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Abstract.

‘When constructing secure hyperelliptic curve cryptosystems, counting the number of rational points on hyperel-
liptic curve and its jacobian variety defined over finite fields is one of the most important problem. In this paper
we propose an effcient method of counting the number of rational points. In this method, we improved the formula
for the coefficients (modulo characteristic of defined fields) of the numerator of congruent zeta function which are
related to the number of rational points on the Jacobian varieties, in order to implement efficiently. Moreover we
report on some experimental results.
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1 Introduction

As a natural generalization of elliptic curve cryptosystems (ECC) [MiL85, Ko87] , Koblitz [K088, K089] has
proposed hyperelliptic curve cryptosystems (HECC) based on the discrete logarithm problem for the Jacobian
varieties of the curves defined over finite fields. As in the case of ECC, the security of HECC depends on the
number of of rational points on hyperelliptic curves and their Jacobian varieties. In theory the number of rational
points can be computed in polynomial time using methods due to Adleman, Huang[AH96] and Pira[P190]. These
methods are generalralizations of the method of Schoof[Sc85], and some work on its implementation has been
reported[GHOO]. But these methods are not practical. At the moment, one of the problems to implement is that
there is no known analogue of the improvements of Atkins and Elkies to the Schoof algorithm[Sc95]. Original
Schoof algoritm[Sc85] is ineficient even for elliptic curves.

In this paper, we propose an efficient method of counting the number of rational points on hyperelliptic
curves of genus 2 and their Jacobian varieties over finite fields. In this method, we improved the formula for the
coefficients (modulo prime p) of the numerator of congruent zeta function which are related to the number of
rational points on the Jacobian varieties, in order to implement efficiently. In section 2, we recall some general
facts regarding on the hyperelliptic curves and its Jacobian varietes. In section 3, we will describe a general
strategy for point counting and derive an explicit formula for some special case. Finally we report on some
experimental results in section 4.

2 General Facts

Here is a brief review of some general facts on hyperelliptic curves and jacobian varieties. (For more detail, see
[Ko089, K098].)

Let p be an odd prime and ¢ = p™ be some power of p. Let I, denote the finite field with ¢ elements and Iy B
be the character group (the group of homomorphisms from F; = F, \ {0} to the multiplicative group of complex
numbers). We consider an affine curve given by the equation

C:y? = f(z) = 22 4 0122 + apz® ™ 4+ ager Faggrr (a; € Fy),

where the discriminant of f # 0. Then C defines a smooth projective curve (in some projective space) which is
called a hyperelliptic curve. (There exists only one point which is on the hyperelliptic curve, but not on the
affine curve C'. We call this ”point at infinity” and denote co.) In an abuse of the notation, C also denotes the
projective curve. The genus of C is equal to g, where the genus is defined as the dimension of the space of regular
differential forms on the curve over the algebraic closure of Fy. If g = 1, then C is called an elliptic curve.

For any finite extension Fygm of Iy, let C'(Fym ) be the set of Fym-rational points on C. For a € F=, there exist
Fm-rational points on C that have an z-coordinate a if and only if f(a) is a square in Fgn, and when that is the
case, two such points will exist if f(a) # 0, and one point will exisit if f(a) = 0. Moreover, let xm(# 1) € Iﬁ‘zm
be the unique character of order 2, then f(a)(# 0) is a square in F, if and only if x.,(f(a)) = 1 (we extend
Xm(0) = 0). Thus the number of elements in C'(Fy~) is given by

#OFp) =14 5 Om(f@)+1D)=1+¢"+ D xm(f(2))

x€Fgm z€Fym

Next, we will briefly review on the Jacobian varieties associated with hyerelliptic curves.

For a point P = (z,y) € C, let P := (z, —y) be the opposite of P.If P = P, then P is called special (otherwise
P is said to be ordinary)‘ For two divisors D1 = 3 - mp(P) and Dy = 3 np(P) on C (formal (finite) sums of
points on C), the greatest common divisor of Dy, D, is defined by

ged(Dy, Dy) Emm (mp,np)(P) — (me mp,np )( ).

A divisor D on the hyperelliptic curve C is called semi-reduced if D = 3> mp(P) — (3 mp) (c0), mp > 0, and
for P € Supp(D) = {P|np # 0}, P & Supp(D) if P is ordinary, and mp = 1 if special.

A semi-reduced divisor D = Y, mp(P) — (3. mp) (c0) is called reduced if Y- mp < g (g : genus of C). Then
for each divisor of degree 0, there exists a unique reduced divisor that is linearly equivalent to the given divisor.
Moreover we have the following theorem.



Theorem 2.1 Let D = 5 mi(F;) — (3_m;) (00) be a semi-reduced divisor on the hyperelliptic curve C' and
P; = (a;,5:). Let a(z) = T](x — ;)™ . Then there exists unique polynomial function b(x) on C such that:

(1) deg, b < deg, a(< g),

(2) b{e;) = f; for any i (such that m; #0),

{3) ¥? = f mod a.

Then, we have D = ged(div(a),div(b — y)).

The Jacobian variety J/F, of C is a g-dimensional abelian variety (= projective group variety) which has the
following properties:

For any point P on C, there exists an injective map F¥ : € = J such that FP(P) = Q; and for any rational
map ¢ from C to an abelian variety A, there exists unique homomorphism ¢ : J — A such that ¢ = o FF,

The set J(F,) of Fy-rational points on J is a finite abelian group (with respect to some group law). If g = 1
(that is, C is an elliptic curve), then C and J are isomorphic. Hence in this case, C'(F,) is itself an abelian group.

it is well-known that J(IF,) is isomorphic to the group Picgq (C) of linearly equivalent classes of IF -rational
divisors that have degree 0. Hence we can treat a point on J as a pair of polynomials in z as in Theorem 2.1:

J(F,) = {(a(x),b(x)) | a,b € Fylz],a = H(x ~ a;)™ (in F,),and (1), (3) in TheoremE.l}.

(Note that property (2) is not needed in above.)
From here, we will concentrate on the case of genus 2 (and prime fields). Then a hyperelliptic curve C of
genus 2 has a defining equation of the form
C:y?=2°+az* +ba® + ca® + do +e.
Let us define a; and M; (i = 1,2) as integers which satisfy

#CF,) = My = 1+p+ar=1+p+ Y x(f(2)),
z€F,

#OFp) = My = 1+7 +20, —af = 1+ + Y xa(f(a)),
n:eleg

where x(# 1) € F;, X =1and x2(#1) € Iﬁ‘;a, x3=1 :

Then the numerator P(T') of the zeta function Z(C/F,,T) of C is given by

P(T) = pPT*+apT¥ + a7+ T+ 1

= (1-al)(1-al)(1~pT)1~-6T) |o|=|6l=+/P (" : complex conjugate).

Let J/F, be the jacobian variety of C. Then it is known that the number of F,-rational points on J is given
by

#J(Fp) = P(1) = 1+ a + ag + pay +p°.

More generally, the facts described below are known (Weil conjecture):

Theorem 2.2 Notation is as above.
(1) (Functional equation) P(T) is a polynomial with integer coefficients of the form
P(T) = 1+aiT+aT 4+ +a, T +a,T9
+qay 1 T9 4 @Pag o772 4o @@y T2 4 9T,
(2) (The Riemann Hypothesis) P(T) factors as

g
P(T) = H(l -o;T)(1=-&T), |ou| =+/q, (where means the complex conjugate)
=1 .
(8) The number of rational points on J is given by

g g

#I(Fpm) = [[11 = o =[]0 - a1 - ap).

i=1 i=1

In particular, #J(Fy) = P(1).



By the definition of the zeta function, it can easily be seen that

P(T)

A/n — 1= n+1 T,
P(T) E( A1 ")

n>0

Hence, by comparing the coefficients of 7™ on both sides, we have

Mi-1-q = a,
My —1-¢> = 2a; — aj,
Mg*lfq = 3az —3a1a2 +af,

(3} of Theorem 2.2 and the relations between the roots and the coefficients of P(T') gives rise to a bound

la;] < (2;) \/(7 . Therefore the following holds:

[#C(F )—1—q|<2q\/",

[#J(F —1—J|<}:() (1+q"7.

For example, if the case of g = 2, then we have [#J(F,) — 1 — ¢?| < 4¢% + 6 + 4¢3, and for the case of g=3,
[#J(F,) ~ 1 —¢°| < 6¢3% + 15¢> + 20¢% + 15¢ + 64%. :

3 A strategy for counting the number of rational points

As in the previous section, let C' :y = f(«) be a hyperelliptic curve of genus 2 defined over a prime field F,.

this section, we consider methods of counting the number of rational points on the Jacobian variety J of (’ As
mentioned in the previous section, if we have My = #C(F,) and My = #C(F,z), then #.J(F,) is casily calculated.
Moreover, by applying Theorem 2.2 (3), we can easily calculate #.J(Fn).

If the characteristic p is small, then we can calculate M; and M, by using the formula in Section 2. To
calculate the value of the character x (resp. xz), we can use Euler’s criterion: y(a) = a%l(: +1in ) (resp.
X(a) =a 2271( +1in Fy2)). However, in this calculation, in particular for >, we must sum over F,z which has
p? elements. Hence this method requries at least O(p?) operations. Thus we need a more efficient method for big
p. In the following, we consider a method which M, does not need to be calculated directly.

Remarks.
In general, for a hyperelliptic curve C' of genus g, we must calculate #C(F,), #C(F,2), .. ., #C(Fpo).

We start with a simple lemma.
Lemma 3.1 Let |, be o finite field. Then we have Zrmq 2t = —1ifg—1i >0, end 0 otherwise.
Proof. For any x € Fy \ 0, we have 27" = 1. Hence if ¢ — 1]i, then Z;@F zt = erm \Om =q- 1 =-1
(as an element in F,). On the other hand, if qg-1 /i then there exists some y € F, such that y* # 1. Then

yi(zmqu ) = Pver, (yx)? > wer, @, hence (y' —1) >wer, ©° = 0and y* — 1 # 6. This gives the desired result. g

For a power ¢ = p™ (n = 1,2,...) of p, let us define AE") € I, by the following relation:

o) =57 At

Then by the lemma glves us #ﬁ( ) =1~ (A;",>l + 45?; 1)) (mod p). Moreover, in the case of ¢ = p?, it
- »
can casily be seen that f(z)" (j(x; '971) (in Fp[z]).



Hence, as elements in F,, we have

2 1 2 1 1
A= (A) Al Al
(in Fp)
@) — (A (1) A
Apper) = (AZ(:H)) + Ay dp s
Therefore, by the definition of a1, as, we have
a = ~(AY +45) ) modp (| <4yp) (1)
ay = A AP AL AP, modp ).

Hence, a; mod p and a; mod p are calculated in terms of the coefficients of f (cc)]%l mod p.

The Riemann Hypothesis (Theorem 2.2 (2) R-H) for the congruent zeta function of hyperelliptic curve C/F,
tells us that |a1| < 4,/P (note that the genus of C' is 2). Therefore, if 64 < p, we can determine a; by the above
relation (1).

Similarly, by using the R-H, we obtain —2p+a}/2 < a < 2p+a}/2. Thus there are 4 or 5 possible values for
ay. More explicitly, let a} be an integer which satisfies (2) and 2p +a?/2 < af < p+a?/2. Then all possible
values of ay are a) + ip, ¢ = 0, 1,2,3 (or 4). Since 1+ ay + a;p + p? is even, we can obtain #J(F,) = a2 mod
2 (#J(F,) = 1+ a1 + a1p + p* + ap) and by the type of factorization of f(z) mod p (see below), we can have
#J(F,) mod 2. Thus we can restrict the possible values of a» to 2 or 3.

Finally, if we can determine #J(F,) mod £ for a (small) prime /, then the value for ay is determined, because
0 and 2p (and —2p) modulo £ have different values.

By the type of factorization of f{z), we can easily have #J(F;) mod 2.

Lemma 3.2 Let f(z) = Hle(w —a;) (inF,), and P; = (a;,0). Then we have

J(F,)[2) ((Py) = (00)) x ((Py) = (00)) x ((Ps) = (00)) x {(F4) — (c0))
= {0,(P)~(c0) (i=1,...,5), () +(Py) ~2(c0) (1 <4 <j<B)}

Proof. This follows from the uniqueness of the reduced divisor on the hyperelliptic curve in a linearly equivalent
class, div(y) = Y70_, (P;) — 5(oo) and #J[2] = 2*. ;

Proposition 3.1 #J(F,) is even if and only if f(z) has at least one factor of degree 1 or 2 (in Fy[z]) or
equivalently, deg(GCD(z?” — z, f(z))) > L.

Proof. The notations are as in Lemma 3.2. Divisor (F;) — (o0) is F,-rational if and only if a; € F,y, and
(P) + (P;) — 2(00) is rational if and only if af = a;, thus a; and a; are roots of a quadratic equation over F,
which divides f(z). g

Next we will consider how Agl)’s are calculated for a reasonably large characteristic p.
Let f(z) = z° + a2® + ba® + cz + d. Then the coefficients A of 2 in f(2)"F are given by

Z (%) (&;—1” Z) (E%l sz - 3) (E““ - 1l— i )ajblccld%ivivjwk—l
i J :

where the sum is taken over i, j, k, I such that 5i +3j + 2k -+l =n,0<i<m,0<j<m—-4,0<k<m~i~j,
0<I<m-—-i—j—k.

As a simpler example, we will consider the case for the defining equation f is given by 3-terms:
flz) =2 +az*+b (1<u<4).

polN /p=1
Then A, = A is given by A, = g ( 2 ) < 2
i

AN IR . .

)a’ b5 =17 where the sum is taken over 1, J such that
J

Situj=n,0<i< Bt 0<) <G i



Let s = 57 n (mod u), 0 < 5 < w — 1, then ¢ which apears in the above sum must be congruent to s mod u,
thus if we change the suffix so that ¢ = s + tu, then there exist some integers My, My, and A, can be written as

M. — —
A = ;ﬁ E_z_l_ EQ_l - (8 + tu) aK~5tb3;~1~st+(5—u)t
" t—;l-\;1 S+ tu K -5t ’

where K := (n — 5s)/u € Z. Since it holds that il(p — 1 —4)! = (—=1)**! mod p, we have
Cunt
Ap = (p—_ 1>?aKb —eK Z Y (p -1 - K +5t)! (b5 ) .
2 (<>’+tu E:—l——.s—K+(5~—u)t)! a®
Let B; be the ¢-th term of the above sum. Then there exists a multiplicative relation between B; and B;_;.

Hence we can calculate A, by repeating B < ¢(t)B and A + A + B.
We will now sum up the above discussion and give explicit formulae:

Theorem 3.1 For a given p and an equation y> = f(x) = 25 4 az™ + b, we set:
s:=5"n (mod u) (0< s <u—1),
K:=""2 (c7),

s 1 p—1
My := ceili f — e
1 = ceiling o ma.x{ o 5_U(K—i—s 3 )},

My := floor of !—5{—
Then A, is given by

D 1 =1 My
An = (T) !aKbLT_SMK z Bt,

t= My

where

L (FnEEML g 1 - K 5M)! (b—s_u) :
M, = (3+M1“)!(£§1“3—K+(5~u)M1)! s

pes

~fs(p—1— K + 51 poS
fuls +ut) fs (Bt — s — K + (5 —u)t) a°
where fo(z) =z(z~1) - (z—i+1).

By =B,

Remarks.

1. All of the above calculations must be done in F,,.

2. Note that s, M and K depend on the given p, u and n (we must calculate 4,’s forn =p —2,p~1,2(p — 1)
and 2p — 1), and independent on @ and b. Hence for given p and u, we can calculate s, M, X and the factorials
in By previously.

3. For higher genus, the formulae become quite complicated. The same method can, however, still applied.

4 Experimental results

In this section, we report some experimental results of implementation of our method. We used the MAPLE
algebra program on a PC with Pentium IIT 500MHz CPU. In view of using optimal extention field[BP98], we used
a 16-bit prime field.

We calculated the number of F,-rational points on the Jacobian varieties of hyperelliptic curves of genus
2 defined by equations in the following forms. For each example listed in Appendix, the order of the group

J(Fy7)/ J(F,) is about 192-bit prime number. The average time for calculation of a; and ay (determination) was

6.49 seconds. (excludmg the cal('ulamon of the order #J(IF,7) and pnme facmrmg,)

We have calculated y? = «® + az® + 1/F,, 1 <a <1000 and y? = 2° + 2% + b/F,, 1 < b <1000 and found 5
curves which have prime order for (J{IF,7)/J(F)).



5 Conclusion

We proposed a method of counting points on the Jacobian varieties of hyperelliptic curves over finite fields. In
this method, we improved the formula for the coefficients (mod p) of the numerator of congruent zeta function
which are related to the number of rational points on the Jacobian varieties, in order to implement efficiently.
The average time so as to calculate the main part of our method was 6.49 seconds.
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A Curve examples

p = 65521 = largest prime less than 2'°
(a,b,u) = {C :y* = 2° + az® + b/Fp}
J = J(C) : the Jacobian variety of C.

C:y? =2°+az® + 1/F,

y? =1° +202% + 1

#J(F,) = 4202060372 = (22) * (19) * (347) + (162751)
#(S(Fpr) /T (Fp)) =
6261242248149854411491526925185309068882545646066170969601

y? =%+ 302% +1

#J(F,) = 4283385114 = (2) * (3) = (713897519)

#(I(F,r) /I (F,)) =
6273936470508174010741372129455062873918789656819030488481

y?=a2% +752% + 1

#J(F,) = 4291540462 = (2) * (11) * (195070021)

BIE) () =
6262013913631466956030152270611851263819204142157300476369

y? =2’ 4+ 822% + 1

#J(Fp) = 4271964544 = (27) = (17) * (1963219)

BI(F,)J(F,)) =
6290709065387883037427482065152628515560124077180084611601

C:y?=2°+2°+b/F,

y? =2° + 23 + 62

#J(F,) = 4309251388 = (2) * (13) * (23)  (3603053)

H(I(F) [I(F,)) = |
6236277177699992278686480666591981062513907089062982993161

y2 =2 +2®+ 75

#J(Fp) = 4285555915 = (5) = (61) = (151) * (93053)
#(J(Fpr) [ J(Fp)) =
6270758477306301290323521925241066596926028162200097596969

y? =2+ 2° + 103

#J(F,) = 4291596612 = (22) = (32) « (119211017)
H#(J(Fpr) [ I(Fp)) =
6261931983265442616781851094698463546551685997709940226161

y? =2b + 2% +121

#J(Fp) = 4303436782 = (2) * (2151718391)

HIE)/I(E,)) =
6244703348812064705456262466347507146579044296618771608521

776,,



