
Design and Implementation of Transactional Agents

Masashi Shiraishi, Takao Komiya, Tomoya Enokido, and Makoto Takizawa
Tokyo Denki University

{shira, komi, eno, taki}@takilab.k.dendai.ac.jp

Mobile agents move around object servers where the agents manipulate objects. A transactional agent is an agent which
manipulate objects in one or more than one object server so as to satisfy some constraint. There are some types of constraints
depending on applications. ACID is an example of the constraints, which shows traditional transactions. There are other
constraints like at-least-one constraint when a transaction can commit if at-least-one object server is successfully manipulated.
We discuss how transactions with types of constraints can commit. We discuss how to implement transactional agents.

トランザクションエージェントの設計と実装

白石雅 小宮貴雄 榎戸智也 滝沢誠
東京電機大学理工学部情報システム工学科

本論文では、エージェントにより、複数のデータベースサーバを操作する問題を論じる。エージェントは ACID等の
コミットメント制約のもとで、複数のデータベースサーバを操作する。エージェントは、データベースサーバ内のオ
ブジェクトを操作し、完了したならば次のサーバに移動する。この論文では、エージェントにより、種々のコミットメ
ント条件を満たしたなら、複数のデータベースサーバを操作する方法について論じている。又、実装について論じる。

1. Introduction

In traditional client-server applications, application pro-
grams on clients or a application servers issue requests to
object servers like database servers. Application programs
and objects exist in clients and servers, respectively. On the
other hand, any computers can have programs and objects
in peer-to-peer (P2P) applications. In the P2P applications,
huge number of computers are interconnected in the network
and the computers are not so reliable as server computers.
Hence, connections with mobile stations are often discon-
nected. Applications cannot manipulate objects in servers
due to the disconnection.

In database applications, transactions manipulate objects
so as to satisfy ACID (atomicity, consistency, isolation, and
durability) properties [6]. For example, objects in multiple
object servers are required to be atomically manipulated. In
the traditional systems, objects are locked to serialize mul-
tiple transactions [6, 8, 10]. In timestamp ordering proto-
col [6], transactions are totally ordered in their timestamps.
Transactions manipulate objects according to the timestamp
order, i.e. the elder, the earlier. In addition to supporting the
serializability, the atomic manipulation of multiple servers
has to be supported. The two-phase commitment protocol
[6,10] is widely used to realize the atomicity among multiple
database systems. The two-phase commitment protocol sup-
ports robustness against server faults but not against applica-
tion fault, i.e. servers may block due to client faults [15].

In another computation paradigm, programs named mo-
bile agents [1] manipulate objects by moving around object
servers. An agent first lands at an object server and then is
performed to manipulate objects in the object server. Agents
manipulate objects only in local object servers without is-
suing requests to remote object servers in a network. After
manipulating all or some object servers, an agent makes a de-
cision on commit or abort. For example, an agent commits
only if all the object servers are successfully manipulated.

Thus, each agent has its own commitment condition. In ad-
dition, an agent negotiates with another agent if the agent
manipulates objects in a conflicting manner. Through the
negotiation, each agent autonomously makes a decision on
whether the agent continues to hold the objects or gives up
to hold the objects. We discuss how transactional agents ma-
nipulate multiple object servers by using agents in presence
of server and application faults.

In section 2, we present a model of object server. In sec-
tion 3, we present an agent model for processing transactions
which manipulate multiple object servers. In section 4, we
discuss how agents negotiate with other agents. In section 5,
we discuss commitment conditions of transactional agents.
In section 6, we discuss implementation of mobile agents.

2. System Model

2.1. Object servers

A system is composed of object servers D1, . . ., Dm (m ≥
1), which are interconnected with reliable, high-speed com-
munication networks. The networks are assumed to be reli-
able, i.e. messages are delivered to destinations in sending
order with neither duplication nor loss of message. Each ob-
ject server supports a collection of objects and methods for
manipulating the objects. Objects are encapsulations of data
and methods.

Each object server supports following methods to manipu-
late objects in the server:

1. begin-trans: A subtransaction starts. Methods issued
by the subtransaction are recorded in the log.

2. op(o): A method op is performed on an object o.
3. prepare: The log of a subtransaction is saved in a sta-

ble memory.
4. commit: A database is physically updated by using

the log and a subtransaction commits.

研究会Temp
マルチメディア通信と分散処理コ ン ピ ュ ー タ セキュリティ

研究会Temp
（２００３． ２． ２８）

研究会Temp
111－30

研究会Temp
20－30

研究会Temp
－167－

5. abort: A subtransaction aborts, i.e. database is not
updated and log is removed.

If result obtained by performing a pair of methods op1 and
op2 depends on a computation order of op1 and op2, op1

and op2 are referred to as conflict on the object. For ex-
ample, a pair of methods increment and decrement do not
conflict, i.e. are compatible on the counter object. On
the other hand, reset conflicts with increment and decre-
ment on the counter object. If a method op1 from a trans-
action T1 is performed before a method op2 from another
transaction T2 and the methods op1 and op2 conflict, every
method op3 from T1 is required to be performed before every
method op4 from T2 conflicting with the method op3. This
is a serializability property of transaction [6, 8]. There are
locking protocols [6, 8, 10] and timestamp ordering proto-
col [6] to realize the serializability.

If a transaction manipulates objects in multiple object serv-
ers, the two-phase commitment protocol [6] is used to re-
alize the atomic manipulation of the objects in the object
servers. The commitment protocol is robust for failure of
object server. However, if the application server is faulty, all
the operational object servers might block [6, 15]. Thus, the
two-phase commitment protocol is not robust against client
fault.

3. Computation Model of Agent

An agent is a program which can be autonomously per-
formed on one or more than one object server. An agent
issues methods to an object server to manipulate objects in
an object server where the agent exists. For example, a pro-
cedure of an agent is written in Java [3, 13]. Every object
server is assumed to support a platform to perform agents.

First, an agent A is autonomously initiated on an object
server. The procedure and data of an agent A are first stored
in the memory of an object server Di. If enough resource
like memory to perform the agent A is allocated for the agent
A on the object server Di, the agent A can move to the object
server Di, i.e. the agent A can land at the object server Di.
Here, the object server Di is referred to as current for the
agent A.

Suppose an agent A lands at an object server Di to manip-
ulate an account object through a method increment. Here,
suppose another agent B is not resetting the account object.
Since reset conflicts with increment, the agent A cannot be
started. A pair of agents A1 and A2 are referred to as conflict
if the agents A1 and A2 manipulate a same object through
conflicting methods. After landing at an object server Dj ,
the agent A is allowed to be performed on the object server
Dj if there is no agent on an object server Dj which conflicts
with an agent A.

Suppose an agent A is at an object server Di. After finish-
ing manipulating the object, the agent A moves to another
agent Dj [Figure 1]. Suppose there are multiple possible
object servers Dj1, . . ., Djm (m > 1) where the agent A can
land. Let Candi(A) be a candidate server set, i.e. a collec-
tion of the possible object servers {Dj1, . . ., Djm} at which
an agent A can land from an object server Di. For example,
there are replicas Dj1, . . ., Djm of some object server Dj .

Di jD

AA

: data : agent

Figure 1. Agent.

Candi(A) is a cluster C(Dj) of the replicas Dj1, . . ., Djm.
For example, if an agent A only reads objects, one replica
server Djk is selected and then moves to the object server
Djk . If the agent A updates objects, all the object servers in
C(Dj) are manipulated by the agent A. This is similar to a
famous two-phase locking (2PL) protocol [6]. On the other
hand, an agent A issuing a read method visits object servers
in a subset Qr. The candidate set Candi(A) is a read quo-
rum. The agent A issues write method to object servers in a
write quorum Qw. The agent A visits all the object servers
in Qw. Here, Qr ∩ Qw �= φ and Qr ∪Qw = Candi(A). If A
conflicts with other agents on a replica, A waits. This shows
a quorum-based protocol [7].

An agent A can be replicated in A1, . . . , Am (m ≥ 2).
Each replica Ai is autonously performed. By replicating an
agent, parallel processing and fault- tolerance can be real-
ized.

4. Model of Transactional Agent

4.1. Commitment conditions

An agent A manipulates objects in multiple object servers
by moving around the object servers. A scope Scp(A) of
an agent A means a set of object servers which A possibly
manipulate. For example, an agent manipulate replicas of
object servers. Here, the scope of the agent is a set of the
replicas. If an agent A finishes manipulating each object
server Di , the commitment condition Com(A) of the agent
A is checked. For example, an agent A commits if all the
servers are successfully manipulated.
[Commitment conditions]

1. Atomic commitment: an agent is successfully per-
formed on all the object servers, i.e. all-or-nothing
principle. This is a commitment condition used in the
traditional commitment protocols [8,15].

2. Majority commitment: an agent is successfully per-
formed on more than half of the object servers.

3. At-least-one commitment: an agent is successfully
performed on at least one object server.

4.
(
n
r

)
commitment: an agent is successfully performed

on more than r out of n object servers (r ≤ n).
5. General commitment: some condition is satisfied

for the object servers. �
The atomic, majority, and at-least-one commitment condi-

tions are shown in forms of
(
n
n

)
,
(

n
�(n+1)/2�

)
, and

(
n
1

)
com-

mitment conditions, respectively. More general commitment
conditions with preference are discussed in a paper [14].

研究会Temp
－168－

Each agent A is assumed to have a commitment condition
Com(A) given by an application. There are still discussions
on when the commitment condition Com(A) of an agent
A can be applied while the agent A is moving an object
server. Let H(A) be a set of object servers, possibly ordered,
which an agent A has manipulated, i.e. passed over(H(A) ≤
Scp(A)). In the atomic commitment condition, Com(A) can
hold only of all the object servers to be manipulated are ma-
nipulated, i.e. H(A) = Scp(A). On the other hand, Com(A)
can hold over if only one object server is manipulated, i.e.
H(A) = 1 in the at-least-one commitment condition.

If an agent A leaves an object server Di, an agent named
surrogate of A is left on Di [Figure 2]. The surrogate agent
Ai still holds objects in the object server Di manipulated by
the agent A on behalf of the agent A.

Suppose another agent B might come to an object server
Dj after the agent A leaves the object server Dj . Here, the
agent B negotiates with the surrogate agent Ai of the agent
A if the agent B conflicts with the agent A. After the nego-
tiation, the agent B might take over the surrogate Ai. Thus,
when the agent A finishes visiting all the object servers,
some surrogate may not exist, due to the fault and negoti-
ation with other agents. The agent A starts the negotiation
procedure with its surrogates A1, . . ., Am. If a commitment
condition Com(A) on the surrogates A1, . . ., Am is satis-
fied, the agent A commits. For example, an agent commits
if all the surrogates safely exist in the atomic commitment
condition. As discussed in the following section, surrogates
do negotiation with other agents. Then, the surrogate may
abort if another agent is decided to take over objects held
by the surrogate by the negotiation. If the surrogates exist,
the computation performed by the agent can be successfully
terminated. Then, the surrogate agents of the agent A are
annihilated. Here, other agents conflicting with the agent A
are allowed to manipulate objects.

A

D1 Di Dm

: surrogate agent of A

A1 Ai Am

Figure 2. Surrogate agents.

As discussed here, a surrogate may be aborted in the ne-
gotiation with other agents or due to the fault of the object
server. There are two states of each surrogate Bj , abortable
and commitable. If the surrogate Bj is in abortable state, Bj

can be aborted. For example, if another agent A conflicting
with the surrogate Bj takes over the surrogate Bj through
the negotiation between A and Bj , the surrogate Bj aborts.
The agent B of the surrogate Bj eventually tries to commit.
The agent B informs all the surrogates of commit by send-
ing Prepare messages. On receipt of the prepare message,
the surrogate Bi enters commitable state where update data
is saved in a log. Here, the surrogate Bj does not abort in
the negotiation.

abortable

aborted

commitable committed
to /

negotiation //
abort /

prepare /

commit /

Figure 3. States of surrogate.

4.2. Resolution of confliction

Suppose an agent A moves to an object server Dj from
another object server Di. An agent A cannot be performed
on an object server Dj if there is an agent or surrogate B
comflicting with A. Here, the agent A can take one of the
following ways:

1. The agent A in Di waits until the agent A can land at
an object server Dj .

2. The agent A finds another object server Dk which has
objects to be possibly manipulated before the object
server Dj .

3. The agent A negotiates with the agent B in the object
server Dj .

4. The agent A aborts.

Suppose there are other agents B1, . . ., Bk which are being
performed on the object server Dj . Each agent Bi shows an
agent or surrogate agent of an agent. If the agent A conflicts
with some agent Bj on an object o, the agent A negotiates
with the agent Bj with respect to which agent A or Bj holds
the object o [Figure 4]. There are following negotiation poli-
cies:

A

Dj

Bj

o

Figure 4. Conflicting agents.

[Negothiation policies]
1. The agent A blocks until the agent Bj commits.
2. The agent A takes over the agent Bj . That is, the agent

Bj releases the objects and blocks, and then the agent
A starts.

3. The agent Bj aborts and the agent A starts. �
The first way is similar to the locking protocol. An agent

A blocks if some agent B holds an object o in a conflicting
way with the agent A. If the agent B waits for release of an
object held by the agent A, a pair of the agents A and B are
deadlocked. Thus, deadlock among agents may occur. When
an agent A blocks in an object server Di, a timer is started.
If the timer expires, the agent A takes one of the following
ways:

1. The agent A retreats to an object server Dj which A
has passed over. The surrogates of the agent A which

研究会Temp
－169－

have been performed before the object server Dj are
aborted. Then, the surrogate Aj on Dj restarts.

2. Every surrogate Aj of the agent A initiates a deadlock
detection agent LDj (A).

In the second way, an agent A takes over an agent Bj in
an object server Dj if the agent B holds an object and the
agent A conflicts with Bj . Here, the agent A starts the nego-
tiation with the agent Bj on the object server Dj by using a
following negotiation protocol :
[Negotiation protocol]

1. An agent A sends a can-I-use message CIU (o, op)
to an agent Bj on an object server Dj . This means
that an agent A would like to manipulate an object o
through a method op in an object server Dj .

2. On receipt of a message CIU (o, op) from an agent A,
an agent Bj sends an OK message to the agent A if
the agent Bj can release the object o or the agent Bj

does not mind if the agent A manipulates the object
o. Here, there are two approaches to the agent Bj ’s
releasing the object o :

a. The agent Bj aborts if the agent A precedes the
agent Bj , e.g. the priority of the agent A is higher
than the agent B.

b. The agent Bj rolls back to a checkpoint and then
restarts if the agent A precedes the agent Bj .

Otherwise, the agent Bj sends a No message to the
agent A.

3. On receipt of OK from the agent Bj , the agent A
starts manipulating the object o.

4. On receipt of No from the agent Bj , there are follow-
ing ways:

a. The agent A blocks until the agent A receives
OK/NO from the agent Bj .

b. The agent A aborts. �
If the agent Bj agrees with the agent A in the negotiation

protocol, the agent A can manipulate objects by taking over
the agent Bj . In the second way, the agent Bj not only re-
leases the object but also aborts. Each agent autonomously
makes a decision on which way to be taken through negotia-
tion with other conflicting agents.

4.3. Decisions

There are two types of agents, ordered agents and unordered
agents. Every pair of ordered agents manipulate objects in
a well-defined way. Each ordered agent A is assigned a
precedent identifier pid(A). An agent A1 precedes another
agent A2 (A1 → A2) iff pid(A1) < pid(A2). For example, a
timestamp [6] can be used as an identifier of an agent. That
is, the identifier pid(A) of an agent A is time ts(A) when the
agent A is initiated at the home server. An agent A1 precedes
another agent A2 only if ts(A1) < ts(A2). If the timestamp
with identifier of home server is used as a precedent identi-
fier of an agent, either A1 precedes A2 or A2 precedes A1 for
every pair of different agents A1 and A2. That is, the agents
are totally ordered in the precedent identifiers. If a logical
clock like vector clock [12] is used as precedent identifier,
the agents are partially ordered in the precedent identifiers.

An agent A1 is concurrent with another agent A2 (A1 || A2)
iff neither A1 precedes A2 nor A2 precedes A1. Here, the
agents A1 and A2 can be performed on an object server in
any order.

Suppose multiple agents A1, . . ., Am(m>1) would like to
manipulate an object o in an object server Di and the agents
conflict with each other. The agents A1, . . ., Am are ordered
by using the precedent identifiers of the agents. Suppose
pid(A1) < . . . < pid(Am). An agent As manipulates an
object o before another agent At if pid(As) < pid(At). If a
pair of the agents As and At are concurrent (As || At), the
agents As and At are allowed to be performed on the object
o in any order. However, if a pair of the agents As and At

conflict on a pair of object servers Di and Dj , the agents As

and At are required to be performed in a same order at the
object servers Di and Dj . There never occurs deadlock.

Like locking protocols, an unordered agent can obtain an
object if no conflicting agent obtains the object. Suppose
an agent A1 passes over an object server D1 and is moving
to another server D2, and another agent A2 passes over the
object server D2 and is moving to D1 as shown in Figure
5. If a pair of the agents A1 and A2 conflict on each of
the object servers D1 and D2, neither the agent A1 can be
performed on the object server D2 nor the agent A2 can be
performed on the object server D1. Here, deadlock occurs.

D1 D2

A1
A2

Figure 5. Deadlock.

Here, an agent Bj means an “agent” or a surrogate agent in
the object server Dj . An agent A would like to be performed
on an object server Dj but conflicts with an agent Bj in Dj .
First, suppose an agent Bj is a surrogate of an agent B. The
surrogate agent Bj makes a following decision depending on
the commitment conditions:

1. The surrogate Bj takes the at-least-one commitment
principle: If the surrogate Bj knows at least one sur-
rogate of the agent B exists, the surrogate Bj releases
the object and aborts. The surrogate Bj informs the
other surrogates of this abort.

2. The surrogate Bj takes the majority commitment prin-
ciples: If the surrogate Bj knows more than half of the
surrogates of B exist, the surrogate Bj releases the ob-
ject and aborts. The surrogate Bj informs the other
surrogates of this abort.

3. The surrogate Bj takes the
(
n
r

)
commitment: If the

surrogate Bj knows more than r surrogate agents of
the agent B exist, the surrogate Bj releases the object
and aborts. �

研究会Temp
－170－

5. Implementation

5.1. Environment

An agent is implemented in a pair of ways Aglets [1] and
Telescript [16]. Relational database systems Sybase [4] and
Oracle8i [5] on Solaris, Linux, and Windows2000 are used
as object servers which are interconnected in a100base Eth-
ernet. Each object server supports an XA interface [11] for
the two-phase commitment.

An agent manipulates table objects in object servers by
issuing SQL [9] commands, select and update. A mobile
agent realized in Telescript can carry the state to other object
servers i.e. process of agent is migrated. However, Aglets
agent cannot bring the state to other object servers, just text
and heap area are transferred.

An object server is realized in an Oracle and Sybase object
server. JDBC(Java database connectivity) [2] is used to real-
ize a program interface to an object server. The JDBC class
is required to be loaded to an Aglet agent in order for the
agent to issue SQLs on an object server. A home computer
of an agent means a computer where the agent is initiated.
In order to perform an agent on an object, JDBC is required
to exist on the home computer or the server. If JDBC does
not exist on the server, JDBC on the home computer is trans-
fered to the server. It takes about 10 sec. to transfer and load
JDBC on 100-base LAN. In the Internet, it takes about 34
sec. to transfer the JDBC class between Saitama and Kana-
gawa. Some object server may not support JDBC. Each type
of object server, i.e. Oracle and Sybase, requires an agent
to use its own type of JDBC. Hence, an agent cannot move
to an object server if the object server does not support its
JDBC and the home computer does not other. Next, suppose
the home computer supports JDBC. An agent moves to one
of object servers D1 and D2. Here, D1 has JDBC but D1

does not. If the agent moves to D2, it takes a large time
than D1. Thus, it is an important decision factor of a route
whether an object server support JDBC or not.

: JDBC

: agent

: server

: movement

: load

: home computer

home server

Figure 6. Agent on JDBC.

5.2. Surrogates

As presented before, after an agent leaves an object server,
a surrogate agent of the agent stays on the object server while

the surrogate agent holds objects manipulated by the agent.
The surrogate agent releases the object on time when the
agent commits or aborts. In this implementation, an agent
and its surrogates are realized as follows [Figure 7]. Here,
suppose an agent lands at an object sever Di by using SQL
with some consistency.

1. An agent A manipulates objects in an object server
Di.

2. A clone A′ of the agent A is created if the agent A
finishes manipulating objects in an object server Di.
The clone A′ leaves the object server Di for another
object server Dj .

Thus, a clone of an agent A is created and moves to another
object server as an agent. The agent A is just performed on
the object server Di and then is changed to the surrogate. If
an agent leaves the object server Di, locks on objects held
by the agent are released. Therefore, an agent stays on an
object server Di and a clone of the agent leaves the object
server Di for another object server Dj .

If all the object servers required by the commitment condi-
tion are successfully manipulated, an agent makes a decision
on commit or abort by communicating with the surrogates as
discussed in this paper. If commit is decided by the commit-
ment condition, a surrogate commits on an object server Di.
Otherwise, a surogate aborts.

Di Dk

Ai

Aj

Dj

Aj

Ak

Ak

clone

:clone

:surrogate

Figure 7. Creation of surrogate.

5.3. Commitment

In order to commit an agent, all or some of the surrogates
are required to commit depending on the commitment con-
dition. Each agent is also realized by using XA interface
[11] which supports the two-phase commit protocol [Fig-
ure 5.3]. Each surrogate issues prepare to a server on re-
ceipt of prepare from the agent. If prepare is successfully
performed, the surrogate sends a prepared message to the
agent. Here, the surrogate is referred to as committable.
Otherwise, the surrogate aborts after sending aborted to the
agent. The agent receives responses from the agents af-
ter sending prepare to the surrogates. On receipt of the
responses, the agent makes a decision on commit or abort
based on the termination condition. In the atomic condition,
the agent sends commit only if prepared is received from
every surrogate. The agent sends abort to all commitment
servers if aborted is received from at least one surrogate.
On receipt of abort, a committable surrogate aborts. In the

研究会Temp
－171－

at-least-one condition, the agent sends commit to all com-
mittable servers only if prepared is received from at least
one server.

: agent

: serverXA
Interface

Ai

Di

Figure 8. XA interface.

agent
A

commit

aborted prepared

prepare

time

: abort

: commit

Ai Aj

Figure 9. Conditional commitment.

Next, we discuss how to support robustness against agent
failures. First, suppose a surrogate Ai of an agent A is faulty
and recovered. Suppose a surrogate Ai is faulty after send-
ing prepared. On recovery of the committable surrogate,
the surrogate unilaterly commits if the surrogate is commit-
table in the at-least-one transaction condition. In the atomic
condition, the surrogate Ai asks the other surrogate if they
had committed.

6. Concluding Remarks

This paper discussed a mobile agent model for processing
transactions which manipulate multiple object servers. An
agent first moves to an object server and then manipulates
objects. The agent autonomously moves around the object
servers. If the agent conflicts with other agents in an object
server, the agent negotiates with the other agents. The nego-
tiation is done based on the commitment conditions, i.e. all-
or-nothing, at-least-one, majority, and

(
n
r

)
conditions, and

types of agents, i.e. ordered and unordered ones. We are
now evaluating our mobile agent-based transaction systems
for various types of applications.

References

[1] Aglets software development kit home.
http://www.trl.ibm.com/aglets/.

[2] Jdbc data access api. http://java.sun.com/products/jdbc/.
[3] The source for java (tm) technology. http://java.sun.com/.

[4] Sybase sql server. http://www.sybase.com/.
[5] Oracle8i concepts vol. 1. Oracle Corporation, 1999. Release

8.1.5.
[6] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency

control and recovery in database systems. In Addison Wesley,
1987.

[7] H. Garcia-Molina and D. Barbara. How to assign votes in a
distributed system. Journal of ACM, 32(4):841–860, 1985.

[8] J. Gray and A. Reuter. Transaction processing : Concepts and
techniques, 1993.

[9] A. N. S. Institute. Database language sql, 1986.
[10] F. H. Korth. Locking primitives in a database system. Journal

of ACM, 30(1):55–79, 1989.
[11] X. C. Ltd. X/open cae specification distributed transaction

processing: The xa specification., 1991. Document number
XO/CAE/91/300.

[12] F. Mattern. Virtual time and global states of distributed sys-
tems, 1989. North-Holland, Amsterdam.

[13] A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf. Co-
ordination of internet agents, 2001.

[14] I. Shimojo, T. Tachikawa, and M. Takizawa. M-ary com-
mitment protocol with partially ordered domain. Proc. of
the 8th Int’l Conf. on Database and Expert Systems Appli-
cations(DEXA’97), pages 397–408, 1997.

[15] D. Skeen. Nonblocking commitment protocols. Proc. of
ACM SIGMOD, pages 133–147, 1982.

[16] J. E. White. Telescript technology : The foundation for the
electronic marketplace, 1994.

研究会Temp
－172－

