TNF AT 4 TBfE L BILE 90— 3
ALY EF2YT4 2-3
(1998. 9. 17)

A Transaction-Based Purpose-Oriented
Access Control Model for Information Flow Management

Tsunetake Ishida, Masashi Yasuda, Hiroaki Higaki,
and Makoto Takizawa

Tokyo Denki University
E-mail {tsune, masa, hig, taki}@takilab.k.dendai.ac.jp

Distributed applications are realized by cooperation of multiple objects. Each object is manipulated
through a method supported by the object and then the method may further invoke methods of other
objects. Purpose-oriented access rules indicate what methods in objects can invoke methods of other ob-
jects. Information flow among the objects occurs if the requests and responses of the methods carry data.
The information flow depends on an invocation sequence of methods. We discuss how the invocation
sequence of methods influences the information flow.

IERMAEED =D S Y TS 3 ATEDTVE
B#vigm7 7 & AHIEHETF IV

AEEN KHEE iE EE ER K
HRERAFHETEREE T
E-mail {tsune, masa, hig, taki}@takilab.k.dendai.ac.jp

SEET T Y r—a i, BEOA T2 P OBRBEC L VERINS, £4 TV ML AT
TS OBRMTBE AV Yy FIZLo TORBEEN S, T2, AV FIX.MHOFT V27 DAY F
RIF T 2 L i B BHEAIT 7 L ABIETIZ, 547V 27 FORXAV y FEMEDA TV 27 MO
AV YRR T I EETELZLE IDPHEENS, HEFT VI DAV 9 FHFEFT V270D
F— v ERBETLOTHIUE, A7V 7 PETIHERIALEL 2, A7V =7 FHOFREIR. 2V Y F
OIFTHL DIEFEIKRTET 5. RHLTIE, AV v FORTHL DIFEFESE O L 5 ICERRICHET 20
HRT Do

1 Introduction

based model [1,3] aims at protecting against the il-
It is significant to consider what subject s can

legal information flow. One security class is given

manipulate what object o by what operation ¢ in
the access control model [1]. An access rule is
specified in a form (s,o0,t). A system is secure if
and only if (iff) every object is manipulated ac-
cording to the access rules. A subject s is granted
an access right (o, t) by an authorizer. However,
the access control model cannot resolve the con-
finement problem [5] where information illegally
flows among subjects and objects. The lattice-

to each subject and object in the system. A flow
relation among the security classes is defined to
denote that information in one class s1 can flow
into so. In the mandatory model [1,7], an autho-
rizer specifies an access rule (s,o,t) so that the
flow relation between a subject s and an object o
holds. In the discretionary model, the access right
of one subject can be granted to other subjects.
In the role-based model (8,11}, a role R shows a



job function in the application, which is given to
be a set of access rights, ie. R = {{0,t)}. The
access rule is defined to bind a subject s to a role
R, ie. (s, R).

Distributed applications are modeled in an
object-based model like CORBA [6]. Each object
is an encapsulation of data structure and meth-
ods. A method of the object is invoked on re-
ceipt of a request message. The method may
invoke methods on other objects, i.e.
tion is nested. Takizawa et, al [10,12] propose
a purpose-oriented access control model in the
object-based system. For example, a person s
may withdraw money from a bank o in order to
do house-keeping, but s cannot get money from
o to go drinking. In the access control model, s
can get money from o for any purpose only if an
access rule (s,o,t) is authorized. Thus, it is es-
sential to discuss a purpose of s to manipulate o.
In the purpose-oriented model [10], an access rule
shows a purpose for which each subject s manip-
ulates an object o by a method t of 0. In the
object-based system, the purpose is modeled to
be a method u of s which invokes ¢ of 0. That
is, a purpose-oriented access rule is specified in a
form (s : u, o :t), where u shows the purpose.
Even if each purpose-oriented rule between a pair
of objects satisfies the information flow relation,
some data in one object may illegally flow to an-
other object through the nested invocation. Ya-
suda, Higaki, and Takizawa [10,12] discuss what
purpose-oriented access rules imply the legal in-
formation flow in the nested invocations. The
relational database system Sybase [9] adopts the
ownership chain mechanism. Suppose a subject,
i.e. user s issues some method op; to an object
01 and op) invokes another method opy on an ob-
Ject 03. That is, ops is triggered by op;. If the
owner of 0y is the same as 01, opy can be invoked
by op; even if s is not granted the access right
on 0. This mechanism cannot be adopted to a
collection of autonomous objects. In this paper,
access rules are specified for a pair of autonomous
objects.

invoca-

In section 2, we review access control models.
In section 3, we discuss the purpose concept which

shows an invocation sequence of methods in the
object-based systems.

2 Access Control Models
2.1 Lattice-based model

A unit of resource in the system is referred to as
entity. There are two roles which an entity plays,
subject and object in an application. A subject
s manipulates an object o by issuing a type ¢t of
method. The object o computes the method ¢
and then sends back the response to the subject
s. The authorizer specifies an access rule (s, o, t)
showing that a subject s can manipulate an ob-
ject o in a method ¢t. Here, s is referred to as
granted an access right (o,t). The system is se-
cure iff every subject s manipulates every object
o only through an authorized method type t as
specified in the access rule (s, 0,¢). In the discre-
tionary model, the access rules are specified in a
distributed manner. A subject can grant other
subjects some access rights granted to the sub-
ject. The relational database systems [9] adopt
the discretionary model. However, the access con-
trol model implies the confinement problem [5].
Here, even if each subject is assumed to manipu-
late objects so as to satisfy the access rules, ille-
gal information flow between subjects and objects
may occur.

The lattice-based model [1, 3] is proposed to
keep the information flow legal. Each entity e;
is given one security class A(e;). A security class
s1 can flow to sy (s1 — s2) iff information in
an entity of s; can flow into an entity of s5. s
and sy are equivalent (s; = s3) iff s; — s9 and
89 — s1. For every pair of security classes s; and
s in S, s1 < s2 iff 51 — 8 but s3 /4 s;. Here,
sy dominates s1 (s1 = 82) iff 51 < 2 or 51 = s9.
s1 = sp means that s9 is more sensitive than s;.
U and N are the least upper bound (lub) and the
greatest lower bound (glb), respectively. In the
mandatory model [1,7], access rules are defined
so as to satisfy “<”. If s reads o, the information
in o is derived by s, i.e. information in o flows to
s. Hence, A(s) = A(0) is required to hold. s writes
o only if A(s) < A(0) holds. Lastly, s modifies o
only if A(s) = A(o).



2.2 Role-based model

An information system is considered to be a
collection of roles which users play in the appli-
cation. In the enterprise, a role shows a job func-
tion and each individual is assigned a job. In the
role-based model [8,11], each role R is modeled
to be a collection of access rights {(o1,t1), ...,
(0m.tm)}. That is, job function is composed of
the methods ¢y, ..., t;,. Each individual s plays
a role R in the enterprise. This is modeled to
bind a subject s to a role R. In the access con-
trol model, each sybject s is assigned each access
right (0;,t;). Hence, an access rule is specified in
a form (s, R) where s shows a subject and R in-
dicates a role. The inclusion hierarchy among the
roles is also discussed.

2.3 Object-based model

In the object-based system, each object o; sup-
ports more abstract level of data structure and
methods than read and write on a simple object
like file. In addition, o; is encapsulated so that
0; can be manipulated only through the methods
supported by o;.

First, methods are assumed to be unnested.
An object s sends a request message ¢ of op; to
an object o;. On receipt of g, 0; computes op;
and sends the response r back to s. ¢ and r carry
the input and output of op;, respectively. If op;
changes the state of o; by using the input, the
data in s may flow into o; if ¢ carries some data in
s. If op; derives data from o; and then returns the
data to s, the data in o; may flow out to s if r car-
ries the data derived from o; by op;. Thus, input
and output of op; have to be discussed to clarify
the information flow relation between s and o;.
Each method op; of o; is characterized in terms
of input (I;), output (O;), and state transition of
0;. The input I; exists if some data flows from s to
0;, e.g. the request of op; includes the data. The
output O; exists if some data in o; flows out to s.
In this paper, the communication among objects
is assumed to be secure. Only data stored in o;
can flow out from o; to s and the data in s can
flow to o; in the computation of the method of o;.

Each method op; is classified into one flow type
7(op;) [Figure 1): non-flow (NF), flow-in (FI),

flow-out (FO), and flou-in/out (FIO). An NF
method op; implies no information flow from or
to 0;. In addition, op; does not change o;. Even
if the input data I; exists, no information in s
flows to o; unless op; changes o;. Similarly, no
data in o; flows out to s unless the output data
O; is derived from o0;. An FI method op; changes
o0; by using I; where data in s may flow into o;.
write is FI. In addition, o; is updated without I;.
For example, a count-up method has no input but
changes the counter. An FO method op; does not
change o;. Since the output O; of op; carries data
in 0; to s, data in o; may flow to s. read is FO.
An FIO method op; changes o; by using [; and
sends O; including data in o; back to s. Not only
data in s may flow into o; but also data in o; may
flow out to s. In modify, s first reads O; in o; and
writes to 0;. FIO may not carry I; like FI. The
mandatory access rule is extended as follows [10].

I; oP; I; %P I; P, I; %;
g
0; 0; 0; 0;
0'. 0'. 0i 0'.

(1) Non-flow (NF)

(2) Flow-in (FI) (3) Flow-out (FO) (4) Flow-in/out (F10)

Figure 1: Information flow.

[Extended access rules] The subject s can ma-
nipulate o; by op; of o; according to the following
rules.

(1) 7(opi) € {NF, FI} only if A(s) < A(0;).

(2) 7(opi) € {NF, FO} only if A(s) = A(o;).

(3) 7(op;) € {NF, FI, FO, FIO} only if A(s) =
A(Oi).D

The types of methods and the security class

‘A(0;) of o; are specified when o; is defined based

on the semantics of 0;. Bach time s invokes op;,
op; is accepted to be computed on o; if 7(op;) and
A(o;) satisfy the access rules.

[Example 1] Suppose WWW [2] server object
w is manipulated by two hosts h; and hy. Here,
w supports GET and POST methods. GET is
an FO type method because the output data is
derived from w. POST is FI because w is updated
by using the input data. If A(h1) < A(w) and



A(ha) = A(w), hy can POST but cannot GET
data in w, and hy can GET but cannot POST
data in w. w can also support abstract methods
like Common Gateway Interface (CGI). O

3 Purpose-oriented Model
3.1 Purpose concept

We assume a pair of methods op; and ops sup-
ported by an object o can exchange data only
through the state of 0;. If data d flowing from an
object o; to another object o; is neither derived
from o; nor stored in oj, it is meaningless to con-
sider the information flow from o; to o;. If data
derived from o; is stored in o;, the data may flow
out to other objects.

Let us consider a person object p and a bank
object b. In the access control model, p can de-
rive money from b for any purpuse if an access rule
{p, b, withdraw) is specified. Suppose a person
p can withdraw money from a bank object b for
the house-keeping. However, p cannot get money
from b to go drinking. Thus, it is critical to con-
sider a purpose for which a subject s manipulates
an object o; by a method ¢; [10,12].
[Purpose-oriented (PO) rule] An access rule
(0; : opi, 0 : op;j) means that an object o; can
manipulate another object o;; through a method
opi; invoked by op; of 0;. O
In the PO rule, op; shows a purpose for which
o0; manipulates o;; by op;;. Here, o; and o;; are
named parent and child objects of the access rule,
respectively.

[Example 2] If a person object p can withdraw
money from a bank account b [Figure 2], an access
rule (p : house-keeping, b : withdraw) is speci-
fied. The method house-keeping of the object p is
allowed to invoke the method withdraw of b. Here,
house-keeping shows the purpose for withdrawing
money from b. The method drinking cannot in-
voke withdraw since (p : drinking, b: withdraw)
is not specified. O

3.2 Purpose in role

A role is specified in a collection of access rights
in the role-based model. We would like to extend
the purpose-oriented access control to the role-
based model. In the object-based system, meth-
ods are invoked in a nested manner. In the rela-

tional database system like Sybase {9], the own-
ership chain method is adopted. Here, suppose
that a subject s invokes a method op; on an ob-
ject 01 and then op; invokes another method opy
on an object 03. If 09 has the same owner as o5
and s is granted an access right (o1, 0p1), op; can
invoke opy even if s is not granted an access right
(09, 0p2). Otherwise, op; is allowed to invoke ops
only if s is granted an access right {(o2,0p2). In
this paper, we assume that the system is com-
posed of multiple autonomous objects, that is,
objects have different owners. Furthermore, it is
difficult , maybe impossible for each autonomous
object to grant access right to subject in other ob-
jects. If the owners of the objects to be invoked
are different, a subject s is checked if s is granted
an access right to objects. In this paper, we take
an approach where access rules are specified for a
pair of autonomous objects o; and o;.

Each method op; of an object o; is granted
a role R; = {(opi1,011), .-, {OPin;,0n;)}- This
means, op; can invoke a method op;; of an ob-
ject 0;;. In turn, op;; may be granted a role R;;
= {{opij1, 0i1), --- (Opijh.'jrotjhij) }
invoke a method op;ji of oy if op;; is granted
the role R;;. In Finger 2, it is significant to dis-
cuss what role the person p plays in a commu-
nity when considering a purpose to manipulate
the bank object b. For example, if p plays a role
of entertainment in the community, p can get
money from b for the purpose drinking. An ac-
cess rule has to specify in what role the method
op; of the object o; is bound to the role R;.

op;; can

[Purpose-criented role-based access (POR)
rule] (R : o; : op;, R;) where R; = {{opi1,011),
sy (Opihwoihi)}' 0O

house-keeping s

Figure 2: Purpose-oriented access control.



3.3 Invocation sequence

We assume that methods op; and op; are com-
puted on objects o1 and ey, respectively [Figure
3]. We also assume information flow constraints
A(p1) % A(o1) and A(p1) = A(o2) hold on for p
and A(p2) = A(0y) for po. This means a person p;
can compute the methods op; of 01 and op; of 02.
On the other hand, a person p; can compute op;
of 0;. If flow types of op; and opy are FIO and
F1, respectively, an illegal information flow may
occur because py can obtain indirectly the data
of 0y although pj is not allowed [Figure 3]. This
is the confinement problem [5] which the access
control model cannot resolve as presented before.

Figure 3: Illegal information flow

Suppose that a pair of objects 01 and oz sup-
port only read and write methods. These meth-
ods are not nested. Roles Ry = {(read,o01),
{(write,01), (write,02), (read,o2)} and Ry =
{{read,02)} are assumed to be hold. Here, Ry
C R;. pi is granted the role R; and py is granted
R [Figure 4]. That is, p; can manipulate o; and
02 but py cannot write o; while reading 0. As
discussed in the confinement problem, p may il-
legally obtain data in oy if py and py are granted
R; and Ry, respectively. First, suppose that p;
writes data in o, after reading data from o;. Here,
p1 can indirectly obtain the data stored in o.
Next, suppose that p; reads data from o; after
writing data to og. Here, no data in o flows to
01. Therefore, there occurs no illegal information
flow from o1 to oo if p; writes oy before reading
o1. This example shows that whether or not il-

legal information flow occurs depends on how p;
issues methods to 0; and o02.

Figure 4: Information flow

We assume that an object o; has an access list
AL(0;) = {(s5,t) | (s, 0i,t) is authorized}. AL(o0;)
indicates what subject can manipulate o; by what
method.

A subject s manipulates a directed graph H(s)
to check whether or not illegal infomation flow to
occur. H(s) is composed of two kinds of rodes,
subject node and object node. Initially, H(s)
includes a subject node showing s. If the sub-
jetc s would manipulate an object o; by issuing
a method t;, s manupilates the graph H(s) as
follows:

[Graph constructions]
1. An object node o; is created in H(s).
a Ift is'read; a directed edge from o; to s (0;
— s) is created in H(s).
b. If t is write, a directed edge from s to o; (s
— 0;) is created in H(s).
2. For each element (s;,t;) in AL(0;), a subject
node s; is created in H(s) unless H(s) includes
8j- )
a. If t; is read, a directed edge o; — s; is cre-

ated.
b. If t; is write, a directed edge s; — o; is cre-
ated. O

For every nodes a, b, and ¢, if a — b and b —
c in H(s), an edge @ — c is created in H(s). If
the following condition holds, s is not allowed to
manipulate o; by ;.
[Access condition] For every subject s;, 0; —
s; in H(s) but (s;, 05, 7ead) is not authorized. O



4 Concluding Remarks

The information system is composed of multi-
ple autonomous objects. Each object supports
more abstract level of methods than read and
write. The purpose-oriented access control model
discusses why an object manipulates other ob-
jects in the object-based systems while the tradi-
tional access control model discusses if each sub-
ject can use an object by a method. In addition,
the methods of the objects are invoked in a nested
manner. The access rules have to satisfy the in-
formation flow relation among objects. The oc-
currence of illegal information flow depends on in
which order methods are invoked. In this paper,
a purpose of the object to manipulate objects is
modeled to be a invocation sequence of methods.

References

(1] Bell, D. E. and LaPadula, L. J., “Secure
Computer Systems: Mathematical Founda-
tions and Model,” Mitre Corp. Report No.
M74-244, 1975.

[2] Berners-Lee, T., Fielding, R., and Frystyk,
H., “Hypertext Transfer Protocol -
HTTP/1.0,” RFC-1945, 1996.

[3] Denning, D. E., “A Lattice Model of Secure
Information Flow,” Comm. of the ACM, Vol.
19, No. 5, 1976, pp. 236-243.

[4] Denning, D. E. and Denning, P. J., Cryptog-
raphy and Data Security, Addison-Wesley,
1982.

[5] Lampson, B. W., “A Note on the Confine-
ment Problem,” Comm. of the ACM, Vol.
16, No. 10, 1973, pp. 613-615.

Object Management Group Inc., “ The Com-

mon Object Request Broker : Architecture

and Specification,” Rev. 2.1, 1997.

[7] Sandhu, R. S., “Lattice-Based Access Con-
trol Models,” IEEE Computer, Vol. 26, No.
11, 1993, pp. 9-19.

[8] Sandhu, R. S.; Coyne, E. J., Feinstein, H.
L., and Youman, C. E:, “Role-Based Access
Control Models,” IEEE Computer, Vol. 29,
No. 2, 1996, pp. 38—47.

[9] Sybase, Inc., “Sybase Adaptive Server En-
terprise Security Administration,” 1997.

[6

—_

[10] Tachikawa, T., Yasuda, M., Higaki, H., and
Takizawa, M., “Purpose-Oriented Access
Control Model in Object-Based Systems,”
Proc. of the 2nd Australasian Conf. on In-
formation Security and Privacy (ACISP’97),
1997, pp. 38-49. '

[11] Tari, Z. and Chan, S. W., “A Role-Based
Access Control for Intranet Security,” IEEE
Internet Computing, Vol. 1, No. 5, 1997, pp.
24-34.

[12] Yasuda, M., Higaki, H., and Takizawa, M.,
“A Purpose-Oriented Access Control Model
for Information Flow Management,” to ap-
pear in Proceeding of 14th Int’l Information
Security Conf. (IFIP/SEC’98), 1998.



