IVEa—FEFaVFg
(1998. 5. 29)

Role-Based Access Control for Object-Oriented Systems

Masashi Yasuda, Hiroaki Higaki, and Makoto Takizawa

Tokyo Denki University
E-mail {masa, hig, taki}@takilab.k.dendai.ac.jp

Various kinds of applications have been developed by using object-oriented technologies. Object-
oriented systems are composed of multiple objects which cooperate to achieve some objectives by message
passing mechanisms. The Common Object Request Broker Architecture (CORBA) is now getting a stan-
dard framework for realizing the interoperability of distributed applications. In addition to realizing the
interoperability, the system have to be secure. In the secure systems, it is required to not only protect
objects from illegally accessed but also prevent illegal information flow among objects. In this paper, we
discuss a high assurance access control model for object-oriented systems.

AT 17 MERI AT LICEFBERENCESWET 712 255

ZHER kEEE BRHA

HREBAY BTEN R T5H
A7V x 7 MEMBHROERICEY, AR T 7T r—YavHFRRERTVE, A7V 7 MERY AT
LEBEBOA T2 s MO EN, Ayt —VOEZRBIIVERSNE, SHA TV MERAT 7Y
F—a YMOMEEREEHRET L -00%M L LT, CORBA »¥HEEMIZLZIODH L, /-, HEEH
HOBRIZIE, REROBIHPEELBHLLZ> TS, KERVATFADHEINR, YATLARERT L4
TV MCHTARERT7 72 ADOBIEICLEE ST, A7V 27 VLB ARELEROKBLEHLET
BIEVUETHL, FHATR, #7777 MEMV AT ARMBELL, BEELT /7L AHBAETT L%

RET 5, v

1 Introduction

By using object-oriented technologies, lots
of object-oriented systems like object-oriented
database management systems [2] and languages
like JAVA [9] have been developed. Object-
oriented systems are composed of multiple objects
which cooperate to achieve some objectives by
message passing. The Common Object Request
Broker Architecture (CORBA) [12] is now getting
a standard framework for realizing the interoper-
ability among various kinds of distributed applica-
tions. In addition to realizing the interoperability,
the system have to be secure. In the secure sys-
tem, it is required to not only protect objects from
illegally accessed but also prevent illegal informa-
tion flow among objects in the system. In this
paper, we discuss a high assurance access control
model for object-oriented systems.

In the basic access control model 10}, an access
rule is specified in a form (s, o, t) which means
that a subject s can manipulate an object o in a
type t of operation. Only the access request which
satisfies the access rule specified is accepted to
be computed. However, the access control model
implies the confinement problem [11], i.e. illegal
information flow may occur among subjects and
objects. In order to make legal every informa-
tion flow to occur in the system, the mandatory
access control model [1,4,13] is proposed. The
legal information flow is given by classifying ob-
jects and subjects and defining the can-flow rela-
tion between classes of objects and subjects. In
the mandatory model, the access rules are speci-
fied so that only the legal information flow relation
occurs. In the discretionary model [3, 5, 6],

the access rules are defined in a distributed man-
ner while the mandatory access rules are specified

by the authorizer in a centralized manner. In the
role-based model [7,14,16], a roleis defined to be a
collection of access types and objects which show
a job function in the enterprise. The access rule
is specified by binding subjects with the roles.

The traditional models discuss what object can
be manipulated by what subject in what type of
operation. Yasuda and Takizawa [15,17] newly
propose a purpose-oriented model which takes into
account a purpose why each subject manipulates
objects. The purpose is modeled to be an op-
eration which invokes another operation in the
object-based systems.

In his paper, we discuss role concepts in the
object-oriented model. Then, we discuss informa-
tion flow to occur among the roles through the
nested invocations.

In section 2, we present the model in the object-
oriented systems. In section 3, we discuss access
rules. In section 4, we discuss information flow.

2 System Model

2.1. Object-oriented system

Object-oriented systems are composed of ob-
jects. Objects are encapsulations of data and pro-
cedures for manipulating the data. Each object is
associated with a unique identifier in the system.
For each object, a set of attributes that specify
the object structure, a set of values that specify
the object state, and a set of methods that spec-
ify the object behavior are defined. An object o
is defined as follows : (1) unique object identifier

1-1

(OID), (2) set of attributes (a;, ..., @n), (3) set
of values (v1, ..., v,) where each v; is a value of
a;, and (4) set of methods (1, ..., ta). A classis
an abstraction mechanism, which define a set of
similar objects sharing the same structure and be-
havior. Each object in the system is an instence of
some class [Figure 1]. A class shows a template for
its instances. A method of an object is invoked by
sending a message to the object. On receipt of the
message, the object starts to compute the method
specified by the message. On completion of the
computation of the method, the object sends the
response back to the sender object of the message.
We define secure objects as follows :

[Definition] An object o is secure if and only if

(iff)

(1) o can be manipulated only through methods
supported by o, and

(2) no methods malfunction. O

We assume that every object is secure in the sys-
tem.

)) object
invocation
X
instantiation
invocation set of attributes

set of methods

object

invocation \

LY

instantiation

&)

-set of attributes

set of methods

Figure 1: System model.

A class can be defined as a specialization of
one or more classes. Inheritance provides means
for building new classes from the existing classes.
A class ¢ defined as a specialization of a class ¢’ is
called a subclass of ¢ and inherits attributes and
methods from ¢'. In turn, c is referred to as a sup-
perclass of ¢'. An is-a relation is defined between
a pair of superclass and subclass. A subclass may

override the definition of attributes and methods
from the supperclass. In Figure 2, classes Clock

and Alarm are superclasses of a class AlarmClock.
AlarmClock inherits attributes time and setAlarm
from Clock and Alarm, respectively. AlarmCloc
also inherits methods show from Clock and the
other methods set and ring from Alarm.

—92—

superclass

time : integer

superclass

setAlarm : boolean

show set
ring

inheritance /
subclass inheritance

time : integer

setAlarm : boolean

show

set

ring

Figure 2: Class hierarchy.

In the object-oriented system, a subject shows
a user or an application program. A subject is an
active entity in the system. A subject manipu-
lates an object by invoking its method to achieve
some objectives. On the other hand, an objectis a
passive entity. An object activates a method only
if the method is invoked on receipt of the mes-
sage. A method invoked may invoke furthermore

‘methods of other objects. Thus, the invocation is

nested.

2.2 Roles ‘

Each subject plays a role in an organization,
like a designer and clerk. A role represents a
job function that describes the authority and re-
sponsibility in the organization. In the role-based
model [7,14,16], a role is specified in a set of per-
missions. A permission means an approval of a
particular mode of access, i.e. methods to an ob-
ject in the system. That is, a role means what
method can be executed on which object.
[Definition] A role r € Ris a collection {{o, p)} €
O x P. Here, R, O, and P show sets of roles, ob-
‘BCtS’ and permissions in the system, respectively.

A subject s is bound with a role r. Here, s
is referred to as belong to r. This means that s
can perform a method p on an object o if {0, D)
€ r. A role chief is {(book, read), (book, enter)}
and clerk is {(book, read)} in Figure 3. A person

A who works as a chief is given the role chief. A

person B who is clerk is given a role clerk.

chief: clerk:

object | permission object | permission
book read book read
enter .

Figure 3: Roles.

Some roles are hierarchically structured to show

structural authorizations in the system. A role hi-
erarchy represents organization’s logical authority
and responsibility. If a role 7; is higher than r; (r;
= 7;), 7; C r;. That is, r; has all of permissions of
lower role 7;, and has more permissions which r;
does not have. In Figure 3, clerk C chief. Since
the chief takes a higher position than clerk. Fig-
ure 4 shows an example of role-hierarchy.

specialist specialist
doctor
doctor
consultant intern

(1) Role hierarchy (2) Inclusion relation of permissions

Figure 4: Role hierarchy and inclusion relation.

3 Access Control

In a role-based model, subjects access to ob-
jects through roles that subjects belong to. A sub-
ject manipulates an object by invoking its method.
An object activates the method only if the method
is invoked by a subject. If a subject would like to
exercise the authority of roles which they belong
to, the subject establishes sessions to its roles.
[Definition] A subject s can access to an object
o by invoking a method p iff
(1) the owner of o assignes a permission p to a

role 7, '

(2) s belongs to a role r, -and
(3) s is establishing a session to r. O

For example, in Figure 5, a subject s can perform
write on an object o while a session between s and
a role chief is established. Even if s belongs to
both roles chief and clerk, s cannot execute write
on o if a session between s and chief is not estab-
lished. The authority of a role r can be exercised
only while a subject s establishes a session to r.

i permission
assignment read
&
write
Iy

. role_
session -’rclerk »

chief

interaction

subject

object

Figure 5: Role-based access.

4 Information Flow Control

In the role-based access control presented in the
previous section, it is assured that subjects access
to objects based on roles to which the subjects
belong. However, illegal information flow among
objects may occur. Because legal and illegal in-
formation flow are not defined. For example, in

B

Figure 6, suppose that a subject s; invokes write
on an object o; after invoking read on o; by the
authority of a role r;. This means that s; may
write data obtained from o; to 0;. s; can read
data in o; even if read permission is not autho-
rize to a role r;. This is the confinement problem
pointed out in the basic access control model. In
addition, a subject can have multiple roles in the
role-based model even if they can play only one
role at the same time. In Firue 3, suppose that a
person A belongs to two roles chief and clerk. A

obtains some information from book as a clerk and
then stores the data derived from the information
into book as a chief.

/ :

».\‘\sessmn permissio
........... read
i il
role F;
) % assignment
session
—-—role t; e

. permissions,
X [write

read

Figure 6: Illegal information flow.

‘We classify methods of objects with respect to
the following points: .

(1) whether or not outputs value v; of attribute
a; from an object o;.

(2) whether or not changes a value of a; in o;
with input parameter.

The methods are classified into four types in (1)
mpg, (2) mw, (3) maw, and (4) my. mg means
the method output a value but does not change
0;. mw means that the method does not output
but change 0;. mgrw method outputs a value and
changes 0;. my method neither outputs a value
nor change o;. For example, a count-up method is
classified to be my because count-up change the
state of object but does not need input parameter.
count-up does not flow information into an object.
[Example 1] Let us consider a simple example
about information flow between two objects o; and
o; in Figure 7. A subject s is now in a session with
a role r;. Here, s can invoke method classified
into mp on o; and mpw on o; by the authority
of r;, respectively. If s obtains information from
o; through mpg, s can invoke mpw on o; after the
invocation of mg on o;. Because a set of roles on
o; which is authorized to execute methods classi-
fied into mp is a subset of roles on o; which is
%uthorized to execute methods classified into mg.

5 Concluding Remarks

This paper has presented an access control
model for distributed object-oriented systems
with role concepts. Roles are higher level repre-

Access control list

T j) Mg

/‘.~~Q r/
m i
- koo *

! information flow

L
’
.

-~

mRW

—-—=r1ole ¥;

~
My

Access control list
|l Mgy

i

¥y my,

Figure 7: Information flow control.

sentation of access control models. We have de-
fined a role to mean what method can be executed
on which object. Furthermore, we have discussed

how to control information flow to occur through
roles.

References
[1] Bell, D. E. and LaPadula, L. J., “Secure

2l

(3l

(4

{5

[6

—

]

Y|

[9

a1

Computer Systems: Mathematical Founda-
tions and Model,” Mitre Corp. Report, No.
M74-244, Bedford, Mass., 1975.

Bertino, E. and Martino, L., “Object-
Oriented Database Management Systems :
Concepts and Issues,” IEEE Computer, Vol.
24, No. 4, 1991, pp. 33-47.

Castano, S., Fugini, M., Matella, G., and
Samarati, P., “Database Security,” Addison-
Wesley, 1995.

Denning, D. E., “A Lattice Model of Secure
Information Flow,” Communications of the
ACM, Vol. 19, No. 5, 1976, pp. 236-243.

Denning, D. E. and Denning, P. J., Cryp-
tography and Data Security, Addison-Wesley,
1982.

Ferrai, E., Samarati, P., Bertino, E., and Ja-
jodia, S., “Providing Flexibility in Informa-
tion Flow Control for Object-Oriented Sys-
tems,” Proc. of 1997 IEEE Symp. on Security
and Privacy, 1997, pp. 130-140.

Ferraiolo, D. and Kuhn, R., “Role-Based Ac-
cess Controls,” Proc. of 15th NIST-NCSC
Nat’'l Computer Security Conf., 1992, pp.
554-563.

Harrison, M. A., Ruzzo, W. L., and Uliman,
J. D., “Protection in Operating Systems,”
Communication of the ACM, Vol. 19, No.
8, 1976, pp. 461-471.

Gosling, J. and McGilton, H., “The Java
Language Environment,” Sun Microsystems,
Inc, 1996.

(10]

[11]

(12]

(13]

(14]

(18]

(16]

(17]

Lampson, B. W., “Protection,” Proc. of 5th
Princeton Symp. on Information Sciences
and Systems, 1971, pp. 437-443. Reprinted
in ACM Operating Systems Review, Vol. 8,
No. 1, 1974, pp. 18-24.

Lampson, B. W., “A Note on the Con-
finement Problem,” Communication of the
ACM, Vol. 16, No. 10, 1973, pp. 613-615.

Object Management Group Inc., “ The Com-
mon Object Request Broker : Architecture
and Specification,” Rev. 2.1, 1997.

Sandhu, R. S., “Lattice-Based Access Control
Models,” IEEE Computer, Vol. 26, No. 11,
1993, pp. 9-19.

Sandhu, R. S., Coyne, E. J., Feinstein, H.
L., and Youman, C. E., “Role-Based Access
Control Models,” IEEE Computer, Vol. 29,
No. 2, 1996, pp. 38-47.

Tachikawa, T., Yasuda, M_., and Takizawa,
M., “A Purpose-oriented Access Control

Model in ‘Object-based Systems,” Trans. of
IPSJ, Vol. 38, No. 11, 1997, pp. 2362-2369.

Tari, Z. and Chan, S. W., “A Role-Based Ac-
cess Control for Intranet Security,” IEEE In-
ternet Computing, Vol. 1, No. 5, 1997, pp.
24-34. : :

Yasuda, M., Higaki, H., and Takizawa, M.,
“A Purpose-Oriented Access Control Model
for Information Flow Management,” to ap-
pear in Proceeding of 14th Int’l Information
Security Conf. (SEC’98), 1998.

