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Abstract

Suppose we are given an Abelian group G of unknown order, such as RSA
group (Z/nZ)*, where the group operations in G can be efficiently computed.
Let g, h be elements in G and let ¢ = g*A" be a commitment to z (where the
group operation is defined as the multiplication). In this paper we revisit a
sound-proof-of-knowledge protocol for the representation problem in a group
of unknown order — that is, a protocol in which the prover convinces the
verifier that he knows the representation of ¢ to base g, h in G.

The proof of soundness for this protocol was initially provided in [5], but
we have recently found it incomplete, although the protocol and its variants
appear in many literatures, for instance PVSS [6], group signature [3, 4] and
optimistic fair-exchange (2, 1].

In this paper we fix a bug in [5] and prove this protocol indeed sound,
trying to make the setting more general and fundamental.
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1 Introduction

Suppose we are given a way to construct an Abelian group G of unknown order,
such as an RSA group or a class group. More precisely, we have an PPT algo-
rithm G which on input 1* outputs a description descr(G) of a group G. The
algorithm may also output some side information, such as the order of G, or the
prime factorization of the order; it may even be possible to ensure that the order
of the group satisfies certain conditions. This can be the case with RSA, but not
with class groups, given our current knowledge. Given descr(G), we assume that
one can compute efficiently some estimates on the order, 24 < ord(G) < 25,
where A and B are polynomial in k. We also assume that elements can be
sampled randomly from the group and all the group operation (thereby, includ-
ing inversion) can be computed efficiently. Throughout this paper, the group
operation is defined as multiplication.
Here is the assumptions about the group:

Strong root assumption. Given descr(G), an appropriate subgroup H in G,
and a random element y € H, it is hard to find z € H and an integer ¢ > 1
such that y = z*.

No elements with known order. descr(G) includes an integer C'. This num-
ber is increasing as a function of k. However, it must be small enough, so
that the numbers less than C can be factored in time polynomial in k. It
should be hard to compute a pair (b, o) such that b € G — {1}, 1 <o < C,
o # 2, and ord(b) = 0.

No high 2-powers in orders. Any element of form a* has an odd order.

Many elements with only large prime factors in orders. If y is chosen
randomly in G, then there is a significant probability that the order of y
has no prime factors less than C. We say that ord(y) is C-rough (as op-
posed to being C-smooth, which means the order has only prime factors less
than C).

The first assumption is a direct generalization of the strong RSA assumption.
The second one says that elements of relatively small known order should hard
to find, except possibly for order 2. This is to take account of the fact that
in the RSA case, —~1 always has order 2. Note that the condition on C' means
that if one can find b # 1,0 such that 0 < 8 < C,¥° = 1, this will allow
you to find the order of b by first factoring 4. This will therefore violate the
assumption unless ord(b) = 2. The third assumption is always true if ord(G)
is odd, and otherwise we need that elements of order 2 are the only elements
of order a 2-power. Finally, the fourth assumption basically is a condition on
the prime factorization of ord(G): if we write ord(G) = F'D, where F has only
prime factors less than C' and D has only prime factors greater than C, then
the assumption is satisfied if and only if F' is at most polynomial in the security
parameter.



To justify the assumptions, we show that RSA moduli can be constructed
such that the assumptions are satisfied. Suppose we make a k-bit modulus
n = pq such that p = ¢ = 3 mod 4, and that ged(p—1,q — 1) = 2. We choose C'
as a function of k according to the restrictions above, C' = 2% is one possibility,
and we construct p, ¢ such that the parts of p — 1,¢ — 1 with prime factors less
than C are O(k). We then set G = Z;. and descr(G) = n,C. Now, the root
assumption is simply the strong RSA assumption. Finding elements of known
order different from 2 and less than C is as hard as factoring n: given such an
element, we factor the order and so we can find an element b of known prime
order s. Unless s = 2, s cannot divide both p—1 and ¢ —1 and therefore b must
be congruent to 1 modulo one of p,g and different from 1 modulo the other. It
follows that ged(b—1,n) is a non-trivial factor of n. The assumption on no large
2-powers in orders follows directly from p = ¢ = 3 mod 4, since then 2 divides
p—1and ¢—1 only once. Finally the construction of p, ¢ implies that a random
element in Z* has a C-rough order with probability that is Q(1/k).

Previous works. The first computationally sound proof protocol for the rep-
resentation problem in a group of unknown order appeared in [7]. This (or this
kind of) protocol is like this: For given ¢ = g° mod n, the verifier accepts that
the prover knows s if e = H(g%c® mod n) for (u, €) sent by the prover, where n is
a composite of large primes and H denotes a hash function. Later, the security
analysis about soundness for such a protocol was given by the authors in 5]
(Precisely speaking, in the case ¢ = g°h" mod n). From [5], we can conclude:

Slightly modified statement (in the case c = g°) deriwed from [5]:

If there exists algorithm Adv that takes (g,n), makes ¢ following her
strategy, and finally outputs (c,z,e) such that e = H(g"c® mod n) (in
the random oracle model) with a non-negligible probability, then there is
a knowledge extractor K that runs with an ezpected polynomial time and
outputs s such that ¢ = g° mod n except for some negligible error (the
probability of breaking the strong (or flexible) RSA problem,).

This is because: Suppose Adv outputs (¢, z, €) and (¢, #’, ¢) such that g%c® =
g% ¢, Then ¢/ = gA%/4 holds, where Ae = e — ¢, Az = 2/ —z and d =
ged(Ae, Az). Then if d # Ae, Adv is a solver of the strong RSA problem,
because g = gaz/dat(be/db — (cagbyAe/d where a,b € Z such that (Az/d)a +
(Ae/d)b = 1, otherwise K can output s such that ¢ = g° mod n by s = %f €Z.
(Precisely speaking, if ¢ € <g>, then ¢ = ¢° mod n otherwise —c = g¢° mod n.
See the “+c¢ = g° problem below.) Hence, sound proof is completed in this case.

The case ¢ = g°h" is slightly different from the above case. Similarly, we
can get A4 = glAztady)/d where h = ¢g* mod n and d = ged(Ae, Az + alAy).
From the intractability of the SRSA problem, we can assume d = Ae as well. [5]
concluded that Az, Ay must be divided by Ae, because « is unpredictable except
“a mod ord(g)”, where « is large integer given by the knowledge extractor.
However, if Ae is very small then the following event might happen with some



probability: “Ae|(Az + aAy), but Az is not divided by Ae”. In [5], this part
of discussion is missing.

Independently from this work, Poupard and Stern in [8] gave a sound proof
for ¢ = g%, though in a weaker soundness model.

2 Commitment Scheme

Based on the above, the goal is to make a commitment scheme with protocols
to verify various claims on committed values. The basic scheme is that the
verifier V (the receiver of commitments) will run G and send descr(G) (and
more information to be described later) to the prover P (the committer). We
assume that P can verify easily that dser(G) actually describes a group. The
protocols will be constructed to have error probability 1/C, where C is the
number from the assumptions above.
Consider the following commitment scheme:

Set-up. V runs G and chooses a random element h € G, such that ord(h) is
C-rough. Now V sets g = h®, where « is randomly chosen in [0..2*F]. V
sends descr(G), g, h to P and proves that g €< h >, by the standard zero-
knowledge discrete log protocol with binary challenges. This is slow, but
works in any group and only needs to be done once and for all.

Commit. To commit to an integer x, P chooses r at random in [0..2*%], and
sends ¢ = g*h" to V.

Open. To open a commitment, P must send z,r, b, § such that ¢ = ¢*A"b, and
p? = 1. An honest prover can always use b = 1. The reason for giving a
dishonest prover this extra freedom will become clear later.

As for hiding, note that P verifies initially that g €< h >. Hence, since r
is chosen with bit length at least twice that of the order of A, c is statistically
close to umniform in < A >, for any value of z.

As for binding, suppose some prover P* could create ¢, and (z,r,b), (¢, 7', V),
valid openings with z # 2/. Then we get ¢°h"b = ¢ = ¢* "W, Recall that V
creates g as g = h®. Plugging this in and squaring both sides of the equation,
we get that Ao@E@=2)+r=") — 1 Since « is chosen much larger than the order
of h, P* does not have full information on «, it is only determined modulo the
order of h. Hence (since z — 2/ % 0), there is a non-negligible probability that
(a(z — ') +7 —7") # 0. If this number is non-zero, it is a multiple of the order
of h, and it follows that V and P* together could solve the strong root problem
on input h.

3 Computationally Sound Proof in Group of
Unknown Order

The following protocol can be used by P to show that he can open a given
commitment ¢ = g*h":



1. P chooses ¥, s at random and sends d = g¥h® to V.
- 2. V chooses at random e between 0 and C and sends to P.
3. Psends u =y +ex,v=s+er. V checks that g"h¥ = dc®

Completeness of this protocol is clear. It is honest verifier zero-knowledge
if 4, s are chosen at random such that they are much larger than z and er,
respectively, for instance we can choose s in the interval [0..23B[. There are
then a number of known techniques by which a zero-knowledge protocol can be
constructed from it. Observe for instance that the set-up protocol of the com-
mitment scheme followed by any number of instances where the prover commits
and then executes the above protocol, is zero-knowledge: the simulator extracts
the discrete log of g base h from the verifier using rewinding of the set-up phase,
and can now easily simulate the rest.

To show soundness, we assume that some prover P* can execute the proto-
col with a non-negligible success probability. This means that, using standard
rewinding techniques, we can obtain a situation where, for a given d, P* could
answer two different values e and ¢ with numbers u,v and /,v’, so we get
g ¥ v = ¢#=¢. Now, suppose that (e — ¢’) divides both (u— ) and (v —v/).
Then the element b = gu—%)/(e=€)pv=v)/(e=¢)c=1 gatisfies that e = 1. It
follows by the assumptions on G that except with negligible probability t* = 1,
and so ¢ can be correctly opened by sending (u —/)/(e —¢€'), (v—v")/(e—¢€'),b.
Therefore, we are done, if we can prove that the case where e —¢ does not divide
both of v — ', v — v’ happens with negligible probability.

So assume that this "bad” case does indeed happen with non-negligible prob-
ability. We will show that this would mean that we could construct an algorithm
violating our assumptions on the group. Suppose we get as input h € G chosen
at random. By the assumptions, there is significant probability that ord(h) is
C-rough, so we assume this in the rest of the analysis. We then set g = h* for
random « € [0..228]. Note that g, h have exactly the same distribution as in
"real life”. We send g, h to the adversary and do the proof that we know the dis-
crete log of g base h. We then do the above rewinding based approach and hope
that we get to a situation where we have g YR = c¢=¢ and e — €' does not
divide both of u — 1/, v — v'. If we plug in g = h®, we get he(-w)+@=v) = ce=¢’,
Suppose wlog that e > €/. Then the rest of the analysis splits in two cases:

e — ¢ does not divide a(u —u') + (v —2') .
In this case, let d = gcd(e — ¢/, a(u — ') + (v —v')) (where by assumption
d < e—¢€ < (). Choose v, such that
Ae - )+ 8(afu—u) + (v —v) =d
We then get that
hd — hw(e—e’)-{—&(a(u—u’)+(v—v’))

(hfycé)e—e’



If we set b= (R7c%)(€=¢)/4p=1 it is clear that b? = 1, and furthermore
hb = (h7c)le=e/d

If b = 1, we have a solution to the strong root problem. Otherwise, we
can break the assumption on ”a few elements with known order”. In this
case, if (e — ¢)/d is odd, then be=¢V/d = b, inserting this in the above
yields again a solution to the strong root problem. But if (e —¢')/d is even,
then (h7¢?)¢~¢)/? has odd order, which contradicts the fact that ord(hb) =
2ord(h). In summary, if e — ¢ does not divide a(u — ') + (v —v'), we can
break the assumptions on the group.

e — ¢ divides a(u—u')+ (v—7') .

Note that even in this case, we still have that e — ¢ does not divide both
of u — u/,v — v'. The goal will be to show that since the adversary does
not know full information about our choice of «, this case happens with
probability at most 1/2 - and hence the previous case where we could break
the assumptions happens with significant probability. Let ¢ be some prime
factor in e — ¢’ such that ¢ is the maximal g-power dividing e — €, and at
least one of u — u/, v — v’ are non-zero modulo ¢/ (such a ¢ must exist since
e — ¢ does not divide both of u — «/,v — v'). Note that if ¢/ divides u —
it would have to divide v — v/ as well, which is a contradiction. So u — ' #
0 mod ¢/. We can then write a = y + 2 - ord(h), where y = o mod ord(h).
Note that g represents all information the adversary has about o (since
the interactive proof that g €< h > is statistical zero-knowledge), and y
is uniquely determined from g, whereas z is completely unknown. Now, if
indeed ¢/ divides a(u — u') + (v — v'), we have

a(u—u)+ (v—v) = 2(u — u')ord(h) + y(u — v) + (v — v') = 0 mod ¢’

Note that since ¢ < C we have ord(h) # 0 mod ¢. Now, from the adversary’s
point of view, z is chosen uniformly among at least 25 values, and must
satisfy the above equation in order for the bad case to occur. The number
of solutions modulo ¢/ of this equation is at most ged((u — w')ord(h), ¢’).
This number is a power of ¢, but is at most ¢~*. Then, since 2% is much
larger than ¢/, it follows that the probability that z satisfies the equation is
statistically close to 1/g < 1/2.

Mod-Multi Protocol. We can then also get a protocol for proving that three
given commitments cy, ¢z, c3 contain numbers 1, &3, r3 such that x5 = z;75. We
assume that ¢; = g%h™. Note that then we have ¢z = ¢2h™ %2, We exploit
this in the second step below.

1. P proves using the protocol from above that he can open c;.

2. (a) P chooses y, s, 83 at random and sends dy = g¥h*?, dg = c{h*® to V.

(b) V chooses at random e between 0 and C' and sends to P.



(¢) P sends u=y+ exq, vy = 59+ ery and vz = 3+ e(rs — wor1). V checks
that g*h" = dyc§ and cfh"® = dscs.

We prove security of this protocol. As before, completeness is trivial and zero-
knowledge follows if the provers random choices are from large enough intervals.

For soundness, assume as before that some prover P* can execute the protocol
with non-negligible success probability. We can first use the above result to
extract from the first step a way to open ¢; correctly, i.e. we have 1, s1,b such
that ¢; = ¢®'h%'b and b? = 1. Using standard rewinding in the second step, we
can, for a given dy, ds, obtain correct answers u, vg, vs and u’, vj, v§ to challenges
e, e, in expected polynomial time. Observe that we can in fact ensure that
e — ¢ is always an even number: fix any state for P* just before it receives the
challenge, and let S be the subset of challenges that it answers correctly. Since
the number of challenges is super-polynomial, we may assume that the size of S
is super-polynomial too. Then since more than half the numbers in S is even or
more than half are odd, the probability that two random elements drawn from
S have the same parity is at least a constant (in fact at least about 1/4).

Now, since the verifier accepts, we have equations

gUh"? = doc, TR = dscs

g¥R% = docf, ¥h% = dac

dividing corresponding equations, we get
u—u’hv2—vé — Cg—g/ C’lf_whvsivé — Cg—e/
) 3

Using the first equation in exactly the same argument as for the previous proto-
col, we can show that, unless the group assumptions are broken, it must be the
case that e — ¢/ divides u — ' and vy — vj, and so we get a correct way to open
¢9, where the value contained in c; will be x5 := (u — u')/(e — ¢’). If plug into
the second equation our expression for ¢;, we get

bu—u’g.n(u-u’)hsl(u—-u')-}—’ug—v’3 — Cg—e’

But since e — ¢ is even and divides u — v/, we have ¥*™% = 1. Now we have
an equation of the same form as the one we used in the proof of the previous
protocol. Thus, if e — ¢/ divides both z;(u— ') and s;(u—u') +v5 —v3, We get a
correct way to open cs, and the value contained will be z;(u—v')/(e—€') = 122
and we are done. If this is not the case, we can use the same argument as above:
we play the rewinding game against P* in a situation where we know the discrete
log of g base h, and show that we can break the group assumptions. The only
difference is that the game is played in such a way that e — ¢ is even. But
this makes no difference as the argument above is independent of the particular
value of e — €.
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