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Active Replication in Wide-Area Networks
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Network applications are realized by the cooperation of multiple objects by exchanging messages.
According to the advanced computer and network technologies, various kinds of network applications
have been implemented. In order to implement mission-critical application in the network environment,
replication has been introduced. Here, every server object is replicated and placed on multiple computers.
Even if some of them fail, the others can continue to execute the application. In an active replication,
gince all the requests from clients are sent to the replicated server objects in the same order, all the
replicas is surely in the same state. In the conventional active replication, the replicas are required to
be synchronized. If the replicas are placed on the different kinds of computers with different processing
speed, the response time of a request from a client becomes longer and the time-overhead in the system
becomes high. In order to solve the problem, the authors have introduced a pseudo-active replication.
However, since the speed of the replicas is measured by using the response order observed by a client in
the proposed protocol for the pseudo-active replication, it is difficult to apply the pseudo-active replica-
tion to a wide-area network where the replicas are distributed and multiple clients are also distributed.
Furthermore, the difference of processing speed is detected only if a client sends request messages with
short interval. In order to solve this problem, this paper proposes another implementation of the pseudo-
active replication. Here, the information of the processing speed in each processor is transmitted by the
totally ordered protocol for transmitting a request. In addition, we introduce a novel method that the
replicas intentionally computes requests in different order for reducing the response time in the clients.
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1 Introduction

According to the advance of computer and
network technologies, network applications are
widely developed. These applications are realized
by the cooperation of multiple objects. Here, mis-
sion critical applications are also implemented and
these applications are required to be executed

fault-tolerantly. An active replication has been
proposed where multiple replicated objects are op-
erational in a network system. In the conven-
tional active replication, all the replicated objects
are required to be synchronized. In the network
system,each replicated objects may be placed on
different kinds of computers, that is, computa-



tion is realized by different kinds of processors,
with different processing speed and different re-
liability. Therefore, the synchronization among
the replicated objects induces an additional time-
overhead. The authors have been proposed a
pseudo-active replication (7,13]. Here, not all the
replicated objects are required to be synchronized.
By using the pseudo-active replication, the syn-
chronization overhead is reduced and the response
time for the application in the clients is also re-
duced.

In the proposed protocol for the pseudo-active
replication discussed in (7] and [13], the difference
of processing speed in the replicated objects is de-
cided in a client by using the order of receipts of
the response messages from the replicated objects.
This method works well in a local-area network.
However, it is difficult to apply this method to
wide-area networks because the difference of the
response time is based on not only the process-
ing speed but also the message transmission de-
lay. If the replicated objects are distributed in
a wide-area network and multiple clients commu-
nicate with them, every client may decide a dif-
ferent object as a faster one. In this paper, we
propose a modified protocol to realize the pseudo-
active replication in a wide-area network. In the
pseudo-active replication, a slower replicated ob-
ject omits some requests from clients in order to
catch up with faster replicated object for reducing
the time-overhead in the recovery from the failure
of the faster replicated object [7,13]. In this paper,
we propose another method to achieve the syn-
chronization among the replicated objects. Here,
some requests from multiple replicas are intention-
ally processed in different order in each replicated
object. By using this method, the response time
for the requests from clients is reduced and the to-
tal processing time in the replicated objects may
be also reduced.

In section 2, we review the pseudo-active repli-
cation. The overview of another implementation
of pseudo-active replication for a heterogeneous
wide-area network is discussed in section 3. In
section 4, we show a novel protocol for realizing
the idea proposed in the previous section.

2 DPseudo Active Replication

2.1 System Meodel

In a network system &S, distributed applications
are realized by the cooperation of multiple ob-
jects. An object o; is composed of data and op-
erations for manipulating the data. o; is located
on a computer C;. C; and C; are connected to a
network and are always assumed to be able to ex-
change messages. o; sometimes computes by itself
and sometimes communicates with another object
o;. In most of the recent distributed applications,
the objects in a network system are classified into
clients and servers. A client object of request a

Figure 1: Replication of server objects
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Figure 2: Passive and active replication

server object o to invoke a specified operation op

i
by sending a message. o° manipulates the data

and responds to of also be sending a message.
This type of communication among the objects
is called client-server style. In this paper, the
communication among the objects is assumed to
be the client-server. In order that the applica-
tion programs are executed fault-tolerantly in &,
each server object of is replicated and located on
different computers [Figure 1]. Here, replicas of,
(1 < k < ;) of o} are composed of the same data
and the same operations.

2.2 Passive and Active Replication

There are two main approaches for replicating
server objects: passive and active replication (2]
[Figure 2]. In the passive replication [3,4], only
one of the replicas is operational. The other repli-
cas are passive, i.e. these replicas do not invoke
any operation. A client ocbject of sends a request
message to only the operational server replica oj;.
051 invokes the operation requested by of and
sends back a response message to of. of, some-
times sends the state information to the other
replicas of, (2 < k < n;) and every of, updates
the state information. This is called a checkpoint.
If o, fails, one of the passive replicas say of, be-
comes operational. Here, of, restarts the execu-
tion of the application from the most recent check-
point. Hence, the recovery procedure takes time
because of, has to re-invoke the operations that
the failed 0§, has already invoked before the fail-




C
o g dp d3
§\
op lop lop
miy =
m’-’z )
p —]
: :

Figure 3: Synchronization overhead in active

replication

ure.

In the active replication (1,5, 6, 10,12}, all the
replicas are operational. A client object of sends

request messages to all the server replicas of,

(1 <k < nj). Every o}, invokes the operation re-
quested by of and sends back a response message
to of. After receiving all the response messages,
o] accepts these messages and deliver the result
to the application. That is, the server replicas
o, are synchronized. Since all the server replicas
are operational, even if some replica 0} fails, the
other replicas o, (k # k) can continue to execute
the application. Hence, the recovery procedure in
the active replication requires less overhead than
that in the passive one.

2.3 Pseudo-Active Replication

In the conventional active replication, all the
replicas of, (1 < k < n;) of a server object oj
are synchronized. Hence, the computers in which
05, are located are assumed to be the same kind
ones with the same processing speed and the same
reliability and to be connected to the same local-
area network. That is, it takes the same time to
finish the required operation and the same trans-
mission delay is required for the messages between
a client and the replicas. Therefore, a client ob-
ject of can receive all the response messages from
o}, at almost the same time. This assumption is
reasonable in a local-area network.

However, a wide-area network, e.g. the In-
ternet, is usually heterogeneous. Many different
kinds of computers are connected to many differ-
ent kinds of networks. That is, there are pro-
cessors with different processing speed, reliabil-
ity and availability, and networks with different
message transmission delay and message loss ra-
tio [14]. Here, it is difficult for a client object of to
receive all the response messages from the replicas
0}, (1 < k < ny) of of simultaneously. In Figure 3,
of delivers the result of an operation op to the ap-
plication after receiving the response message mis
from the slowest replica 0j3, i.e. the application
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Figure 4: Pseudo-Active replication

in of is blocked until receiving mj3. Therefore,
the synchronization overhead for receiving the re-
sponse messages is required to be reduced.

The authors have been proposed a pseudo-
active replication [7,13] where a client object of
only waits for the first response from the repli-
cas o, under an assumption that only the stop
faults occur in the replicas, i.e. no failed object
sends a message to another one [11]. On receiving
the first response message from the replicas, of
delivers the result to the application and restarts
to execute the application. Hence, the response
time in of becomes shorter and the synchroniza-
tion overhead in S is reduced. However, since o),
are placed on processors with different speed and
are not synchronized, some replica o}y might fin-
ish the computation for all the requests from the
client objects and another replica o}~ might keep
many requests not to be computed because Ojgn
is placed on a slower processor. In this case, if
o}, fails, the recovery procedure takes longer time
than the conventional active replication because
o}, has to compute the requests that o}y, has al-
ready computed before the failure occurs as shown
in the passive replication.

In order to solve this problem, we introduce
the following two methods in the pseudo-active
replication:

1) Each client object of tells the server replicas
which replica is faster or slower.

2) If a replica 0j; is told to be a slower one,
0} omits some requests from client objects
in order to catch up with the faster replicas.

Suppose that a client object of waits for response
messages mj, and m[,,, and sends a request mes-
sage m;. In [7] and [13], we define faster/slower
replicas based on the causal relationship [8] among
these messages [Figure 4].

[Definition: faster/slower replicas]

If m;k — m; and m;k. /4 m; where m — m'
denotes a message m causally precedes another
message m’, of, is followed by of;,. That is, o},
and oj, are defined to be faster and slower repli-
cas, respectively. O



In order for the slower replica o, to catch up with
the faster replica o}, o omits some requests to
compute. Here, suppose that r and r’ are requests,
ror is a concatenation of r and v’ and r(s) is the
state of an object after r is computed in a state s.

[Definition: an identity request]
A request 7 is an identity request iff r(s) = s for
every state s. O

[Definition: an idempotent request]

A request 7 is an idempotent request iff r or(s) =
r(s) for every state s. O

Clearly, even if the slower replica o}, omits iden-
tity and idempotent events, 0, can get the same

state as the faster replica of,.

[Omission rule]
If the following conditions are satisfied, a request
r is omitted in a replica o]

1) o}, is a slower replica.

2) r is an identity or idempotent request.

3) Some faster replica of; has computed . U

In [7] and [13], by using vector clocks [8] for de-
termining the causal relation ship among the mes-
sages, the above conditions 1) and 3) are checked
in each replica o;k(l < k < n;). Here, every re-
quest message is assumed to be transmitted to all
the replicated server objects in the same order, i.e.

totally ordered delivery is assumed.

3 Pseudo-Active Replication in a
Wide-Area Network

First, we remove the omission rule 3) in or-
der to increase the probability that slower servers
catch up with faster servers. By removing the
confirmation whether a request » has been com-
puted in some other replica before omitting r, the
procedure to omit the waiting requests in a slower
replica can be invoked more frequently. Therefore,
the the slower replicas more easily catch up with
the faster ones. Here, some request r may be omit-
ted by all the replicated server objects o], and the
client object of requesting r cannot receive any re-
sponse message from the replicas. Hence, o] sets
a timer on requesting . If the timer is expired
before receiving a response message, of request 7
again.

In a wide-area network, processors on which the
replicas of, of a server object o] may be connected
to different sub-networks, e.g. one is in Japan
and another is in Europe, for executing mission-
critical applications more fault-tolerantly. In ad-
dition, client objects may be distributed in a wide
area. In this case, the receipt order of response
messages in each client is not a good measurement
of the processing speed in the replicated server
objects. For example, all the replicated server
objects may be informed to be slower [Figure 5].
Consider that a replica of, of o is placed far from
another replica o}, and client objects of and of
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Figure 5: Pseudo-Active replication in a wide-area
network

is near oj, and o°jk', respectively. Here, we as-
sume the processing speed of o, and o°j k' are the
same. If of and of sends new request messages af-
ter receiving a response message of the previous
request from near replica before receiving from far
one, both o, and o’ jk' are informed to be slower
and invoke the procedure to omit the waiting re-
quests.

The difference among response times from each
replica o, in a client object of is caused by both
the processing speed of the processors on which
o!, are placed and the message transmission de-
lay in the channel between of, and of. In ad-
dition, in a wide-area network, the network sys-
tem S usually consists of many client objects dis-
tributed in a wide-area. Hence, the measurement
of the processing speed based on the receipt order
of the response messages for the previous request
in a client object is relative and does not show
the difference of processing speed in the replicas.
Therefore, it is not suitable for a pseudo-active
replication in a wide-area network.

In each replicated server objects, the requests
which can be delivered to the application but
not yet delivered are called weiting requests and
queued until the application can accept them.
The length of this queue is a good measure for
the processing speed of replicas. In order to find
slower replicas by using the queue length, we use
the total ordering protocol proposed in [3]. This
protocol consists of three phase. In the second
phase, a control message cm; is transmitted from
each replica to the client object. Here, the queue
length in a replica is piggied back to cm;. By re-
ceiving cmy from all the replicas, the client object
can find slower replica. Ideally, the client object
receives the queue length at the same time from
all the replicas. However, it is impossible in a net-
work system because of the message transmission
delay. Hence, we introduce a certain threshold
value to find slower replica. Only if the differ-
ence of the queue length between some replica o,
and the others is larger than this threshold, o, is
treated as a slower replica.

The request not being omitted by the omission
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Figure 6: Intentional computing order exchange

rule in the previous section are computed in the
same order in every replicas. However, some pair
of requests 7 and r’ can be computed different
order.

[Definition: compatible and conflict requests]
Requests » and 7' are compatidle iff r o v'(s) =
#or(s) for every state s. Otherwise, these requests
are conflict. O

If » and 7' are compatible, these requests can be
computed in different order in each replica.

By computing the requests in different order in
each replica, the response time in client objects
may be reduced [Figure 6]. If a request » from of
and another request »' from ot are compatible,
r and 7' are required to be computed first by the
replica near of and of, respectively. That is, the
message transmission delay between a client ob-
jects and the replicas is reasonable for deciding the
computation order of compatible requests. The
message transmission delay is not constant but
time-variant [14]. Therefore, it is required to be
measured each time a request is sent. In our pro-
tocol proposed in the next section, it is measured
in the first and the second phase of total order-
ing protocol. Finally, in order to avoid that the
computation of some compatible request is post-
poned infinitely, the maximum number Ena- of
order exchange is predetermined. If the order of
a request 7 is exchanged En,; times, 7 becomes
a conflict request with any other request.

4 Protocol

In this section, we propose another protocol for
implementing the pseudo-active replication by us-
ing the total ordering protocol [3]. Each replicated
server object o;k(l < k < n;) manipulates the fol-
lowing variables:

e Logical clock cljj for totally ordering the re-

quests from client objects.

e Last computed request index loij; for the
measurement of processing speed of server
objects.

In the following total ordering protocol, the above
variables are piggied back to the control messages
in order to exchange the length of the waiting re-
quest queue among the replicas [Figure 7}:
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Figure 7: Total ordering protocol for pseudo-

active replication

[Total ordering protocol]

1) A client object of sends request messages
reg(r) with a request r to all the replicated
server objects of, (1< k< ny).

2) On receipt of reg(r), of, stores r in the buffer
with cljx. of, sends back an ordering mes-
‘sage ord(cl;y, loijk) piggying back clj; and
loijk. cljp 1s incremented by one.

3) After receiving all the ordering messages
from of, (1 < k < n;), of sends fi-
nal messages fin(max c!, max loi, ord) where
max ¢! = max clj, maxloi = max; cl;; and
ord is the receipt order of the ordering mes-
sage from of,.

4) On receipt of fin(maxcl, max loi,ord), r is
restored from the buffer and enqueued to
APQ ordered by o0i(r) = maxcl. O

APQ is an FIFO request queue and the applica-
tion degueues requests from APQ. If the applica-
tion finishes the computation of r with o:(r), loijz
is updated to oi(r). Hence, loi;; is always incre-
mented. max lo: piggied back to the final message
means that the fastest server object has finished
to compute a request with maxloi. Hence, the
procedure for omitting requests is invoked as fol-
lows:

<

[Omitting operations]
e If maxloi — loij; > threshold, identity and
idempotent operations in APQ is removed.
O

Finally, if r and another request r' in APQ are
compatible r is enqueued into APQ according to
the following procedure:

[Intentional order exchange procedure]

1) if » and 7/ are compatible and ord(r) <
ord(r'), r is enqueued before r'.

2) if r and ' are compatible and ord(r) =
ord(r'), r is enqueued before r' ‘with prob-
ability 1/2.

3) Otherwise, r is enqueued after v'. O

5 Concluding Remarks

In order to apply the pseudo-active replication
in a wide-area and large-scale network systems, we



proposed another protocol designed by modifying
the total ordering protocol. In order to make clear
the efficiency of our protocol, we need to evaluate
the followings:

e The difference of the length of the waiting
request queues in the replicas. If it is smaller
than the conventional pseudo-active replica-
tion protocol, the system can be quickly re-
covered from a failure of the faster replica by
using our protocol.

e The response time of the request from clients.
Here, the efficiency of the intentional order
exchange can be evaluated.

We are now implementing a prototype system to
evaluate our protocol.
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