realize a fair match-making among individual
customers participating to e-Markets and e-Auctions (a
formal definition of WDP will be given in the next sec-
tion). It should be worth noting that in most of previous
work, parallel B&B schemes are designed by merely fo-
cusing on the data parallelism that naturally exists in
exhaustive tree search schemes. Although it would be
slightly complicated compared with a simple OR par-
allelism, such a small difference is mainly due to the
mutual dependency between the upper and the lower
bounds, which could be efficiently handled by adopting
an appropriate broadcast mechanism within the frame-
work of data parallelism.

In our recent paper [3], we proposed a new class of
parallel B&B schemes that could naturally be applied
to fully distributed systems such as P2P systems. We
examined several design issues toward the implementa-
tion of a prototype of the distributed B&B system, and
conducted preliminary experiments. In the current pa-
per, we report a detail of our first prototype system.
The prototype system is implemented on eight nodes,

- 1 -

島貫
テキストボックス
社団法人　情報処理学会　研究報告
IPSJ SIG Technical Report

島貫
テキストボックス
2005－EVA－15（2）
　 2005／11／22

島貫
テキストボックス
－7－

embedded with three schemes to select appropriate poli-
cies (i.e., functions) for exploring a given portion of the
search tree. Several experiments were conducted to eval-
uate the goodness of the proposed system. The result of
experiments shows that among three schemes, a dynamic
one based on the feedback from participating agents
exhibits a good performance compared with the other
schemes including those with fixed and uniform policies.

2 Preliminaries

2.1 Problem

Let S = {x1, x2, . . . , xm} be a set of goods sold by the
auctioneer. In combinatorial auctions, buyers submit a
set of bids to the auctioneer, where a bidding is made
on a subset of goods instead of a single good as in classi-
cal auctions, and the auctioneer selects a subset of those
bids in such a way to maximize the revenue of the auc-
tioneer. A bidder of a selected bid is called a “winner” of
the auction. In this paper, we assume that each bidder
can submit any number of bids, and can be a winner of
several bids, without loss of generality. Note that this
assumption enables us to separate bids from bidders.

Let B = {B1, B2, . . . , Bn} be a set of bids submitted
by the bidders. Each bid Bi ∈ B is an ordered pair
⟨Si, vi⟩, where Si is a nonempty subset of S called bidset
(or simply “bid”) and vi is an integer referred to as the
bid value (or simply “value”). A subset B′ of B is
said to be feasible if any two bids in the subset do not
intersect with each other. In addition, a bid Bi(∈ B) is
said to be feasible with respect to B′(⊆ B) if set B′∪{Bi}
is feasible. The revenue of subset B′(⊆ B), denoted by
r(B′), is the sum of bid values contained in B′. The
winner determination problem (WDP) is the problem
of, given a finite set of bids B, finding a feasible subset
B′ of B with a maximum revenue.

2.2 Branch-and-Bound Method

The basic idea of the branch-and-bound (B&B) method
for solving WDP is described as follows. In what follows,
a feasible subset of B is referred to as a partial solu-
tion. Let B′ be a partial solution. In a list scheduling
(LS) method, all bids in B are first given a total ordering,
and those bids are sequentially selected to be contained
in the partial solution, in such a way that any two se-
lected bids do not intersect with each other. It is known
that LS is a “complete” scheme in the sense that for any
instance, there exists a total ordering of bids in B to gen-
erate an optimum solution under the scheme. In other
words, by attempting LS for all of the n! permutations,
we can always find an optimum solution to WDP. This
idea can be realized by conducting an exhaustive search
in a tree structure satisfying the following three proper-
ties: 1) each vertex of the tree corresponds to a partial
solution, 2) the root of the tree corresponds to a partial
solution with respect to an empty set of bids, and 3) if a
vertex x corresponds to a partial solution, then a child
of x corresponds to a partial solution that is obtained by
greedily appending a single bid to x, which is not con-
tained in x and does not intersect with any bid in x. In
such trees, any path from the root to a leaf corresponds
to a permutation over a feasible subset of B.

The B&B method performs a depth-first (or best-first)
search over the above tree structure in an exhaustive
manner. A trick to reduce the execution time is to
“prune” subtrees if it is guaranteed that there can exist
no better solutions than the currently best one on the
subtrees. Such a guarantee is generally realized by eval-
uating an upper bound for each partial solution, which
implies that any solution generated from the partial so-
lution can not be better than that bound.

3 Proposed Scheme
3.1 Design Concept

In this paper, we consider a distributed execution of par-
allel B&B schemes. The main issues for realizing effi-
cient B&B schemes are: 1) how to find a better partial
solution quickly, and 2) how to calculate a sharp upper
bound quickly. It should be worth noting that those
two issues are closely related with each other. That is,
the time before finding a better partial solution could
be reduced by pruning as many meaningless branches
as possible, and the possibility of pruning a branch at
a given upper bound could generally be increased by
providing a better partial solution.

In our proposed scheme, the function of each agent
is designed by focusing on the following two points [3].
The first point is concerned with the upper bound; i.e.,
there is a trade-off between the cost and the accuracy of
calculating an upper bound. That is, in general, we could
obtain a sharper upper bound by spending more calcula-
tion time. However, since the objective of calculating a
sharp upper bound is to prune meaningless branches as
much as possible, in this context, this problem could be
regarded as a simple YES/NO problem (i.e., the result
is whether we could prune a subtree or not). Hence in
order to realize a pruning with a low calculation cost,
we should prepare several procedures for calculating up-
per bounds, and should apply them sequentially in the
order of lower calculation cost. The next point we have
to consider is about the lower bound; i.e., there is a
dilemma in determining the expansion order of partial
solutions. In general, a bid order that quickly derives
a better lower bound could not derive partial solutions
that are unlikely to be pruned by upper bounds. Such a
dilemma could particularly be observed when we could
determine the bid selecting order for each partial so-
lution independently. More concretely, a subtree that
could not be efficiently pruned is a branch whose upper
bound could not be accurately calculated, which is gen-
erally different from a branch that is likely to derive a
better lower bound.

The above problems are due to the fact that we have
to make a selection from several candidates , and thus,
could be relaxed by introducing the notion of parallel ex-
ecution. First, as for the trade-off on the upper bound,
we could resolve it by preparing (at least) two kinds of
agents, i.e., basic agent and advanced agent, and by exe-
cuting those agents concurrently, in such a way that: 1)
basic agents calculate the initial upper bound for each
partial solution, and 2) advanced agents try to improve
the initial upper bound for several selected partial solu-
tions. In the selection of partial solutions, for example,
we could take into account the success rate of previously

- 2 -

島貫
テキストボックス
－8－

executed pruning operation, the level of partial solution
in the tree, and the expected calculation time for the im-
provement. In realizing such a mechanism in distributed
environments with no centralized control, we have to de-
sign each agent in such a way that those selections are
conducted in a heuristic and autonomous manner.

On the other hand, as for the dilemma on the way of
expansion, we could resolve the problem by expanding
several branches simultaneously, while we have to intro-
duce a kind of strategies since the amount of available
resources is finite. One possible strategy is to use the
following two phase control; i.e., initially, a quick im-
provement of the lower bound is given a higher priority,
and after observing the saturation of the improvement
speed, it switches to another heuristic in which a branch
that is unlikely to be pruned is given a higher priority.

3.2 Upper Bound Agents

In the prototype system that will be described in the
next section, the following two types of upper bound
(UB) policies are prepared, and each policy continuously
tries to improve the upper bound on partial solutions.

Type TRV An agent of this type calculates an up-
per bound on the revenue that could be derived from
the partial solution, based on a heuristic estimation of
expected revenue [5]. Given feasible set of bids B′(⊆ B),
let us define an estimated revenue with respect to B′ as
h(B′) def=

∑
x∈S′

{
maxSj∋x,Sj∩(S−S′)=∅

(
vi

|Si|

)}
where S′

is the set of goods that are not contained in bids in B′.
By using the calculated value, an upper bound on the
partial solution B′ is calculated as r(B′) + h(B′) since it
has already selected bids with total revenue r(B′).

Type LP An agent of this type calculates an upper
bound for each partial solution B′ by solving a linear
programming (LP) defined as follows:

maximize
∑

Bi ̸∈B′,Si∩(S−S′)=∅

vipi

subject to
∑

Bi ̸∈B′,Si∩(S−Si)=∅

ajipi ≤ 1 for all j ∈ S

where S′ is the set of goods that are not contained in
bids in B′, 0 ≤ pi ≤ 1 and aji = 1 if xj ∈ Si and 0
otherwise. In the above formulation, several bids con-
taining the same good in common can be selected in a
fractional manner with fraction pi, as long as the sum
of such fractions does not exceed one. Note that an op-
timum solution to the above LP is not smaller than an
optimum solution to the original problem.

3.3 System Configuration

Figure 1 illustrates the configuration of our first proto-
type system. In the system, each node is associated with
its own agent, and a manager is associated to the node
who owns a problem to be solved (i.e., we invoke one
manager for each instance to be solved). A manager con-
sists of a host database, an upper bound database, a sub-
problem queue (s-queue), and the manager core, which
realizes the communication with agents. Although the
given instance is handled by the manage in a centralized

P0 P1 P2

Network

Subproblem Queue

Manager

Agent

Host Database

UB Cache

B&B
Solver

Agent
Core

UB Database

Manager
Core

Agent

UB Cache

B&B
Solver

Agent
Core

Agent

UB Cache

B&B
Solver

Agent
Core

Figure 1: System configuration of the first prototype
system.

manner, we are planning to modify it in such a way that
the information on the given instance is shared by the
participants in a distributed manner (as in Distributed
Hash Table for example). On the other hand, each agent
consists of an upper bound cache, B&B solver, and an
agent core, which realizes the management of the agent
and the communication to the manager.

The basic procedure for solving a given problem over
the system is as follows.

• (Initialization) After receiving a problem to be
solved, the manager partitions it into several sub-
problems, and puts them into the s-queue in an ap-
propriate order. In the default setting of our pro-
totype system, the number of subproblems is fixed
to 64, and they are sorted in a non-increasing or-
der of a trivial upper bound of the root vertex. On
the other hand, each agent who wants to partici-
pates to the problem solving registers itself to the
host database by sending a message to the manager,
and receives the specification of the problem with a
set of possible policies from the manager.

• To acquire a subproblem to be solved, each agent
sends a request message to the manager. Upon re-
ceiving the message, the manager sends back a sub-
problem contained in the head of the s-queue, in
such a way that no two agents with the same policy
receive the same subproblem.

• Each agent tries to solve the received subproblem
by using the B&B solver with its own policy, and
after obtaining a solution to the subproblem, it im-
mediately replies it to the manager. Upon receiving
the solution, the manager removes the correspond-
ing subproblem from the s-queue, and notifies the
fact to all nodes that have been assigned the same
subproblem to interrupt their execution. The inter-
rupted node discards the corresponding subprob-
lem, and tries to acquire the next subproblem.

• Whenever it finds a better lower bound, the agent
informs the fact to the manager, which will be
broadcast to all agents participating to the system.

• The agent stops the execution when the s-queue
contains no subproblem corresponding to its pol-
icy. In addition, when the s-queue becomes empty,
the manager terminates its operation after return-
ing the solution to the user.

- 3 -

島貫
テキストボックス
－9－

As an option, we could set up the system such that the
upper bounds on subproblems are shared by all nodes in
the following manner. In the prototype system, upper
bounds calculated by each node is locally stored in the
upper bound cache with a bit string representing unex-
plored set of bids. When the option is selected, each
node periodically uploads the (differential) contents of
this cache to the manager, which will be downloaded by
the others via a periodical reference to the manager.

4 Switching of Policy

In this section, we propose three schemes to select an ap-
propriate policy for solving a given subproblem in each
node. The first two schemes are static ones and the
last scheme is a dynamic one. In the static schemes, we
adopt LP as the “background” policy, and selectively ap-
ply TRV to the instances that could be efficiently solved
with it. This approach is based on an observation on
the result of our preliminary experiments, in which we
compared two policies in terms of the number of solved
instances within 1000 seconds and the average compu-
tation time for those solved instances (a concrete de-
scription of the examined 108 instances will be given in
Section 5.1). The result of the preliminary experiments
is summarized as follows: 1) the number of solved in-
stances is 76 for LP and 55 for TRV, and 2) the average
computation time is 52.2 sec for LP and 49.0 sec for
TRV. Thus, we can conclude that LP could solve more
instances than TRV, whereas it takes a slightly longer
time than TRV. In other words, LP is a good selection
for general instances, but for several specific instances,
TRV beats the performance of LP. In fact, in the experi-
ment, we discovered an instance that could be solved by
TRV in 110 times faster than LP.

4.1 First Static Scheme

The first static scheme is based on an evaluation of the
trade-off between TRV and LP. In general, TRV should
explore a larger space than LP due to the inaccuracy
of the derived upper bound. Thus, if the time required
for the additional exploration is shorter than the time
required for the calculation of an upper bound in LP,
then TRV should be selected instead of LP. The size
of the additional space and the time required for the
calculation of an upper bound could be approximated
by measuring the accuracy of the upper bound at the
root vertex of the search tree and its concrete calculation
time. Let UB(p) denote the upper bound calculated
at the root vertex with policy p, and T (p) denote the
calculation time. Then, the first static selection scheme
selects policy TRV if and only if UB(LP)/UB(TRV) >
θupper and T (LP)/T (TRV) > θtime for some thresholds
θupper and θtime.

4.2 Second Static Scheme

In the preliminary experiment, we found that an in-
stance could efficiently be solved by TRV if it has an
(optimum) solution consisting of small number of bids.
More concretely, TRV is better than LP if the solution
contains less than ten bids, and the superiority of the
policy will be decreased as increasing the number of bids

contained in the solution. Let m̃ be an estimated num-
ber of bids contained in an optimum solution, a formal
definition of which will be given later. According to
the above observations, we designed the second static
scheme as follows: The scheme selects TRV with proba-
bility 1 if m̃ ≤ θ1, and selects TRV with probability 0.5 if
θ1 < m̃ ≤ θ2, where θ1 and θ2 are predetermined thresh-
olds. The estimation of value m̃ could be conducted as
follows. Let d be an average number of bids conflicting
with a bid. For each i ≥ 1, let ai be an integer defined
as follows:

ai
def=

{
n if i = 1(
1 − d

n

)
ai−1 − 1 otherwise

Note that this formula provides an estimation of the
number of selectable bids after selecting the first i bids,
in the following sense: By selecting the (i − 1)st bid,
among ai−1 remaining candidates, d × ai−1/n bids be-
come unselectable in expectation, which reduces the
number of candidate bids from ai−1 to ai−1 − (d ×
ai−1/n + 1). Note that this estimation assumes no lo-
cality on the selection of bids. By solving the above re-
currence, we have ai =

(
1 − d

n

)i (
n + n

d

)
− n

d , and since
m̃ is equal to the smallest integer k such that ak = 0,
we have m̃ = log 1/(d+1)

log(n−d)/n .

4.3 Dynamic Scheme

Next, we propose a dynamic scheme which adaptively
selects an appropriate policy according to the charac-
teristics of the subproblems having been solved by the
agents. A concrete procedure is described as follows:

• The manager sets local counters cL and cT to one.

• When a subproblem is sent out to an agent, the
manager determines the policy of the agent con-
cerned with the subproblem to LP with proba-
bility cL/(cL + cT) and to TRV with probability
cT /(cL + cT).

• If it receives a solution from an agent with policy
LP (resp. TRV), the manager increments its local
counter cL (resp. cT) by one.

It should be worth noting that the dynamic scheme could
adapt itself to various kinds of instances and could add
new policies relatively easily (i.e., by simply preparing a
local counter corresponding to the new policy), although
it would take a relatively long time to converge to an
appropriate policy.

5 Evaluation
5.1 Environment

To evaluate the goodness of the proposed scheme, we
conducted several experiments. The experiments was
conducted over eight PCs with the following specifica-
tions: CPU: Pentium4 3.2G, Memory: 2G, Network:
1GbE, Operating System: FreeBSD 5.3. Two thresholds
in the first static scheme are fixed as θupper = 0.7 and
θtime = 400; and those in the second static scheme are
fixed as θ1 = 10 and θ2 = 30. The option on the sharing

- 4 -

島貫
テキストボックス
－10－

of upper bounds is not selected, and in all experiments,
we fixed the timeout of each run to 1000 seconds.

As the benchmark set, we adopted three benchmark
suites, Random, Uniform, and Locality, a brief description
of which could be stated as follows [6]:

Random: Each bid Bi is constructed by selecting ki

goods from S without replacement and by assign-
ing a bid value vi to it, where ki is a random value
drawn from {1, 2, . . . ,m′}, where m′ ≤ m, and vi is
a random value drawn from {1, 2, . . . ,Max}.

Uniform: Modify Random in such a way that the size of
each bid is fixed to a constant k.

Locality: Modify Random in such a way that the goods
selected by the bids follow a locality according to
the Zipf’s first law [7].

For each suite, we varied the average number of goods
in a bid as 3, 6, and 9; the total number of goods as 50,
200, and 350; and the number of bids is 100, 300, 500,
and 700; i.e., we prepared 36 instances for each suite.

As an initial assessment, we evaluate the performance
of the system by assigning LP to all agents (LPALL)
or by assigning TRV to all agents (TRVALL). In the
experiment, we compare the number of instances (among
36 instances for each suite) for which a given scheme
exhibits the better performance than the other scheme.
The result is summarized as follows: for LPALL, such
number of instances for Random, Uniform, and Locality
are 19, 9, and 30, respectively, and for TRVALL, they are
9, 11, and 6, respectively. Thus, we can conclude that
LPALL is better than TRVALL for Uniform or Locality,
and TRVALL is better than LPALL for Random.

5.2 Results

Figure 2 compares the distribution of the computation
time for each scheme. We could observe that:

• The goodness of two static schemes depends on the
class of given instances; e.g., the first scheme is
not good for Uniform and Random, and the second
scheme is not good for Locality.

• The performance of the dynamic scheme is rela-
tively stable independent of the class of instances;
e.g., it is as good as LPALL for Uniform and Locality,
and it is as good as TRVALL for Random.

In order to examine the goodness of the static schemes in
more detail, we verified the appropriateness of the pol-
icy selected by the schemes. Table 1 shows the number
of instances for which an appropriate policy is success-
fully selected by the schemes, where the selection with
probability 0.5 in the second scheme is considered to
be successful. As is shown in the table, the first static
scheme could not select an appropriate policy except for
Locality, which is due to the inaccuracy of estimation at
the root of the search tree. Conversely, the goodness of
the scheme for Locality is due to the tightness of the es-
timation at the root, which makes the scheme to always
select LP to generate a good solution.

In the law, the ith element wi in S is associated with a

probability pi = 1/(i × Q), where Q
def
=

P|S|
i=1(1/i). Note that

P|S|
i=1 pi = 1 holds by definition.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LPALL TRALL STATIC1 STATIC2 DYNAMIC

Timeout

100-1000(s)

10-100(s)

1-10(s)

0-1(s)

(a) Random.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LPALL TRALL STATIC1 STATIC2 DYNAMIC

Timeout

100-1000(s)

10-100(s)

1-10(s)

0-1(s)

(b) Uniform.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LPALL TRALL STATIC1 STATIC2 DYNAMIC

Timeout

100-1000(s)

10-100(s)

1-10(s)

0-1(s)

(c) Locality.
Figure 2: Computation time of each scheme.

On the other hand, the second static scheme could
not select an appropriate policy for Locality, although
it could make an appropriate selection for Uniform and
Random. The badness for Locality is due to the inac-
curacy of the number of bids in an optimum solution
for the instances contained in Locality. In fact, the ac-
tual number of bids contained in an optimum solution is
26,65, 28.54, and 25.83 for Random, Uniform, and Local-
ity, respectively, whereas the estimated number of bids
are 30.68, 21.56, and 7.28, respectively.

In contrast to the static schemes, the dynamic scheme
exhibits a stable performance for all classes of the in-
stances. An advantage of the dynamic scheme is that
it allows each agent to have its own policy. In order
to examine the impact of this advantage to the per-
formance, we compare the performance of the dynamic
scheme with schemes with a fixed percentage of LP pol-
icy, where the percentage is varied as 100%, 75%, 50%,
25%, and 0%. Figure 3 illustrates the result for Ran-
dom (the case of LP with x% is denoted as LP(x) in the
figure), and the probability of selecting LP is summa-
rized for each instance in Table 2. Note that this fig-

- 5 -

島貫
テキストボックス
－11－

Table 1: The number of instances for which an optimum
policy was selected.

static 1 static 2
success failed success failed

Random 10 10 19 1
Uniform 13 15 27 1
Locality 31 5 14 22

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Instance No.

T
im

e
(s

)

LP(100) LP(75) LP(50) LP(25) LP(0) Dynamic

Figure 3: Result for dynamic scheme.

ure omits instances that could be solved in one second,
and of course, omits instances that could not be solved
within 1000 seconds. From the figure, we could observe
the superiority of the dynamic scheme. Although there
are several instances for which the other schemes out-
perform the dynamic scheme (e.g., instances No. 6 and
7), we could conclude that the dynamic scheme could
select an appropriate policy.

To see this in more detail, we evaluated how the prob-
ability of selecting LP transits during the execution of
the scheme. Figure 4 summarizes the result for bad in-
stances (No. 6 and 7) and good instances (No. 1 and 14).
The horizontal axis of the figure represents the sequence
number of subproblems sent out to the agents, and the
vertical axis represents the probability of selecting LP
for the subproblem with a given sequence number. As is
shown in the figure, for good instances, it converges to
an appropriate policy, although it takes relatively long
time before convergence. On the other hand, for bad
instances, it often makes a wrong decision, which causes
unnecessary vibration of the probability. By a detailed
analysis of such instances, we found that such instances
could be effectively solved by appropriately solving a
specific subproblem, and to efficiently solve them, we
have to select a specific policy, whereas the most of the
remaining subproblems do not strongly rely on the se-
lection of the policy. An improvement of the dynamic
scheme in such a way to incorporate with such a situa-
tion is left as a future problem.

Table 2: Probability of selection in Dynamic.
Instance No. 1 2 3 4 5 6 7 8

Probability [%] 99 13 93 97 97 4 31 96
Instance No. 9 10 11 12 13 14 15 16

Probability [%] 1 1 39 6 6 1 60 1

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Subproblem No.

Pr
ob

ab
il

it
y

(%
)

No. 1

No. 6

No. 7

No. 14

Figure 4: Temporal transition of selection probability.

6 Concluding Remarks

In this paper, we proposed a new class of parallel B&B
schemes, and described a detail of our first prototype
system implemented over eight PC’s. The result of ex-
periments conducted over the prototype system indi-
cates that the dynamic selection of exploring policies
could improve the overall performance of the underlying
B&B scheme, and it could efficiently support the func-
tional parallelism residing in the original B&B scheme.
We are extending the prototype system in such a way
that the search space submitted by each node is shared
by all nodes participating to the problem solving.

References

[1] J. Clausen , M. Perregaard. On the best search
strategy in parallel branch-and-bound: Best-First
Search versus Lazy Depth-First Search. Annals of
Operations Research, 1999, 90(1): 1-17(17), 1999.

[2] Y. Fujishima, K. Leyton-Brown, Y. Shoham. Tam-
ing the computational complexity of combinatorial
auctions: Optimal and approximate approaches. In
Proc. IJCAI’99, pages 548–553, 1999.

[3] S. Fujita, S. Tagashira, C. Qiao, M. Mito, Dis-
tributed Branch-and-Bound Scheme for Solving the
Winner Determination Problem in Combinatorial
Auctions. In Proc. AINA 2005 , March 28–30,
Tamkang University, Taiwan (2005).

[4] Portable Parallel Branch-and-Bound Library
http://wwwcs.upb.de/fachbereich/AG/
monien/SOFTWARE/PPBB/ppbblib.html

[5] Y. Sakurai, M. Yokoo, K. Kamei. An efficient ap-
proximate algorithm for winner determination in
combinatorial auctions. In ACM Conf. on Elec-
tronic Commerce, pages 30–37, 2000.

[6] T. Sandholm. Algorithm for optimal winner deter-
mination in combinatorial auctions. Artificial In-
telligence, 135(1-2): 1–54, 2002.

[7] G. K. Zipf. Human Behavior and Principle of Least
Effort. Boston: Addison-Wesley (1949).

- 6 - E

島貫
テキストボックス
－12－

