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ABSTRACT: Road pricing is an important economic measure for optimal management of
transportation networks. The optimization objectives can be the total travel time or total cost
incurred by all the travelers, or some other environmental objective such as minimum emission
of dioxide, an so on. Suppose a certain toll is imposed on some link on the network, this will
give an impact on flows over the whole network and brings about a new equilibrivin state. An
equilibrium state is a state of traffic network at which no traveler could improve her perceived
travel cost by unilaterally changing her route. The goal of the toll setting is to effect the new
state approach the objective in question. The problem can be formulated as a mathematical
program with equilibrium constraints (MPEC). A key step for sovling such a MPEC problem is
the sensitivity analysis of traffic flows with respect to the change of link characteristics such as
toll prices. In this paper a sensitivity analysis based method is proposed for solving optimal road
pricing problems. -
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1 Introduction

Road pricing is an important economic measure for optimal management of transportation

networks. The optimization objectives can be the total travel time or total cost incurred by all
the travelers, or some other environmental objective such as minimum emission of dioxide, an
so on, Suppose a certain toll is posed on some link on the network, this will give an impact on
flows over the whole network and brings about a new equilibrium state. An equilibrium state
is a state of traffic network at which no traveler could improve her perceived travel cost by
unilaterally changing her route. The goal of the toll setting is to effect the new state approach
the objective in question. The problem can be formulated as a mathematical program with
equilibrium constraints (MPEC). (See Luo, Pang and Ralph (1996) for a comprehensive treatment
of this kind of mathematical programs.) A key step for sovling such a MPEC problem is the
sensitivity analysis of traffic lows with respect to the change of link characteristics such as the
toll prices. In a recent paper by Ying and Miyagi (2001) an efficient computational algorithm
for sensitivity analysis of the stochastic user equilibrium (Sheffi, 1985) in traffic networks with
fixed travel demand has been proposed. A stochastic user equilibrium (SUE) is an equilibrium
state of the network where the travel costs perceived by the travelers have random errors. In this
paper we extend that algorithm for dealing with traffic networks with elastic travel demand. Here
by elasticity is meant that a traveler may choose to drive or to use public transit judging from
the relative costs of the two choices. Based on the sensitivity analysis algorithm, we establish a
computational method for solving some optimal road pricing problems.
The main advantage of our algorithm over the conventional sensitivity analysis methods (Tobin
and Frisz, 1988, Qiu and Magnanty, 1989, Yang, 1997) is that our algorithm does not need
to enumerate the huge number of paths on a practical large network. Another feature of our
contribution is that our method is developed in the framework of stachostic user equilibrium
(SUE), which is an extension of the Wordropian equilibrium treated in the above mentioned
works. A Wardropian equilibrium is a state of traffic network at which no traveler could improve
her actual travel cost by unilaterally changing her route, that is, a special case of SUE where the
random error in perception of travel cost is zero. In the next section SUE conditions for mobile
networks with fixed and elastic demands are formulated. In Section 3 the sensitivity analysis
method are described. In Section 4 a typical optimal road pricing scheme is formulated. How
to use the sensitivity analysis for solving such an optimization problem is briefly outlined. Some
related problems are addressed in Section 5.

2 Stochastic User Equilibrium of Traffic Networks with
Fixed and Elastic Demands

A list of notation used in this paper follows.

Notations

N ={4,j,--}: set of nodes

o A= {ij,---}: set of links
e W= {rs,--}: set of O-D pairs
- o grs = Dps(Sys): elastic O-D demand, rs € W, where Sy; is the expected minimum cost for

O-D s, and D, is a strictly decreasing function



® q=(Grs),4c denotes the vector of all O-D demands

e R,s={k,p, -} set of paths connecting rs

o hi®: flow on path k with origin 7 and destination s

e P[%: probability that a traveler from r to s chooses path k&
. P[js: probability that a traveler from r to s traces link ij
o z;;: link flow, for ij € A

o t;;(24,€5): differentiable cost function of link ij with respect to flow z;;, and parameter €;;
€;; may represent link tolls or other link characteristics.
It 1s assumed that ¢;; is strongly monotone with respect to x;;. For given ¢, the inverse of
the cost function is denoted as x4;(t:5, €i5), which is also strongly monotone in ¢;;

o (z4)y,: partial derivative of z;; with respect to ¢;;
o (zi5)e;,;: partial derivative of z;; with respect to €

o T=(2ij)ije ) t=(lij)ije 4 and €=(€55) e 0 denote the vectors of all link flows, link costs and

uncertainty parameters, respectively

{ 1 if ij is a link on path k;

TS j—
ok 0 otherwise.

rs ) 1 ifij=ghe A
gh 0 otherwise.

® c° =3 iica tij0f g the total cost of traveling on a path k € R,
e 0: a dispersion parameter in SUE

e Por simplicity, summation notations 3 ;cp ., > pen
Zp, Y rs» Tespectively.

T3’

S>rsew Will be abbreviated as >y,
In a multinominal logit-based stochastic user equilibrium (SUE), the "expected utility” of trav-
eling on path k& € R, is given by U® = —6c}°, where 0 is a unit scaling parameter, see, e.g.,

Chapter 10 of Shefli (1985). For a traveler on O-D pair rs € W, the probability Pf° by which the
path k& is chosen is given by

; exp(—0ci? ,
PP= ——5"— k€ R, (D
5 exp(—beg) "€
At stochastic user equilibrium, the path flows are
R
1= g g 2)

k = 9rs
i >pexp(—0cy®) !

& can be understood as a dispersion parameter indicating how precisely a driver can correctly
choose the shortest routes; the larger the @, the higher the probability that a driver chooses the
shortest routes. From (2) it can be derived that the Wardropian equilibrium is a special case of
SUE when we take § — co.

The link flows are

rosrs - Zeexp(=0°)0 .
zij:;;hks wv,kvzzqrs >, exp(—057) u}e‘A. (3)

rs

If in some region mobile road network is the only available transport means, then a traveler has
to accomplish her travel by car. Such a situation is referred to as ”fixed demand” traffic network,



on which the travel demands g,s remains invariable indifferent of variation the travel costs on the
network. On the other hand, if there is some alternative travel means such as railway transit,
then the travel demand on the mobile road network g,s is a function D,s(Sys) of the expected
minimum cost Srs (Sheffi, 1985) on the network, ‘

Srs(c™(t)) = ——anexp —6¢i®).

When Srs increases due to, e.g., a toll posed on some link, then some travelers from r to s may
give up driving and use the public transit and causes a decrease in the demand grs. Such a case is
referred to as a "elastic demand” traffic network. For a clear presentation of the new contribution
in this work, we will firstly review a convenient mathematical formulation of the SUE for networks
with fixed demand, and then treat the case of elastic demand. The positive definiteness of certain
matrix that plays a critical role in the sensitivity computation is also established.

2.1 Dual Mathematical Programming Formulation of SUE with
Fixed Demand

As was shown by Daganzo (1982) (p. 346, the Extremal Equivalence Theorem), the stochastic
user equilibrium of a traffic network with fixed travel demand is achieved if and only if t = ({;)ijeca
is a minimizing point of a function Z,

Z(ty€) = Z/Uw e”)xzj v, &)dv — Z(Irssrs(c °(t), (4)

where

Srs(e"(t)) -—"——1n2exp( 0ci’ (5)

is the expected minimum cost perceived by a traveler from 7 to s. Note that g,; are assumed to
be fixed constants here. In this case, the minimizing condition for this unconstrained program is
as follows
oz
6t¢j
98rs O}’
= 23i(ti;,€5) —
w( i z]) ;qrs (9CTS Bti;
3Srs s
= z(ty, €5) — Zths 8 = 0iik

Zk exp(—0¢;°)57x
= 131](1:1];529) ZQTS L

> pexp(—0crs)
= 0, ijeA , ‘ (6)
This implies that

Ek exp( 9625)621 k
x15 (tij, € , ij€ A,
i (tg, €45) Z ars ) exp(-—()c;s) )

which are exactly the link flows at the stochastic user equilibrium.
Rewriting (6) in a compact vector expression, we have

VZ = 0. ) ) (7)



It can be shown that the Hessian of Z

8%z ’
viz 8
(5%7 (9tgh ) oh ( )

is a positive definite matrix. This implies that Z is convex and hence the minimum point is
unique. In fact, it is trivial to show that the Hessian of the first term of Z

T [ o)) = (@i 9

is positive definite, since each diagonal entry is positive from the assumption that z;; is strongly
monotone in ;. In (9) "diag” denotes a diagonal matrix with corresponding diagonal entries. It
is well known (see, e.g., p. 278, Shefli, 1985) that S,s(c"*) is concave with respect to ¢"*. As ¢ is
a vector with components which are linear conbinations of t;;, it is thus shown that the function
— Y ors GrsSrs(€7°(t)) is convex with respect to ty;, or equivalently, its Hessian with respect to ¢
is positive semi-definite. It then follows that the Hessian of Z

V3iZ = diag((zi)e,, )i + VE(= D @reSrs(c™(2))) (10)

is a positive definite matrix.

2.2 SUE Conditions of Networks with Elastic Demand
Let us define the following functions in the variables t;;, €;;, ij € A:
E,j(t7 6)

()Sr ac?
= Ty tzy,&y) EQrSZ 2 8tk
if

35
wi(tig, €i5) — z(hsz Be; ——2 070
= a4i(ts,€05) — E ZkeXP 0k’ )00k
a5\ Lig, €ij 2 Qrs EPGXP( 9(""3) )

where ¢;; = Dys(Srs) are now elastic demands varying with S5 which are functions of the link
costs t. The following equations define the conditions of a stochastic user equilibrium of the
network with elastic demand:

ij € A, (11)

Fi(t,e)=0, ije A (12)
These conditions define the link costs ¢ as implicit functions in €.
From (11) we have
OF;;
5tgh
=03 exp(~ ﬂczs)%, gh k
Z s
> exp(— 9(3’"3)
—0(% eXP( Bci®) o5 ) (o exp(—0c]*) s 1)
(Xpexp(=0c?))?
dDys 2 exp(—0¢p”) 077y Tp exp(=0ci°)075 &
< dSps Y, exp(—0ch?) > exp( fcrs)
ij, gh € A. (13)

= (x” tzg ij,gh —




Let
F(t) 6) = (Fij(t> 5))z‘jeA

be a vector of functions. Formula (13) can be summarized as

V¢ F = diag((zij), )i — D 45V Srs(€(2))

an,, (&exp(—f)cmé“k ¥y exp(~0}?) ghk) )
ij,gh

~ dS;s >pexp(—0cy°) >opexp(—0cy®)

As is addressed above, the first term is 4 positive definite matrix, the second term is positive semi-
definite. The third term is also a positive semi-definite matrix from the assumption that %%ff <0
and the fact that the matrix in bracket is the product of a column vector with its transpose.
Therefore V¢ F is a positive definite matrix. The system of equations (12) actually define ¢ as an
implicit function in €, which is a single valued function due to the positive definiteness of Vi F'.

3 Sensitivity Analysis of Stochastic User Equilibrium
of Traffic Networks with Elastic Demands

For a given €, the link cost vector & is ‘uniquely determined as shown above, so are uniquely
determined the link flows @, the demands q and the path flows h}*. Thus the equilibrium states
of the traffic network are parametrized by €. The problem of sensitivity analysis addressed in this
paper is the computation of the derivatives of ¢,  and g with respect to €. In Ying and Miyagi
(2001), it has been shown that

Ic exp( ecks) i,k .

2k exp(—0c)

(i) 2k XP(—0K°)87 1 9gh &

2 exp(—0ci?)
can be computed by using Dial’s algorithm in a link-based manner in the sense tat the paths
do not have to be enumerated. The other terms in g:}; are routinely computable. Therefore

and

V¢ F can be efficiently computed. In the following we establish the formulae for computing the
derivatives of ¢ with respect to €. Rewrite (12) as

F(t,e)=0.

Looking @ as mediate (apparent) variables in F', the following formulae are derived.

(Flaele + ViF(57) = 0

2 = (atij) = (V¢ F) " (F)z(@)e
if,gh

de O¢€ghn
= —(V¢F) N diag((2if) ey )i, (15)
and
oz 8(& 8t1.
(—)=< j) ((ﬂﬁ)zfS n+ (2ij)e, ]> . (16)
e 6€gh ik tj )iz Yig,g 1j)tij 3€gh .6k



The terms (zij)t,;, (%4j)e,; are directly computable from the explicit cost functions tij (25, €45)-
Therefore all these derivatives can be easily obtained, once V¢ F' has been computed, by the
algorithm developed in Ying and Miyagi (2001).

In applications where the change of demands caused by the change of link parameters are also
of interest, we want to know the derivatives of g,s with respect to €;;, which can be efficiently
computed as follows . :

862’]‘ - dSrs ah atgh 861’]'7

OGrs dDys 0Srs 6tgh

(17)

as

3Ss L exp(=0c*)og
Otgn, S exp(—0ct®)

can be efficiently computed.

4 Optimal Road Pricing Problems

Road pricing can be used as a measure for achieving various economic ‘objectives. Here we
treat only one of such objectives for illustrating how the sensitivity analysis method developed in
the previous section can be applied to solve optimal network management problems. The problem
addressed here is to find an optimal road pricing system p = {p;;,ij € A} that effect the traffic
network to achieve an equilibrium state at which the following cost function is minimum

C(p) =T(p) + V" (p), (18’)
where . .
T(p) = > i - (tij(2ig, pig) — Pij), (19)
ijeA

is the total travel time of all travelers on the road network and
Viren(p) = Z Ves(Grs — ars(p)), (20)
rs

is the total variable operational cost of the transit system depending on the flow of passengers. Grs
is the total travel demand for using either the road network or the transit system. As was stated
earlier, once p = € is given, the link cost and flow vectors ¢, © and demands q = (grs, 7s € W)
are determined at equilibrium, thus the cost function C{(p) is well defined.

Minimization of such an objective function may have several environmental and social implica-
tions. In the term T(p), tij(wij, pij) — pij) = t;;(45) is purely the travel time on link 7j, which
depends on the link flow ;. A small T implies that the overall congestion level on the network
could not be high, and that the total amount of gasoline spent must also be small. It is clear
that the travelers who change to use public transit due to éxpensive tolls may increase the cost
of public transit. Such an effect. is taken into account in the term Viran(p). In real world, a same
amount of increase of travelers in a public transit system usually brings about a lower environ-
mental burden (such as energy consumption) than that in a mobile road network. This part of
variable cost on transit routes for OD pair rs is denoted by the function Vis(Grs — grs(p)), which
is assumed to be monotonely increasing and differentiable. The road toll policy aims at realizing
an optimal split of travelers into public transit and mobile network with some restriction.

It is impractical to collect a negative toll or to collect a positve amount beyond a certain limit.
Therefore we assume that the tolls satisfy the following inequality constraints:

pi; 20, piy <p, €A (21)



for some constants p > 0.
Corresponding to the notations used in previous sections, we have

pij = €5 and by = b (i) + pij.-

By our sensitivity analysis algorithm,
dx. Ot 3q

—); (=) and (=—

(G (5) = (52)
can be efficiently computed. Using these derivative data, one can use some standard mathematical
programming techniques (Ref., e.g., Luenberger, 1984, Luo, Pang and Ralph, 1996) to find a
solution minimizing C(p) with inequality constraints on p. Note that by viewing C (p) as a
function in p, the original mathematical program with equilibrium constraints is actually reduced
to a mathematical program with linear constraints.

5 Discussion

We have implemented the algorithms proposed in this paper on a network studied in Ying
and Miyagi (2001) and verified their correctness. We used a modified gradient projection method
for finding the minimum point. The main difficulty encountered in implementation lies in the
determination of the iteration step size, which requires repeated compuation of the equilibrium.
This is a common difficulty in solving such kind of optimization problems. An important theme
for future research is the resolution of this difficulty by exploring the particular structure of this
particular optimization problem, and by applying suitable advanced MPEC techniques.
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