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Abstract Rivest, Shamir, and Tauman have proposed a ring signature scheme such that a verifier can make sure
that someone in a group signs a message, but cannot decide the identification of the signer. The application of
the ring signature is whistle-blowing. Without revealing the identification of the signer, the third party can check
the validity of the message. In this paper, we propose the generalized version of the ring signature scheme, which
makes it possible for k members to sign a message without revealing their identification to the verifier. We show
two implementations of such a signature scheme; one is based on zero-knowledge proof of random self-reducible
problems, and the other is based on the polynomial over a finite field. Similar to the ring signature scheme, the
anonymity of signers in our schemes is unconditional. Namely, the identification of the signers is impossible even if
unlimited computational resources are available. The construction of our schemes is different from that of the ring
signature; our schemes do not make the ring of signatures.
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information.

(3) When the signer signs the message, the signer does
not require the cooperation of the other members in the
group. It is sufficient that the signer knows the verifying

1 Introduction

Rivest, Shamir, and Tauman [8] have formalized the notion
of ring signature schemes. A ring signature is considered as
one of group signature schemes. The ring signature has the keys of the other members.

fo 1ow1’ng properties The application of the ring signature is whistle-blowing.

When a whistle blower sends a document to a journalist, the
whistle blower does not want to reveal the identity to the
journalist. If the whistle blower does not reveal the iden-

(1) A verifier can make sure that someone in a group
signs a message, but cannot decide who signs. This
anonymity of the signer is unconditional; even if the verifier
has unlimited computational resources, the verifier cannot tity, then the journalist may not believe the content of the

identify the signer. document. In order to solve this problem, the whistle blower

(2) There is no manager of the group. There is no pro-
cedures for setting the group, and distributing the special

chooses members who are plausible for writing the document,
and signs the document using the ring signature scheme. Due
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to the ring signature, the journalist finds that the document
came from a reliable person, but cannot identify who in the
group is the whistle blower.

As stated in [8], schemes similar to the ring signature have
been proposed. However, these schemes are less efficient or
have different objectives. On the other hand, the ring signa-
ture is efficient. It consists of individual signature schemes,
a collision-resistant hash function, and a symmetric cipher.

Precisely speaking, the ring signature enables the verifier
to make sure that at least one member in the group signs
the message. In this paper we generalize the ring signature.
Namely, our schemes enable the verifier to make sure that
at least & members in the group sign the message. However,
it seems difficult to generalize the ring signature to such a
scheme. Therefore, we show two implementations of such a
scheme whose the constructions are different from the ring
signature.

The word “ring” is suitable for the signature scheme pro-
posed by Rivest, Shamir, and Tauman because the chain of
signatures actually forms the ring. However, it is not suit-
able for our schemes because the chain of signatures does not
form the ring. Hence, we call a signature scheme with the
signer’s anonymity an anonymous signature scheme.

This paper is organized as follows. In Sect. 2, we state
some definitions, and summarize the previous works. In
Sect. 3, we propose an anonymous signature scheme based
on the random self-reducible problem. This anonymous sig-
nature scheme is applicable to practical signature schemes
such as the Fiat-Shamir scheme [3] and DSS [4]. We prove the
anonymity of signers in the same manner as zero-knowledge
proof. As an example, we describe the anonymous signature
scheme based on the Fiat-Shamir scheme. In Sect. 4, we pro-
pose another anonymous signature scheme which is based on
the polynomial. The class of signature schemes which this
anonymous signature is applicable to is same as that of the
ring signature, and is wider than that of our former scheme.
In Sect. 5, we concludes this paper.

2 Preliminaries

2.1 Definitions

We call a set of possible signers a group, denoted by G.
In this paper, we denote by U; a member (a possible signer)
in G. We call members who actually sign a message sign-
ers, and members excluding the signers non-signers. Let S
and S denote the set of signers and the set of non-signers,
respectively. Here, the following relationship holds.

G=8US, SNnS=10

We often denote the member in G by the index ¢ instead of
U;. In such a case, G = {0,1,2,...,n - 1}.

A (k,n) anonymous signature scheme is a signature scheme
such that, for a group G with n possible signers, the third
party can verify that at least k members (signers) sign the
message, but cannot find who are signer. The anonymity
of the signers is unconditional. Namely, even if the third
party has unlimited computational resources, the third party

cannot decide the identification of the signers with probabil-
ity larger than k/n. From'this definition, the ring signature
scheme is considered as a (1, n) anonymous signature scheme.

Similar to the ring signature scheme, the anonymous sig-

‘ nature scheme is setup-free. In order to generate a signa-

ture, all the signers needs is knowledge of non-signers’ veri-
fying keys. The verification must satisfy the soundness and
the completeness of usual signature schemes except for the
anonymity of the signers.

2.2 Random Self-Reducible Problem and Signa-

ture Scheme

It is known that random self-reducible problems are closely
related with cryptographic protocols. Tompa and Wall[10]
have shown the random self-reducible problem has perfect
zero-knowledge proof. Okamoto and Ohta[6][5] have shown
identification protocols and signature schemes based on the
random self-reducible problem. This section provides a sum-
mary on the random self-reducible problem stated in the
above papers.

The random self-reducible problem is defined as follows.
Let AV be a countably infinite set. For any N € N, let |[N|
denote the length of a representation of N. Let U,V be finite
sets, and RCU X V be a relation. The domain of R and the
image of = are denoted by

domR = {u € U|(u,v)CR for Iv € V},
R(u) = {v|(u,v) € R},

respectively. Here, R is the following relation.
{((N,u),v|N € N and (u,v) € R)}

The relation R is said to be random self-reducible if and only
if the following three properties are satisfied.

R1: There is an [N|°® time algorithm A;(N,u,r) that,
given any inputs N € N and u € domR and r € {0,1}",
outputs v/ € domR. If r is random, uniform, and indepen-
dent, then « is uniformly distributed over domR.

R2: There is an |[N|°® time algorithm Az(N,u,7,v) that,
given N,u,7 and any v/ € R(u’), outputs some v € R(u).
Here, 7 is the finite prefix of r used in computing ¥ =
Ai1(N,u,r).

R3: There is an |N|°®) time algorithm A3(N,u,r,v) that,
given N,u,r and any v € R(u), outputs some v' € R(u'). If
the bits of r are random, uniform, and independent, then ¢/
is uniformly distributed over R(u).

For example, the quadratic residue problem is one of random
self-reducible problems. That is, the relation R is u = v?
(mod N). Algorithms A, Az, Az are given as follows:

Ai1(N,u,r) = wr? mod N
Aa(N,u,r,v') = /r mod N
Asz(N,u,r,v) = vr mod N.

In addition, the relation R must satisfy the following two
properties to have perfect zero-knowledge proof.
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R4: There is a probabilistic |N|°™) expected time algo-
rithm A4(N,u,v) that, given N,u, v, outputs true if (u,v) €
R, otherwise outputs false.

R5: There is a probabilistic |[N|%) expected time algo-
rithm As(N) that, on input N, outputs a pair of (u,v) € R
at random, where u uniformly distributed over domR and v
uniformly distributed over R(u).

‘We note that the above definition state nothing about the
complexity for computing v from (N,u). In order to apply
the random self-reducible problem to a signature scheme, we
assume that it is infeasible. Then a signature scheme is con-
structed as follows [5]. The verifying key are the singing key
are {N,u} and v, respectively, where (u,v) € R. The signer
uniformly chooses r; (¢ = 0,1,...,t — 1) at random. The
signer computes u; = A1(N,u,r;). For a message m and u,
the signer obtains the following binary vector.

(bo,b1, ..., be—1) = f(m,ug, uy, .. up_g),

where f is a public one-way hash function. The signer defines

ifb; =0

W; = Ti
Ag(N,’LL,’I‘i,’U) if b,‘ =1

The signature of m is {uf,u},...,ui_1,wo,w1,...,We-1}. A
verifier accepts m if the following equations hold for all <.

ifb; =0

AN, u,wi) = g
if by = 1.

As(N,u}, w;) = true

3 (k,n) Anonymous Signature Scheme
Based on the Random Self-Reducible
Problem

We propose a (k,n) anonymous signature scheme based
on the random self-reducible problem. The anonymity of
the proposed scheme is similar to the idea of the witness
indistinguishable protocol by Feige and Shamir [2].

3.1 Protocol

Suppose that all members in G use signature schemes based
on a same random self-reducible problem R. Let u; and v;
denote the verifying key and the singing key of a member U},
respectively. Here, (us,v;) € Rfor ¢ =0,1,...,n— 1.

The k signers uniformly choose nt bit strings r; (¢ =
0,1,...,m — 1,7 = 0,1,...t — 1) at random. The signers
define a matrix

~ ~ ~
uo,0 Uo,1 Uo,t—1

~ ~ ~
u1,0 U1, Ut—1

)
i

~ ~ ~
Un—-1,0 Un-1,1 Un—1,t—1
in which the element ; ; is computed as
~
Ui5 = A1 (N, g, 70,5).

The signers define t random permutations 7; on {0, 1,..
1}. Using ;, the signers permute n elements of the j-th col-

L=

umn of %. The resulting matrix 4’ is denoted by

/
Ug,0 Ug,1 Ug,t—1
’7
, Uio Uy 1 Uy -1
u =
a / ’
Up—-1,0 Un-1;1 Up—1,t—1

Here, the relationship between @ and /' is
, P
Unr(s),j = Wirj

fori=0,1,...,n—1,7=0,1,...,t— 1. Using a public one-
way hash function f, the signers obtain a binary vector b,
that is,

b = (bo,b1,...,be—1)
= f(m,u). 1)

The signers define a matrix w as

wo,0 Wo,1 Wo,t—1
w1,0 wi,1 wi,t—-1
w= s
Wp—-1,0 Wn-1,1 Wn—1,t—1
where the element is computed as
Ti,; ifb; =0 and V¢

Ag(N,ui,ri,j,vi) ifbj=1andie S (2)
L ifbj=landieS

Wr;(i),5 =

1,7 = 0,1,...,t — 1. As a result, the
signature o, of m is given as

for i = 0,1,...,n —

om = [G,u/, {7]b; =0, =0,1,...,t —1},u], (3)

where 7; is the inverse permutation of 7;. Notice that m; is
random, but not one-way.

A verifier first computes the binary vector b by Eq. (1).
For £ =0,1,...,n—1,5 =0,1,...,¢t — 1, the verifier check
that

AN, Ur ), Wrj(0),5) = Ue,;
As(N,ugj, we,;) = true

ifb; =0

: 4)
ifb; =1 and we; §L

Moreover, when b; = 1, the verifier checks that the number
of we,; L is k. If all tests are passed, then the verifier
accepts m as a valid message.
3.2 Security

Forgery: The difficulty of forgery mainly depends on the in-
feasibility of computing v from (N, u). Except for the formal
difference in the hash function, if the underlying individual
signature scheme stated in Sect. 2. 2 is broken, then the pro-
posed scheme is broken. Conversely, if the proposed scheme
is broken, then the underlying individual signature scheme
is broken. ‘

Anonymity: Firstly, each of elements of 4’ is uniformly dis-
tributed over domR because of the definition R1. Hence, the
distribution of the elements does not depend on signers.
Secondly, let us consider the distribution of elements in the
J-th column of w for j such as b; = 0. From Eq. (2), wn;(),;
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is uniformly distributed over domR because 73 ; is chosen in
such a way. Namely, the distribution of elements in the j-th
column is uniform on domR regardless of signers.

Thirdly, we examine the case of for j such as b; = 1. Since
row elements of the j-th column are permuted, the row in-
dex does not give information about signers. For simplicity,
suppose that 0,1,2 € S. Let us recall that the element U; ;
is computed as follows:

Us,; = AN, ui, i 5).

From the definition R1, %p,; is uniformly distributed over
domR by varying 7;,;. Since 4y j,up,; € domR, there are
rélg and rc(f;. such that

G5 = AN, u0,78)), Tz = Ar(N,uo0,m8)).

From the distribution of %o, j, the number of such rglj) is equal
to that of such ré?;. This means that the value of U; ; does
not leak information about signers. Therefore, in the case of
for j such as b; = 1 and ¢ € S, the distribution of elements
in the j-th column does not depend on signers.

Finally, in the case of for j such as b; =1 and i € S, it is
trivial that the distribution does not depend on signers.

Summarizing the above discussion, we have the following

theorem.

[Theorem 1]
is a (k,n) anonymous signature scheme.

The signature scheme described in Sect. 3.1

3.3 Performance

We estimate the amount of computation and the size of
signature in the scheme described in Sect. 3.1. We denote
by C(A) the amount of computation for an algorithm A. The
average amount of computations is given by

ntC(A1) + ntC(m;) + C(f) + kC(As) .
+2owm + o),

where the first four terms are for signing and the remainders
are for verification. We ignore the computation for generat-
ing 7,5.

From Eq. (3), the size of a signature is given by

_ t t t,,
tfal + S175| + okl + SHlol

where || is the size of an element in domR, the second term
is for the permutations, and |7| is the size of an element in
the range of R. We ignore the sizes of G and L.

3.4 Example

As a typical example of the scheme described in 3.1, we
show a (1,2) anonymous signature scheme based on the
quadratic residue problem, that is, based on the the Fiat-
Shamir scheme [3] [7].

3.4.1 Protocol

Suppose that two members Up, Ur use the Fiat-Shamir
scheme. Let n be the common modulus is N, and u;, v; be the
verifying key and the signing key of U; where u; = v} mod N,
respectively.
Signing:

Suppose that Up is a signer. First, Us chooses

ri; (1= 0,1,7 = 0,1,...,t — 1) at random from Zy. Uo

defines a matrix /
~ ~ ~
~_ Uup,0  Uo,1 Uo,t—1
u= o~ o~ o~
Ui,0 Ui Ui, t—-1
where the element u; ; is computed as

~
2
Us,; = ugr; ; mod N.

Up defines ¢ random permutations 7; on {0, 1}. Using 75, Uo
permutes two elements of the j-th column of Z. The resulting
matrix v’ is denoted by

’ ’ !/
’ Ug,p0 Uo,1 Up,t—1
u o= ’ ’ ’ °
Uio U, U, e—1
Here, the relationship between 4 and o’ is

B o~
Unr(iy,; = Yi,j

fori=0,1,5 =0,1,...,t — 1. Using a public one-way hash
function f, Up obtains a binary vector b from a message m
and «/, that is,

b = (bo,b1,...,be1)

’
= f(m,u). (5)
Up defines a matrix w as
Wo,0 Wo,1 Wo,t—1
w= s
w10 Wi,1 wi,t-1
where the element is computed as

74,5 ifbj=0and¢=0,1
voro,; ifb;=1andi=0
1 ifb;j=1landi=1

Wrj(i),5 =

fori=10,1,5=0,1,...,t — 1. As a result, the signature o,
of m is defined as

O = [Uo, Ur, o', {75]¥j such that b; = 0}, w], (6)

where 7; is the inverse permutation of ;. .
Verification: A verifier obtains the binary vector b by
Eq. (5). For £ =0,1,j = 0,1,...,t — 1, the verifier checks
that

ifb; =0

: ™
if b]' =1 and we, ; :':_L

’
Ug,j = Ur; (&) Wn;(£),5
Up ;= w}p ; mod N

Moreover, when b; = 1, the verifier checks that one of two
elements in the j-th column is L. If all tests are passed, then
the verifier accepts m as a valid message.

3.4.2 Security )

Since we have already proved the anonymity of the signer
in Sect. 3. 2, we discuss the difficulty of the forgery. We prove
the following theorem on the security against forgery.

[Theorem 2] The (1,2) anonymous signature scheme de-
scribed in Sect. 3.4.1 is as secure as the Fiat-Shamir signa-

ture scheme.
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We first focus on the difference of the one-way hash func-
tions. While the input of the one-way hash function in
Sect. 3.4.1 is a scalar and a matrix, the input of the one-
way hash function of the Fiat-Shamir scheme is a scalar and
a vector (or a sequence of scalars). When the one-way hash
function in Sect. 3.4.1 is used in the the Fiat-Shamir scheme,
the unused elements are considered as zero. Hence, the for-
mal difference on the one-way hash functions is not critical.

Suppose that an adversary succeeds in forging a signature
of the proposed scheme, denoted by

m = [/, {75|¥j such that b; = 0}, w].

Then the following tuple is considered as the signature of the
Fiat-Shamir signature scheme by Ug.

089 = [uf ;, we,i1€ = 75(0) if bj = O,we; L if b; = 1].
Similarly, the following tuple is considered as one by Us.
o = [up ;, we 6 =75 (1) if by = 0,we; FL if b = 1].

Conversely, suppose that the adversary succeeds in forging
a signature of the Fiat-Shamir signature scheme, for exam-
ple, for Up. The adversary computes u1,; = uiri ; mod N
for randomly chosen 7y ;, and decides t permutations m; ad-
equately, Then, the adversary can obtain the signature such
as Eq. (6).

3.5 Modification

As seen in Eq. (4), the method for verifying the valid-
ity of a message directly consists of algorithms of the ran-
dom self-reducible problem. However, there are signature
schemes in which the verifying method is more complicate;
for example, Schnorr’s scheme [9], DSS[4], and ElGamal’s
scheme [1]. In this section, we show a (1,2) anonymous sig-
nature scheme based on Schnorr’s scheme. It is easy to gen-
eralize this scheme to a (k,n) anonymous signature scheme.
The idea described here is applicable to DSS and ElGamal’s
scheme.

As parameters of Schnorr’s scheme, let p, ¢, g denote a large
prime, a prime satisfying g|p — 1, and a generator of a multi-
plicative group with order g in GF(p), respectively. Let %, s;
be the verifying key and the signing key of a member ¢ where
y; = g °%, respectively

Suppose that Up is a signer. Up computes a signature

(o, vo) of a message m by Schnorr’s scheme, that is,
€0 = f(g" mod p,m), wo =70+ s0eo mod g,

where f is a public one-way hash function and ro is a ran-
dom value in Z,. After choosing r1 from Z; at random, Up
computes ey as

e1 = f(g™ mod p,m).
Up defines uo, u1 as
up = ¢"° mod p, w1 = g¢"*/y7* mod p.

Considering that the relation R is v = ¢” mod p, Us gener-
ates a signature o, by the method described in Sect. 3.1.

Hence, the signature of m is

Em e [Un, U1,60,61,uo,u1,0m].
A verifier first checks that, for 2 =0,1,
e; = f(usy®™ mod p,m).

If they hold, then the verifier checks o,, by the method de-
scribed in Sect. 3.1. If all tests are passed, then the verifier

accepts m as a valid message.

4 (k,m) Anonymous Signature Scheme
Based on the Polynomial

In this section, we propose another implementation of
a (k,n) anonymous signature scheme. Differing from the
scheme proposed in Sect. 3.1, the scheme described here
does not require any special properties of underlying sig-
nature schemes. This property is also satisfied by the ring
signature which is a (1,n) anonymous signature scheme. Ac-
cordingly, our scheme is same as the ring signature in terms
of the scope of underlying signature schemes.

Similar to the ring signature, let us assume the followings
to simplify a protocol.

e The underlying signature scheme is based on trap-door
permutations to generate and verify signatures. That is, it
is easy to compute y; = gi(z:) for given z;, but it is hard
to compute xz; = g; *(y:) for given y; without the trap-door
information (the signing key). We assume that if z; is uni-
formly chosen from the domain at random, then the ; is also
done over the range and vice versa.

e The domain (range) of ¢ is same. The method for
this requirement has been shown in [8]. Without loss of gen-
erality, the domain is a finite field GF(q); if the domain is
{0,1}*, then it can be considered as GF(29).

4.1 Protocol ’

Signing: Suppose that k members in G sign a message
m. The k signers computes f(m) where f is using a pub-
lic collision-resistant hash function such that the range is
same as that of g;. The signers picks random 7; for ¢ € 5
where S is the set of non-signers. Then the signers computes
y; = gi(ri). Using the Lagrange formula, the signers ob-
tains the (n — k)-degree polynomial p(z) which goes through
points (0, f(m)), (¢,y:) for ¢ € S. Notice that p(z) is unique
because the number of non-signers is n — k. The signers uses
their trap-door information in order to invert g on p(i) to
obtain r;, that is,

r = g7 ' (p(3)) for i € S.

Notice that (4,p(¢)) is the point on the curve y = p(x) over
the finite field. As a result, the signature of m is given as

Om = [gvp(x)v {T'ZIZ € g}]

Verification: A verifier checks that f(m) = p(0). The ver-
ifier computes y; = p(3) for ¢ € G. Then the verifier checks
that y; = g:i(ri) for ¢ € G. If all tests are passed, then the
verifier accepts m as a valid message.
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4.2 Security
The difficulty of forgery mainly depends on the
infeasibility of computing g, L. Let us assume that it is in-

Forgery:

feasible and the distribution of y; is uniformly distributed
over the range at random. The probability that an adver-
sary who is not included in mathcal M succeeds in forging a
signature is equal to the probability that n points are located
on a curve p(z) with degree n — k. Hence, it is 1/¢*.

Anonymity: Since y; (i € S) is uniformly distributed over
the range, p(z) is uniformly chosen from the set of (n — k)-
degree polynomials. It follows that p(z) does not leak infor-
mation about signers. In addition, p(i) (¢ € S) is uniformly
distributed over the range. Hence, r; (2 € S) is uniformly
distributed over the domain. Accordingly, the distribution
of a signature does not depend on signers.

[Theorem 3]
is a (k,n) anonymous signature scheme.

The signature scheme described in Sect. 4.1

5 Conclusions

In this paper, we have proposed two implementations of
a (k,n) anonymous signature scheme; one is based on the
zero-knowledge proof of the random self-reducible problem,
and the other is based on the (n — k)-degree polynomial over
a finite field. Although the principle of our schemes is dif-
ferent from that of the ring signature, our schemes achieve
the unconditional anonymity of signers as well as the ring
signature.
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