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Abstract The characterization and security properties of cryptographic primitives such as asymmetric encryption schemes
have been well developed using the notions of probability and complexity theory. In this paper, we propose a new deduction
system called the JDE-system which can be used to formalize an idealized asymmetric encryption scheme. In our system,
deductive reasoning is used to identify similar security properties of different asymmetric encryption schemes. New functions
are introduced for describing several security properties. For example, by using the function ’'content-of’, we can provide a
sufficient set of inference rules that are used to formalize facts such as “without seeing the content of ciphertexts, an attacker
has the opportunity to see whether two different ciphertexts have the same content”. We use the notion of “Judgement” in our
JDE-system. Conversely, we also introduce the notion of “Unjudgment” as a property of JDE-system. By using these notions,
we can define the conteni-indistinguishability, key-indistinguishabilty, content-non-malleability, and key-non-malleability of
asymmetric encryption schemes. A proof is given showing the sufficient conditions for these security properties. We also clar-
ify the relationships that exist between these security properties. Two new security properties that we call key-non-malleability,
and content-length-non-malleability are proven using the JDE-system. The JDE-system identifies all of the procedures that
an attacker could employ. In this sense, the JDE-system is a completely intuitionistic axiomatic realization of an encryption

scheme.
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1. Introduction

In this paper, we propose a new deduction system called the
Judgment Deduction System (or the JDE-system). Using the JDE-
system, we can analyze the security properties of an asymmetric
encryption scheme. To accomplish this, we introduce new func-
tions such as content-of. Then we define a set of inference rules
related to this function. With these rules, we analyze the fact
that “‘without seeing the content of ciphertexts, an attacker has the
chance to see whether two different ciphertexts have the same con-
tent”. A different fact such as “without seeing the content of ci-
phertexts, an attacker has the opportunity to see whether two differ-
ent ciphertexts are encrypted with the same key or not” can also
be analyzed by using the function key-of. We also use the no-
tion of judgment in our system. Conversely, we also introduce
the notion of unjudgment as a property of JDE- system. With
these two notions, a proof is given showing the sufficient con-
ditions for the content-indistinguishability, key-indistinguishability,
content-non-malleability, and key-non-malleability of asymmetric
encryption schemes. A proof is given to formalize their relationship.
New stecurity properties for asymmetric encryption schemes are
also proposed. A formal proof of these new properties is provided.
For example, key-non-malleability is a new sccuﬁty property for an
asymmetric encryption scheme. It has not been previously defined
for either asymmetric or symmetric encryption schemes. Content-
length-non-malleability for an asymmetric encryption scheme is a
formalization of the fact that an attacker, given an example cipher-
text with an unknown content length, finds that it is impossible for
him to output a different ciphertext such that their content lengths
are related. The content-length-non-malleability security property
is considered an extension of the popular cryptographic security no-
tion content-non-malleability for an asymmetric encryption scheme.

Related work. Many formal approaches have been proposed for
the analysis of security protocols including the BAN logic of au-
thentication by Burrows, Abadi, and Needham [11], the CSP with
a model checking FDR approach [4]~[6], equation rewriting tools
[17], and the inductive approach for the analysis of security pro-
tocols by Paulson [3] which provides automated support using his
Isabelle proof assistant. Another approach for modeling and rea-
soning about security protocols is the spi-calculus, introduced by
Abadi and Gordon in[9], [10]. Most of these approaches focused
on proving the authentication and secrecy properties of security pro-
tocols, however, in these formal methods there is a common set of
rules which defines the analysis of an attacker’s knowledge. For
examples, in Paulson approach [3], attacker’s knowledge is defined
as a set of terms S and the attacker’s analysis of the his knowledge
S are defined by the fundamental operations parts(S), analz(S),
and synth(S). With these analysis some useful properties are ob-
tained such as synth(analz(S)) represents the set of terms which

the attacker can be obtained and generated from the set of knowl-

edge S. A similar set of inference rules are found in the Schneider
approach [4]. In[16], Bolignano describes the basic attacker’s op-
erations (encrypt, decrypt, pairing, decomposition of a pair) as a
transformation relation from a set of terms S to a set S’. Multiple
application of these basic operations to a set of terms S provides a
new terms (set or single) S’. Such analysfs is used to define the re-
lations S’ known-in S and S’ comp-of S. Then some impossibility
properties like =(b comp-of S) = —(b known-in S) is proved. As
we have seen, there is a common set of rules for the analysis of an
attacker’s knowledge. This common set of rules is also used in our
system (see Section 2.1). Our analysis of an attacker’s knowledge
is not limited to the analysis defined by T |= T3. It also includes
an analysis defined by the judgment relation T = 77 © T and the
unjudgment relation T =7 Ty © T, where © € {=,+}.

This paper is organized as follows: Section 2 presents a common
asymmetric encryption scheme . We consider this to be a basic se-
mantic of encryption. It is used to construct the JDE-system. New
functions that are used for defining the JDE-system and a set of suf-
ficient JDE-inference rules are introduced in Section 3. In Section 4,
we state various facts about the JDE-system. Using these facts, var-
ious syntactic security notions of an asymmetric encryption scheme
are verified in Section 5. Finally we give our conclusions and sug-

gestions for future work in Section 6.
2. A basic asymmetric encryption scheme

In this section, we explain a basic asymmetric encryption scheme
based on the current literature for the formal analysis of security
protocols [3]~[7], [15]~{17]. We start by defining the primitive
data types (sorts) that are used in this paper. Public-Data, Keys,
and Secrets are disjoint sets of atomic terms. Public-Data is the
set of symbols O and 1. Keys is a nonempty set denoting the set
of long-term keys. It consists of the set of public keys Public-Key
and the set of corresponding private keys Private-Key. There is a
one-to-one relationship between public keys and their correspond-
ing private keys. We will denote the public keys by k1, k2, ... and
their corresponding private keys by k1, k5 !, ... respectively. If we
use only one key, then we will remove the subscript. Secrets is a
nonempty. set of symbols that may have a secret design in accor-
dance with some policy. We will denote the elements of this set by
n1,n2, .... Compound terms can be constructed by either asymmiet-
ric encryption or concatenation. We will write Terms as a set of
terms that is defined as follows:

[Definition 1] A term T is a well formed expression defined as

7 for each i in Public-Data;

for each n in Secrets;
(Primitive)
. k for each k in Public-Key;

k™! foreach £~ in Private-Key



{T}e for encryption
(Compound) < {T'},—1 for digital signature
Ty, T for concatenation

Informally, {7}, represents the asymmetric encryption of term 7'
using a public key k and {T'},—1 represents the digital signature of
term T using a private key k~*. T, T represents the concatenation
of the two terms T} and 7T%. For concatenation, we use parentheses
when it is deemed necessary to ensure that only one interpretation
can be inferred. We consider that each'term T is associated with a
natural number len(T") that represents its length. For the encryption
scheme, we assume the following conditions:

(1) Encryption is perfect. i.e, it satisfies the following:

e It is impossible to produce {T'} without knowing 7" and .
o In order to recover T' from {T'}, one must know k=
e Given {T'}, it is impossible to recover k.

(2) Signature is perfect. This means that the signature satisfies
the same conditions as in 1.

(3) Only by seeing T, the attacker can determine the length of
T. .

(4) . If Ty and T» are syntactically different, then the values of
Th and T are different.

(5) - An attacker always distinguishes encrypted terms from
non-encrypted terms.

(6) An attacker always distinguishes signature terms from
terms of different constructions.

(7) An attacker always distinguishes the concatenation of
terms from terms of different constructions.

In the above sense, we consider that our JDE-system is ideal for
asymmetric encryption scheme. We do not assume any actual spe-
cific cryptosystem, such as RSA, in which the commutative prop-
erty for encryption is satisfied (this means that in RSA, we have
Ttk bee = {T1 ko b a)-

2.1 An attacker’s composition and decomposition relation-

ship

In this section, we give the basic attacker’s composition and de-
composition relationship for an asymmetric encryption. The basic
definition was given by Dolev and Yao [14] and has been used in the
formal analysis of security protocols [3]~[7], [15]~[17].
[Definition 2] (Basic-rules) Let 7} and 7% be two terms. The re-
lation = over 73, 7%, denoted by T = T, is defined as the least
relation that satisfies the following rules:

(1) Ei (foreachi € Public-Data)

(2) EEk (foreach k € Public-Key),

(3) =0
TET
(4) TET,
(5) TeET,Th TENTT:
TED TET:

TET,TET

(6)
TFET,T:
(7) TET,TEE
TEA{Ti}
sy TETLTER!
Tk {T1}p
(9) T':{Tl}k:T):k~1 ,
TET
(10) TE{T}h-1,TEE )
TET

Intuitively 73 = T% infers not only what an attacker can obtain from
T but also which terms an attacker can- generate from 77 with the
knowledge of public keys and public data. For example, an attacker
can generate terms such-as = {0}z.}= {0, 1}%, and = {1, k1}e
from the above rules.

3. The JDE-system

In this section, we propose a new inference system for an asym-
metric encryption scheme called the Judgment Deduction System
(JDE system) for an encryption scheme. The JDE system can be
used for reasoning about the security properties of cryptographic
primitives. It consists of a triple (3, Z,FspE), where:

(1) 3 isthe set of judgment,

(2) T is the set of inference rules. Each JDE-inference rule
has zero or more premises and a conclusion. A conclusion is said to
be derivable if all the premises of JDE-inference rule holds.

(3) Fspg is the JDE-derivation relation, which is defined us-
ing a sequence of applications of JDE-inference. It is also defined
inductively.

3.1 Judgment

In order to define judgment, we must first extend the set Terms
to the set Ex-Terms by introducing the following functions. Then
we can define propositions over the new set Ex-Terms. In the fol-
lowing, key-for is a well-known function but the others are new.

e key-of : Terms —— Terms.

Semantically, it takes an encrypted (digital signature) term and re-
turns the encrypted key (digital signature key).

e key-for : Terms —— Terms.

Semantically, it takes an encrypted (digital signature) term and re-
turns the key that is needed for decryption.

e content-of : Terms —— Terms.

Semantically, it takes an encrypted (digital signature) term and re-
turns its content term.

The function key-for in[3] is used for analyzing security proto-
cols and their properties. In this paper, we use this function for
reasoning about the security properties of encryption schemes. For
example, by using the same function we can analyze the fact that at-
tacker has the opportunity to see whether two different digital signa-
ture terms request the same key for verification. For an asymmetric

encryption scheme, we need a function key-of. With this function,



we are able to analyze whether the attacker can determine that two
ciphertexts are encrypted with the same key without knowing the
decryption keys. The new function, content-of, is used to analyze
whether the attacker has the opportunity to see that two different ci-
pheryexts have the same content without seeing the contents of the
actual ciphertexts.

[Definition 3] Let f be a meta variable of the sort {content-of,
key-of, orkey-for}. The set of extended terms denoted by Ex-Terms
is defined as follows:

(1) T € Terms, then T € Ex-Terms,

(2) If{T1}x € Terms, then f({Ti}k) € Ex-Terms,

(3) If{Ti}x-1 € Terms, then f({Ti};-1) € Ex-Terms,

Next, we define propositions over Ex-Terms as follows:
(Definition 4] Let T} and T} be meta variables that range over the
set Ex-Terms. T; = T; and len(T;) = len(T}) are propositions.
If P is a proposition, then =P is also a proposition.

The proposition ~(T; = Tj) is abbreviated as T; + Tj. Sim-
ilarly, the proposition —{len(T3) = len(T})) is abbreviated as
len(T)  len(Ty).

[Definition 51 (Judgment) Judgment is expressed as T = P,
which means that by knowing 7', an attacker can see the fact P
that is represented by a proposition.

[Definition 6] A statement is defined as an expression of the form
T |= Ty orthe form T = P. We use meta variables S, So, ... to
range over statements.

3.2 JDE-inference rules

The JDE-inference rules are defined by the following set of
inference rules. In the following JDE-inference rules, we use
T4,Ts, ... to denote meta-variables of sort Terms, T4, Ty, ... to de-
note meta-variables of sort Ex-Terms, and Ty, T3, ... to denote
meta-variables of sort Ex-Terms U {len(7")|T" € Ex-Terms}.

(1) Basic-rules in Definition 2,

TET
(2) _IET
T = len(Ty)
If an attacker obtains term T3 from T, then he can determine its
length.
T =T
(3) *_L,
T =1

If an attacker obtains term 73 from term T, then he can determine
that the values of these terms are equal.
T, T
(4) TET,TET
TET T
With the knowledge of term T, if an attacker obtains the two terms

(where T3 is not syntactically equal to Th),

T3 and T with the condition that 7 and 7% are syntactically differ-
ent, then he can determine that these terms have different values.
5) T =A{Ti}e = {Toly;

Tk f({Ti}e,) = f({T2}e,)
With the knowledge of 7', if an attacker can deduce that the values

of two encrypted terms are equal then he can determine that these
two encrypted terms have the same content and the same encrypted

keys, and that they need the same key for decryption.

TE {Tl}k,—l = {T2}kfl
i ]
T [T} = F({To )
This is similar to the rule above.
T =TV
(1) LETW =17
TETY =17,

TETy+T)
These two rules represent the symmetry of judgment.
TET =1, TETY =TY

(6)

>

(9) ,
TET/ =Tf

(10) TET =T TET+1y
TET) +T/ '

(11) TET

T = content-of({T1 }x) = Th
‘This rule must be true, because even if an attacker does not know
the private key k™7, if he knows T and if the public key & is avail-
able, he can generate {7 },. Then, he can determine that the values
of the two encrypted terms are equal. Otherwise, if he knows the
private key, then this rule is trivially true.
T1} e
(12) TE{ 1} k-1 ,
T |= content-of ({T1 }-1) = T1
This rule is true because an attacker knows the public key %.
T
(13) TN ;
T |= key-of {T1}e) = k
This is similar to rule 11.
T T1} e~
(14) E {Tthe-s
T k= key-for({T1 }-1) = k
(where k is the inverse key of k™),

This rule is true because an attacker knows all of the public keys
and there is a one-to-one relationship between the public and pri-
vate keys.
(15) T = key-for(T1) = key-for(1T3)

T = key-of(T1) = key-of(T2)
This rule is true because there is a one-to-one relationship between

public and private keys.
’ T =T!
(1) — LETH=T
T = len(T{) = len(T})
If an attacker knows about the equality of the values of two terms,

then he can determine the equality of their length.
(17)  With the conditions 77 and 7> are syntactically different ,

we have:

(a) (T, T lefty —LETLTET:
T = len(T1) = len(T3)
T)=T1,T]:T2

(b) (11, T, right) T ton(Ts) % ton(@a)

From the knowledge of 7', if an attacker can obtain 7y and T3
from T and they are syntactically different, then he can determine
whether they have the same length.

3.3 JDE-derivation

It is clear from the JDE-inference rules above that rule 22 dic-
tates that a choice must be made to apply either rule (71, 7%, left)
orrule (T1, T2, right) in the deduction system. Therefore, various

deduction systems can be created using JDE-inference rule 22. For



this case, we introduce the following inductive definition of JDE-
derivation(or b jpg). With this definition, we conclude that if one
rule from JDE-inference rule 22 is applied for two given terms T
and T%, then we must continue to apply the same rule for the same
two terms in any other deductions.

[Definition 7] (Fg.)

variables that range over statement and that R and R’ are meta vari-

Let us assume that S, S2, and S3 are meta

ables that range over subsets of the set 7 = {rule i|1 < ¢ < 22}.
Then g is defined inductively as follows:

e Base case. If the JDE-inference rule r1 is of the form 5
then -3 S1.

o Induction. If we have Fg S1,Fgs So, and there is a JDE-
inference rule » € Z of the form §1§3§?~ (or the form %i-), then we
have Frurru{ry S3(0rRuU(ry S3).

[Definition 8] The relation -;pr S1 is a JDE-derivation de-
fined as: (Fr S1 A Rsatisfies—3T33T5((T3, Ty, left) € R A
(T3, Ty, right) € R)).

For our JDE-system, we propose a set of JDE-inference rules that
are sufficient for defining all of the possible actions that can be taken
by an attacker. An attacker can decompose, compose, encrypt, and
decrypt. In some cases, an attacker can determine the contents of
encrypted terms without knowing the secret key and determine the
encrypted key from examining the ciphertext. These rules are suf-
ficient for formalizing all of an attacker’s abilities. For instance,

consider the following rule:

TE{Ty } oy F:{T2}x; T S({T1} ey
Tekey-of({T1} i, ) Fkey-of({T2} ;)

{T2}x;)

This rule states that if two terms are syntactically different and have
the same content, then these two terms must use different keys for
encryption. However, we do not have to add this rule to the JDE-

inference rules because the judgment

T = key-of {Ti i) F key-of({To}x;)

can be deduced in the JDE-scheme if an attacker can deduce the
judgments T' k= {Ti}x, & {To}r; and T = content-of({T1}x,) =
content-of({Ta}x;)-

For the same reason, we do not have to add the following infer-

ence rule.

TE{T1 ), F{T2} i, Tke-of({T1 )i, )=ker-o({T2} k)
T} f({T1} ;)3 of({T2}e ;) .

As another example to support our premise that we have a suffi-
cient set of JDE-inference rules, it is not necessary to add the fol-

lowing rule:

TeERLTE {1},
T k= key-of {T1 }jo—1) = k™1

to deduce the judgment T' |= key-of({T1} 1) = key-of({T2}p-1)-
This conclusion can be proven by using the following JDE-
derivation tree:

T E=A{To}y—
TE{T1}p T = keyfor({Ta}p-1) = k
T | keyfor({Ti}y-1) =k , T Ek=keyfor({To};-1)
T | keyfor({T1} 1) = keyfor({Ta}p—1)
T |= key-of {T1}—1) = key-of({Ta}p—1)

[Definition91 VT =P Y T =P¢{S s S}
[Definition 10] Unjudgment: 4ype T ' P & VR T |=
PAYRT = —P).

Definition 9 gives a formal description of the statements that an
attacker cannot derive. By using this definition, we introduce the
definition of an Unjudgment relation, which means that from the
term T, the attacker has no evidence in any JDE-derivation to allow
him to determine whether the statement 7' |= P or the statement
T = =P is true. The definition of an Unjudgment relation can be
considered as the heart of our formalization for the security func-

tions of an asymmetric encryption scheme.

4. Facts about the JDE-system for cryptographic
primitives

In this section, we describe various important facts about the JDE-
system. These facts can be used in several ways to express several
security notions of an asymmetric encryption scheme as shown in
the next section. This should be considered as a specific feature of
our work.

[Theorem 1] Even if an attacker knows the content of one of the
two encrypted terms, he cannot obtain any information about the
relationship between the contents of the two encrypted terms.

If {Ti}x, £ {To}x, and (Yupe T = Thor Vope T | T2),
then

“4spe T =7 content-of {Ti }x,) = content-of({Ta}r;)-

[Theorem 2] If ({Ti}x, = {Tg}kj/\ Fipe T E {Tl}ki) \
(Fspe T E=TiA Fspe T |= Tz), Then either:

(1) Fspe T = content-of({T1}r,) = content-of ({Ta}k;)
or:

(2) +ipe T = content-of({T1 }x,) *+ content-of({T2}x;) is
true.
This means that if the attacker can see the contents of two cipher-
texts, then he can know whether these two ciphertexts have the same
contents or not. Also if the attacker knows one ciphertext and makes
acopy of it (this means that they are syntactically equal), then he can
know these two ciphertexts have the same contents.
[Theorem 3] Even if an attacker knows the content of one of the
two encrypted terms, an attacker cannot obtain the relationship be-
tween the encrypted keys of the two encrypted terms.
If{Ti}r, + {TQ}}CJ and (Yype T = TaV ype T = Th) then
“spe T =7 key-of {Ti}x,) = key-of({Te}x, )-
[Theorem 4] If ({Ti}e; = {Ta}r;A Fope T E {Ti}e) V
(~spe T = TiA Fipe T = T2), then we have either:



( 1 ) F‘JDE T ): key-of({Tl}kz) = key—of({Tg}kj) or:

(2) Fipe T = key-of({Ti},) F key-of({T2}x;) holds.
The meaning of this theorem is similar to theorem 2.

[Theorem 5] If 4 pg T =7 content-of({Ty Yi;) = content-of {Ta}k, ),
then4;pg T 7 len(content-of({T1 },)) = len(content-of({T2 } ))-
[Theorem 6] If 4ypg T =7 key-of {Ti}n,) = key-of {To}w,,
then 4;pp T =7 len(key-of {T1}x,)) = len(key-of({T2}x;))-

The above two theorems state that if the attacker can not obtain
the relationship between the contents (or between the encryption
keys) of two ciphertexts, then he cannot obtain any information
about the relationship between the length of contents (or length of

encryption keys) of the two encrypted terms.

5. Verification of famous security notions using
our JDE-system

Various notions exist about the security of an asymmetric encryp-
tion scheme. There are also various mechanized proofs, most of
which are based on the notions of probability and complexity the-
ory. For example, the most basic is the notion of probabilistic in-
distinguishablity - introduced by Goldwasser and Micali [2]. An-
other notion is called probabilistic non-malleability introduced by
Dolev, Dwork and Naor[13]. The relation between these notions is
defined in [8],[12]. In this section, we give a different formalism
for the security notion of an asymmetric encryption scheme without
using the notion of probability and complexity theory. In addition,
we introduce a new security notion for an asymmetric encryption
scheme. Our analysis formally states the conditions that are suffi-
cient for defining these security notions. The first security notion,
called content-indistinguishability is the most natural one for defin-
ing the secrecy property in the formal analysis of security protocols
[9]1,[10]. The security notion of key-indistinguishability is stated
in the work of Abadi and Rogaway [1] for a symmetric encryption
scheme in a scenario that differs from that considered in our anal-
ysis. The syntactic security notion of content-non-malleability has
the same meaning as the security notion non-malleability in [13].
We have extended the security notion non-malleability to the syn-
tactic security notion of key-non-malleability . We consider this to
be an important feature of our work. From the facts stated in the
previous section, the security notions of content-non-malleability
and content-indistinguishability encryption schemes are character-
ized in corollaries 1 and 3. They are derived from theorem 1. The
security notions of key-non-malleability and key-indistinguishability
asymmetric encryption schemes are characterized in corollaries 2
and 4. They are derived from theorem 3. Corollary 5 is derived
from theorems 1 and 5. New security properties about length, such
as content-length-non-malleability, can be defined and character-
ized by using corollary 1 and theorem 5. '

[Corollary 1] (Content-Non-malleability.)
If (FJDE T i: {T1}}ci,}'JDE T }= TQ,HJDE T }= Tl), then
pe T =" content-of({T1 }1,) = content-of ({Ta}x, ).

[Corollary 2] (Key-Non-malleability.) ,
If (I"JDE T P: {Tl}k“'“JDE T }: Tg,VJDE T }:: Tl) then
Aspe T F=° key-of {T1}x,) = key-of {Te}, )-

The above two state that if an attacker, given an encrypted term
whose contents he does not know, finds that it is impossible for him
to generate a different encrypted term such that their contents (en-
crypted keys) are related.

[Corollary 3] (Content-indistinguishability)

(oo T EA{T1}r Fope T = AT}k, {Ti e, + {To}x,»
Yape T = T1,W/spe T = T2) then

Hipe T =7 content-of ({Ti }x,) = content-of {12}, ).
[Corollary 4] (Key-indistinguishability)

If(Fope T = A{T1} i Fope T E {Teti;, {Ti}e F {T2}s;,
Yope T = T1,/ipe T |= T) then

e T =7 key-of {T1}r,) = key-of {Te}x,)-

The above two corollaries means that an attacker, given two dif-
ferent encrypted terms whose contents he does not know, finds that
it is impossible to distinguish between their contents (or between the
encryption keys). By theorem 5, we propose a new security prop-
erty for asymmetric encryption schemes, called content-length-non-
malleability.

[Corollary 51 (Content-length-non-malleability)

If(bpe T E {Tl}lci,l“.]DE T = len(T2),spe T = len(TY),
{Tl}ki :i‘: {TQ}kja then

Aypp T E len(content-of {T1 }x,)) = len(content-of ({ T}, ))-

6. Conclusion and future work

In this paper, we have proposed a formal deduction system
called the JDE-system. The JDE-system formalizes all of an at-
tacker’s abilities, which are stated in the assumptions of an en-
cryption scheme. With this system, we can analyze a case such
as “‘without seeing the content of ciphertexts, an attacker has
the opportunity to see whether two different ciphertexts have the
same content” by using our new function content-of. In the
JDE-system, we have introduced the notions of judgment and un-
Judgment as meta properties of the JDE-system. With these no-
tions, we have determined the sufficient conditions for asymmetric
content-indistinguishability, key-indistinguishabilty, content-non-
malleability, and key-non-malleability encryption schemes and have
provided proofs for these conditions. Our work is closely refated to
the ongoing efforts towards reducing the gap between formal analy-
sis and modern cryptographic analysis for cryptographic primitives.
Extensions to our JDE-system to include a cryptographic primitive
hash function are now in progress. Our future work will also include

a verification of our work in modern cryptography.
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