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Abstract In EUROCRYPT2002, Coron proposed optimal security proofs for PSS signature scheme and other

signature schemes such as PFDH signature scheme. However the proofs only works under the standard security

notion of existential unforgeability against adaptive chosen message attack (EUF-ACMA) [5], while in probabilis-

tic signature scheme such as PSS and PFDH, the strongest security notion is the strong existential unforgeability
against adaptive chosen message attack (SEUF-ACMA) [1]. In this paper, we introduce a variant of SEUF-ACMA

called SEUF-q-ACMA and show a concrete construction of optimal security proof for PFDH signature scheme under

the security notion of SEUF-q-ACMA.
Key words

1. Introduction

For digital signature schemes, the standard “strongest” se-
curity notion was defined by Goldwasser, Micali and Rivest
in[5], as existential unforgeability under an adaptive cho-
sen message attack (EUF-ACMA). This notion captures the
property that an attacker can not produce a valid signature,
even after obtaining the signature of messages of his choice.
More exactly say, the forged message must be different from
the messages previously asked by an adversary to a signature
oracle.

Recently, a slightly stronger notion of security, called
strong existential unforgeability, was considered in (1], where
we require that an adversary can not even generate a new
signature on a previously signed messages. This concept of
signature security is appropriate for the probabilistic signa-
ture schemes, where a fixed message might have several dif-
ferent signatures.

Nowadays, the security of provable secure signature schemes
are mostly proven using reduction technique which based on
the hardness of a hard problem. The general flow of reduc-

tion technique on proving the security of signature scheme is

PSS, FDH, random oracle model, EUF-ACMA, EUF-SACMA. EUF-¢-SACMA

as follows. First, assuming that there is a forger which can
output forgery with success probability greater than certain
value (er) within a given time. Next using the forger, we
construct an algorithm that breaks a hard problem, such as
discrete logarithm problem or RSA-invertion problem with
success probability greater than certain value (er)within a
given time. If the hard problem is very hard, the success
probability of the algorithm should be negligible, thus there
is no forger with such success probability. A good reduction
algorithm is where er and er are very close. The closeness
between er and €r is called tightness. For practical applica-
tions of schemes, the tightness of the security reduction guar-
antees the appropriate selection of security parameter. For
a signature scheme, there could be various reduction algo-
rithms. Each has its own construction method. A reduction
algorithm is called optimal if there is no other reduction al-
gorithm has tighter reduction. The optimality of reduction
algorithm is very important from both the theoretical and
practical viewpoints.

The optimality of PSS signature scheme was comprehen-
sively discussed in (4] under the security definition of the

standard secure signature security. The paper [4] gave a proof
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of an optimality of some specific reduction described explic-
itly by adopting a similar approach as Boneh and Venkate-
san [2]. This result claims that there is no tighter reduction
than the specific reduction given in their paper, which is
an surprising result in the theory. However, the discussed
security in their paper is not the strongest security concept
for probabilistic signature scheme introduced in 1], while the
PFDH (Probabilistic Full Domain Hash signature Scheme)
and PSS (Probabilistic Signature Scheme) are a kind of the
probabilistic signature schemes. In this paper, we will discuss
the security reduction of PFDH under the security notion
which we consider “stronger” in the probabilistic signature
scheme than the standard “strongest” security notion.

We will introduce the new concept of an existential un-
forgeability under a strong adaptive chosen message attack
called EUF-q-SACMA. In this attack scenario, the forger can
dynamically obtain signatures of messages of his choice, and
additionally, and always asks at least g signatures of the mes-
sage which it attempts to output the valid forgery of. The-
orem 1 shows the lower bound of success probability of a
specific algorithm R which reduces inverting RSA to break-
ing PFDH[ko] in EUF-¢-SACMA. Theorem 2 shows the up-
per bound of success probability of any reduction algorithm
R which reduces inverting RSA to breaking PFDH[ko| in
EUF-¢-SACMA. As a result, it is proven that the reduction
algorithm R introduced in the proof of Theorem 1 is actually
optimal under EUF-¢-SACMA.

2. Definitions

In this section, we briefly describe some definitions used
throughout the paper. Most of the definitions here are
adopted from [4].
[Definition 1] (Signature Scheme) A signature scheme
(Gen,Sign,Verify) where Gen, Sign, Verify represent key
generation algorithm, signing algorithm, and verification al-
gorithm respectively. For detail definition, please refer to [4].
A wvalid signature is a signature which is accepted by verifi-
cation algorithm.
[Definition 2] (Unique Signature Scheme) A unique
signature scheme is a signature scheme (Gen,Sign,Verify)
where given a pair of public and private keys, the signature
scheme produces only one unique valid signature for one mes-
sage.
[Definition 3] (Probabilistic Signature Scheme)
abilistic signature scheme is a signature scheme (Gen,
Sign,Verify) where given a pair of public and private keys,
the signature scheme is able to produces several different
valid signatures for one message.
[Definition 4] (EUF-ACMA)
ability under an adaptive chosen message attack (EUF-

An existential unforge-

ACMA) is a security notion under a scenario of attack to-
wards a signature scheme, where the forger can dynamically
obtain signatures of messages of his choice with a condition
that it does not make any signature queries of the message
it is going to output the valid forgery of. A walid forgery is a
pair of a message and a valid signature of the message, where
the signature was never retrieved by the forger.
[Definition 5] (SEUF-ACMA)

forgeability under an adaptive chosen message attack

A strong existential un-

(SEUF-ACMA) is a security notion under a scenario of at-
tack towards a probabilistic signature scheme, where the
forger can dynamically obtain signatures of messages of his
choice. The forger is allowed to output the forgery of the
message which it does not make any signature queries of,
and also the forgery of the message which it has made the
signature queries of, as long as the forgery is a valid forgery.
A wvalid forgery is a pair of a message and a valid signature
of the message, where the exactly same signature was never
retrieved by the forger.

[Definition 6] (EUF-¢g-SACMA) An existential unforge-
ability under a ¢ strong adaptive chosen message attack
(EUF-g-SACMA) is a security notion under a scenario of
attack towards the probabilistic signature scheme, where the
forger can dynamically obtain signatures of messages of his
choice, and additionally, always asks at least g signatures of
the message which it attempts to output the valid forgery of.
A wvalid forgery is a pair of a message and a valid signature
of the message, where the exactly same signature was never
retrieved by the forger.

Note that SEUF-ACMA and EUF-¢-SACMA are different

In EUF-g-

SACMA, the valid forgery includes the forgery of the mes-

in the sense of the space of the valid forgery.

sage the forger has been made the signature queries of at
least ¢ times, but the forgery of the message the forger has
not been made the signature queries of will not accepted. In
SEUF-ACMA, the valid forgery includes the forgery of all
messages, both the ones that has not been made the signa-
ture queries of and the ones that has been made the signature
queries of.

[Definition 71 A forger F.is said to (¢,qu,qs,€)-break
the probabilistic signature scheme (Gen,Sign,Verify) under
EUF-ACMA if after at most qx (k) queries to hash oracle, gs

signature queries, without making any signature queries of

A prob- the message to forge, within t(k) processing time, it outputs

a valid forgery with probability at least e(k) for all k € N.
[Definition 8]
the probabilistic signature scheme (Gen,Sign,Verify) un-
der EUF-¢-SACMA if after at most gy (k) queries to hash

oracle, gs signature queries including at least ¢ signature

A forger F is said to (t,qH,¢s, q,€)-break

queries of the message to forge, within t(k) processing time.



it outputs a valid forgery with probability at least e(k) for
all k € N.
[Definition 9]

Sign,Verify) is (t,qH,gs,q,€)-secure if there is no forger

A probabilistic signature scheme (Gen,

who (t,qn, gx, g, €)-breaks the scheme.

[Definition 10] (PFDH Signature Scheme) PFDH sig-
nature scheme is a probabilistic signature scheme based on
RSA cryptosystem. For the definition and notation of RSA
cryptosystem, please refer [4]. Here, let RSA : {0,1}* —
Z x Z x Z, where for input 1¥, RSA(1%) = (N, e, d)

st e-d =1 (mod ®(N)). The signature scheme PFDH is
parameterized by the integer ko. The description of PFDH

signature scheme is as follows:

KeyGenPFDH (k)
(N,e,d) — RSAQ1*
pk — (N.e)

sk — (N,d)

return (pk, sk).

SignPFDH;_ v 4y (M)
r & 40,1}k
y «— H(M]||r)

return (y¢ mod N, )

VerifyPFDHpk:(N’e)(M, s,T)
Yy« s*mod N
if y = H(M||r) return 1

else return 0

tNote: pk is public key, sk is private key.

Figure 1 Probabilistic Full Domain Hash (PFDH) Signature
Scheme.

[Definition 11] An algorithm A is said to (t,€)-break
RSA if given (N, e, y* mod N), within t(k) processing time, it
outputs y mod N with probability at least e(k) for all k € N.
[Definition 12] RSA is (¢, €)-secure if there is no algo-
rithm which (¢, €)-breaks RSA.

[Definition 13] A reduction algorithm R is said to
(tr,qH,qs,q,€F, €r)-reduce inverting RSA to breaking
PFDHko] under EUF-¢-SACMA, if upon input (N,e,y)
and after running any forger that (¢r,qn,qs,q, €r)-breaks
PFDH[ko|, outputs y¢ mod N with probability at least ¢g,
within an additional running time of tg.

[Definition 14] A reduction algorithm R is said to
(tr,qH,qs, €F, €r)-reduce inverting RSA to breaking PFDH ko)
under EUF-ACMA., if upon input (N, e, y) and after running
any forger that (tr,qu,qs,er)-breaks PFDHlko|, outputs
y? mod N with probability at least e, within an additional

running time of tg.

3. Security Analysis of PFDH in EUF-g-
SACMA

In this section, we will prove the security of PFDH[ko] in

EUF-¢-SACMA using reduction technique, by constructing
a reduction algorithm R which breaks RSA given a forger of
PFDH. Then we also prove that the reduction algorithm R
is optimal using similar technique in [4].

3.1 A Security Proof of PFDH in EUF-¢g-SACMA

[Theorem 1] If RSA is (tr, er)-secure, then PFDH][ko) is
(tr,qH, s, q, €r)-secure where Vk € N and ¢ < 2501,

tr =tr + (qu + gs)O(K?)
_ 1
TP I  14(gs — q)2—Ho

(1
(2

€R

Proof: The proof is given in appendix A.

3.2 Optimal Security Proof for PFDH in EUF-q-
SACMA

[Theorem 2] Let R a

(tr,qH,95,9,€F, €r)-reduces inverting RSA to breaking

PFDH[ko], with gy 2 gs and ¢ < 2¥~!. R can run or

reduction algorithm which

rewind the forger at most r times. Then, from R we can
construct an algorithm Z which (¢, €7)-breaks RSA with:

tr=(r+1)-ta 3)
) oko+2

€] =€R—T - €F - (4)
qz —4q

Proof: The proof is given in appendix C. a

4. Discussion

The flow of the discussion is following the discussion sec-
tion in [4].
4.1 Discussion on Theorem 1

From (2), we can see that when ko = 0, we lost about
log, gs of security compared to RSA*Y . In this case, since
PFDH becomes a unique signature scheme, EUF-g-SACMA
and EUF-ACMA scenario are completely coincided. When
0 < ko < log,(gs — q), as long as ¢ < 2*~1 every bit
of ko adds one bit security to the scheme. Finally, when
ko 2 log,(gs — g), we can obtain a security level that is al-
most the same as inverting RSA. Note that the larger ko is,
the closer er to €r is. For example, given time tr taking
ko = log,(gs — q) then the probability of breaking PFDH[ko]
where g < 250~1 is at least er = g - 15 where €r is the least
probability to break RSA in at most time close to tr. Sup-
pose we want to design PFDH(ko| with gs being the number
of signatures to publish within time tp, against any forger
that can output valid forgery from at least ¢ signatures of
target message to forge. So, in this case, in order to ob-
tain the security level of PFDH (ko] being almost as secure as

inverting RSA, we can set ko = max{log, q,log,(g= — ¢)}-

(%1) : ¢ = 0 because when k = 0 PFDH becomes FDH which is a

unique signature scheme,
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4.2 Discussion on Theorem 2
4.2.1 General Discussion

Let consider a forger F which breaks PFDH][ko] after gz
signature queries (including g signature queries of message
to forge) and outputs forgery with ep = 1/2. Then, ac-
cording to theorem 2, from any reduction R that succeeds
with probability at least ez when running the F in EUF-
g-SACMA scenario where ¢ < 2%0=1 once, we can obtain
a polynomial time algorithm Z which succeeds in breaking
RSA with probability at least er — 2¥0%!/(gz — g), with-
out using F. If inverting RSA is hard, the probability of
breaking RSA should be negligible. Thus, the success prob-
ability of any such reduction algorithm should be at most
2ko+1 /(g — q) + negl. Hence, in order to get tight reduction
(er = €r = 1/2), we need to set ko = log,(gqz — ¢). This
result is almost the same as one shown in theorem 1. Thus,
this shows that our reduction algorithm used in theorem 1 is
almost optimal.

4.2.2 Concrete Example

For more precise illustration, let us observe above discus-
sion with a concrete example. Here we assume that we work
on 1024-bit modulus RSA and g < 2¥~%.

First, recall that our reduction algorithm R in theorem 1
succeeds in inverting RSA using PFDH[kg] with probability
at least:

p— €F
R 1v (g= —q)27%

Setting ko = log,(gz — g), for any forger F with success
probability at least e = 1/2 ,we obtain that R will invert
RSA with probability at least 1/30. Here, assume that the
running time of R is less than 25°.

Now, let us consider another reduction R on PFDH[ko] in
the same EUF-g-SACMA with the same running time 250
which succeeds with probability at least er = €5 using the
same forger F. Thus, from theorem 2, we can construct an
algorithm Z which inverts RSA without F with success prob-
ability at least e = er —2*°*!/(gx — ¢) within running time
tr = (14 1)2% =251,

As standard of measurement, let us use the best factor-
ing algorithm known (number field sieve (NF'S)).The running

time of NFS for factoring a modulus N is about
Tnrs(k) = exp(C - (log N)*/* - (log log N)/3)

where C = 1.923 [4] Therefore we can assume RSA is (t,€)-
secure for any (t,e¢) satisfying t(k)/e(k) < Tnrs(k). For
1024-bit modulus, we have Twrs(k) = 2%¢. Therefore, we
can assume that for a 1024-bit modulus, we can obtain
that RSA is (t,t - 27%¢)-secure for all ¢t < 286 Putting
t = 2°!. we can obtain that RSA is (2%',27%%) -secure

which means that given t; = 2, ¢ < 273%  Thus,
the success probability of reduction algorithm 7 can not
be greater than 2%%!/(gx — ¢) + 27%°. Since er 2 €5
we must have 2¥0+!/(gs — ¢) + 27%° 2 1/30, which gives
ko = log,(gz — q) — 6. This shows that the difference be-
tween ko from any reduction algorithm R and the one from
’fé, where eg 2 €5, can be bounded up to a constant fac-
tor. Consequently, the reduction algorithm R in theorem 1
is optimal.

4.3 Comparison of PFDH[ko] in EUF-ACMA and

EUF-¢-SACMA

Assume that RSA is (t,€)-secure. Then from [4], we can
obtain that PFDH[ko] is (tr, s, qn, €% )-secure under EUF-
ACMA where €% = er(l + 6 - log,gs - 27%0). Whereas,
from theorem 1, with the same condition, we can obtain that
PFDH]ko) is (tF, gz, qH, q, €& )-secure under EUF-g-SACMA
where €}, = er(1+ 14 - log,(qs — q) - 27%0), It is easy to see
that in order to gain the same security level as inverting RSA,
the minimal requirement of ko differs between those scenar-
ios. Under EUF-ACMA, we need to set ko = log, g=, while
under EUF-¢g-SACMA, we only need to set ko = log,(gs — q)
which is smallef*? than log, gs.Hence, the scenario attack
in EUF-¢-SACMA is weaker ( easier to handle ) than the
scenario attack in EUF-ACMA.

At first glance, this seems to contradict our intuition, since
the scenario attack in EUF-¢g-SACMA seems stronger than
the one in EUF-ACMA, due to the fact that the scenario
attack in EUF-¢-SACMA is allowing to gain some informa-
tion about the signature of the message the forger is going
to forge, whereas the forger in EUF-ACMA is not.

However, is it true that the scenario attack in EUF-g-
SACMA is stronger than the scenario attack in EUF-ACMA
? Again, it is indeed true that the forger in EUF-¢-SACMA
can gain some information about the signature of the mes-
sage it is going to forge, whereas the forger in EUF-ACMA
can not. However, looking more detail into inside EUF-q-
SACMA, we get some restrictions on EUF-¢-SACMA as fol-
lows:

e The forger in EUF-g-SACMA is able to only forge the
message which it has received the signature of, for at least
q times. This restriction makes the forger is not allowed to
output valid forgery of the message it has never asked the
signature of.

e Let M* denote the candidate of the message the forger

(%2) : In fact, we should examine this argument more carefully by
using non-simplified version of the result of EUF-g-SACMA. Because
the simplified version of the result of EUF-q-SACMA here has bigger
constant coefficient than the one in EUF-ACMA, which can cause mis-
leading arguments, such as €7, > e‘,’, when q is small, which is actually

not true at all.



is going to output. Suppose that the forger has received at
least q signatures of M*. Thus, along with the signatures of

J
i=1

M*, it also has received a set of random salts ¥ = {r;
where j 2 ¢. Remind that a valid forgery is a forgery of M~
with random salt r* which is not contained in 7. Thus the
more forger receives signatures of M", the less the number
of candidate of 7" it is allowed to output in valid forgery.

These restrictions decreases the degree of freedom of
forgery in EUF-¢-SACMA and thus decreases the strength
of the attack scenario. As an comparison let us analyze the
forger of EUF-ACMA.

e The forger of EUF-ACMA is allowed to output any
valid forgeries of any messages it has never asked the signa-
ture of.

® Since the message that the forger of EUF-ACMA is
going to forge, is always the one it has never asked to the
signature oracle, there is no restriction on the candidate of
the random salt it can output in forgery.

From above arguments, it is obvious that actually the forgery
in EUF-¢-SACMA is more restricted than the forgery in
EUF-ACMA.

5. Conclusion and Further Research

The strongest security notion for probabilistic signature
scheme is the strong existential unforgeability under an adap-
tive chosen message attack (SEUF-ACMA). However the op-
timal security proofs for PSS and PFDH signature schemes
in [4] only works under the standard security notion of exis-
tential unforgeability against adaptive chosen message attack
(EUF-ACMA) [5]. In this paper, we have show a concrete re-
construction of an optimal security proof for PFDH][ko] sig-
nature scheme under a variant of SEUF-ACMA called EUF-
¢-SACMA where g < 2F0~1,

Finally, the optimal security proof for general ¢ under
EUF-¢g-SACMA is still needed to be investigated. The
optimal proof of probabilistic signature scheme under the
strongest notion SEUF-ACMA still also remains as an open
problem.
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Appendix

A Proof of Theorem 1
Our proof is following the proof in [4]. We will show that
for any forger that (tr,qu,gs,q, €r)-breaks PFDH[ko], we
can construct reduction algorithm R which (tr, er)-breaks
RSA where the variables satisfy (1) and (2). '
The reduction algorithm R here is also adopted from [4]. It
uses a forger F to invert RSA, and it has ability of answering
hash and signature queries of forger F.
Algorithm for R:
Input: (N, e,y), and (gu,qsx, q), where
(N,e) — RSA(1*) and y & Z*
Output: y* mod N
1. Seti—0
2. Send (N,e) to F.
3. If F makes a hash query for M||r then
Find j€Nst M; = M
IfdjeNst M; = M,
t—i+1; M — M; j—q3
L; « InitList(gs,f)
If r € L; then
z & Zy, Return H(M||r) = z° mod N.
Else if 7 ¢ L; then
Return H(M||r) =y - modN.
4. If F makes a signature query for M then
Find jeNst M; =M
IffjeNst M; = M,
te—1+1; M — M; j—1;
L; « InitList(gs,3)
If L; + 0 then pick an element r’ of L; and dis-
card it from L;. Otherwise stop.
If M||r" has been asked before, it is easy to see
that H(M||r') = z° mod N.
If M||r’ has never been asked yet, = & Zy;
H(M]||r") < z° mod N.
Return o(M) = (z,r').
5. If F outputs a forgery (M*,o*,7"),
If H(M™||r*) =y - z° mod N then
output y? = ¢*/z mod N.
Otherwise stop.
Algorithm InitList
gs and B € [0,1)
Le P(ZE)

Input:
Output:
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1. L—0,j«0.

2. If j < gx then
Flip a coin ¢ € {0,1} which is biased
by B3, where ¢ = 0 with probability 3

and c =1 with 1 — 8.
Else go to step 4.
3. If c =0 then

Je—i+}
& o,
Add r; into L and go to step 2.

Else if ¢ = 1 then goto step 4.
4. Return L.

First, in order to analyze the reduction algorithm R, we
will try to find the success probability of the signature oracle
simulation by R, e.g., even after at most gs, F does not know
that the signature oracle is in fact a simulated one. Next,
from step 4 of reduction algorithm R, we know that every
time F makes a signature query M;, the number element
of its corresponding list (L;) is decreased by one. Whereas,
from the construction of list L; in algorithm InitList, we

have :

F(-p8) ifj<as

= if =gz,

Pr(|L:| = j] = (A1)
where |L;| denote s the number of elements of L;.

Thus, the probability that R can answer one signature
query of M; is Pr[|Li| + 0] = 8. Let Y; denote the num-
ber of signature queries of M;, and especially let Y* de-
note the number of signature queries of M*, the candi-
date message to forge, with L as its corresponding list.
It is easy to see that probability R can answer Y; signa-
ture queries of M; is Pr[|L;| = Yi] = Y.
Y1,Y2,...,Y", ..., Yy, denote the list of the number of sig-
nature queries of My, Ma,...,M*,..., Mg, . Note that al-
though in EUF-g-SACMA model Y™ 2 g, this will not affect
the total > ¢ Y; < ¢s. Hence, from the independency of

Let vector

each Y;, we can conclude that the probability that R can
answer all signature queries from F is at least 8% . Conse-
quently, the total probability that R gets forgery from F is
at least B9% - €p.

Let L; denote the part of L; which is still left after F
has finished all its signature queries. From step 6, we know
that the inversion of RSA will success only when forgery
(M*,0",r") satisfies r* ¢ L*. Since F knows nothing about
L*, r* from forgery and the contents of L~ are independent
each other, the probability of r* ¢ L* when |L*| = £ is
(l - 2"‘0)[. Thus, the total probability that r* ¢ L~ is:

gz =Y

By =S -2k eI = g,

£=0

(A-2)

where

B1-B) ift<ge-Y"

Pr|T7| = €] = X
peE==Y ifb=qzs—-Y".

(A-3)
Since Y* 2 g, it is easy to see that f(83,Y") 2 f(8,q) for a
fixed 8. Thus the total probability that R success in invert-
ing RSA is at least 89% -ep- f(8,Y™). And for any (g=, ko, q)
when ¢ < 2'“0'1, there exists Bo such that:

1

9T | —_—
5" - f(Bo,q) 2 1+ 14 (gz — )2’

(A4)

which gives (2). Detail proof is given in appendix B.
Similarly, the running time of R is the running time of F
plus the time to compute answer for hash queries and sig-
nature queries, approximately within O(k%) for each query.
This leads to (1). =]
B Proof of inequality A-4

The proof here is mostly adopted from appendix B of [4].
Let

9z —q
g0 =6 Y -2 PL =g (A)
£=0
where
£1 . o
P =g dFOD <Y
gy if b=gqs - Y".

Let go = max{g(8); 8 € [0, 1]}, we will show that

1 e 1
2(gs — q)’ 1+6(gz —q)27k0

go2(1—

Put v =275 from (A-5) and (A-6), we get:

e B (1_BaryB(1-7)8)="7) (A
o) = t—(r=—=35 (1-A+16-(1-18)™"7) (A7)
When v - (g= — q) 2 1/2, first we derive:

w1
o0 2"

then we take 3 =1 —1/(2(gs — ¢)) and obtain:

2 <1 1 >QE 1
9= 2(gz — q) 1+2-v(gs—¢q)

For (g= — q) 2 1 we have

1 9= —9q 1
)l
< 2(gz — q) 2

Also, from v (gz —q) 2 1/2 and ¢ < 2%0=1 we have

(-mm=) 2(-%) 20-75)"23

Hence, we obtain

1 1
1+2-y-(¢z—q) 4+8- 7 (¢=—4q)

>
92 5



Using v - (¢gs — q) 2 1/2, we obtain
(24-1)+8-8) ez —q)2(4-1)
1+14-v(gs—q) 24 +8-v(gz — q)-

Thus,
1
L vy preguye §
If v-(gz —g) £ 1/2, we take 8 = 1 and obtain using (A-7):
1
go 2 (1-7)" qu—'r'(QE—Q)Zm
> 1
T 1+14-v(gz - q)
=]

C Proof of Theorem 2

The general flow of the construction of algorithm Z is fol-
lowing [4].
C1 Preliminaries
C1.1 Construction of Z under unique signature

scheme

First, suppose we have a reduction algorithm R which sat-
isfies the requirements in theorem 2. Then we simulate the
forger oracle F inside R by using rewinding technique as fol-
lows: in the first run, in some arbitrary point we make a
signature query of M" and stop. Next, we rewind R to the
point before we make any signature queries and make signa-
ture queries exactly as in the first run with exception that
we do not make a signature query of M*, and to continue
making at most gsz signature queries to R. After that, we
make F output a forgery of M* which is retrieved in the first
run. Unless R does not give valid answer of the signature
query of M~ in the first run, R will not be able to distin-
guish between the simulated forger and a real forger which
runs exactly the same signature queries of the second run.
For detail discussion about the simulation, please refer to [4].
C1.2 Construction of Z under non-unique signature

scheme

Unfortunately, the simulation of forger oracle showed
above only works only if_the underlying signature scheme
is a unique signature scheme. In the case of probabilistic sig-
nature scheme as PFDH{[ko), the forgery result of simulated
forger will always be producible by R, whereas the forgery
of a real forger will not always be producible by R. Thus,
R can construct an algorithm to distinguish between a sim-
ulated forger and a real forger. For example, after forger
oracle outputs forgery of M*, R can rewind itself and try to
send a signature query of M* in any point. Since the number
of signature queries is finite, if M" is producible by R, it will
find exactly the same forgery of M™ in a finite time, thus
the forger is a simulated forger. Otherwise, it will not find
exactly same forgery of M~ in a given time, thus the forger

is a real forger.

C2 Sketch of Proof

Let consider a variant of PFDH][ko|, called PFDHO[ko]
which the random salt is fixed to 0. Note that PEDHO[ko]
is a unique signature scheme. First we convert a forger Fo
for PFDHO[ko] into a forger F for PFDH[ko]. F should
work under the scenario of EUF-¢g-SACMA inside a reduc-
tion algorithm R which reduces inverting RSA into breaking
PFDH][ko] and satisfies the requirements in theorem 2. Since
R is indeed a reduction algorithm that inverts RSA, using F
which is constructed from Fo, it is easy to see that we can
construct a reduction Ro which reduces inverting RSA into
breaking PFDHO[ko|, by just forwarding the queries from Fo
to Ro. For detail discussion, please refer to appendix J of [4].
[Lemma 3] Let Fo be a forger which (t%,q%,q2,€%)-
breaks PFDHO[ko]. From Fo we can construct a forger F
which (tr,qx, gz, q, €r)-breaks PFDH|[ko|, with!**

au =qp, gz =2""'ql+q, and ep =e%/2.(1-27%0)9

Proof: We construct F from Fo by forwarding the queries
from Fo to the hash or signature oracle of PFDH/ko], and for-
warding the answers from the hash or signature oracle to Fp.
Eventually the forger 7o will output forgery of PFDHO[ko)
which also a forgery of PEFDH|[ko].

The most important thing to note is that Fo will always
expect the random salt part of the signature of M be 0% as
in PFDHO[ko], whereas the signature of M retrieved from the
signature oracle of PFDH][ko) is equal to 0¥ only with prob-
ability 27%. Also remind that F needs to send signature
queries of the message it is going to output as forgery, here
M", at least ¢ times. Here, we fix the number of signature
queries of the message to forge to g times'**

So the total number of queries sent to signature oracle in
order to serve Fo, need to be reduced from gs to gs — q.
And the g signature queries of M* need not to contain the
one with 0% random salt, otherwise the forgery from Fy is
useless.

Let Y; denote the number of signature queries of M; need
to be sent to signature oracle by in order to retrieve a sig-
nature of M; with 0% as its random salt. Let Y = Zf%l Y:,
thus F will output forgery of (M*,o*,0%) with probability
at least % - Pr[Y < gs — q) - (1 —27%o)a,

Reusing the result shown in [4], we get Pr[Y < (g —q)] 2
1/2. Thus, the forger F outputs a forgery for PFDH|ko] with

(%3) : Although the attack framework of Fo and F are different, it
does not affect the generality of our proof, since a forger of EUF-g-
SACMA will behave exactly with a forger of EUF-ACMA in a unique
signature scheme.

(%4) : Even though we fix the number of signature queries of the mes-
sage to forge into g timcs, it does not affect the generality of our proof

as long as we can construct F
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probability at least ep = €%/2 - (1 — 27%0)? after at most gz
signature queries, including g signature queries of message
to forge. ]
[Lemma 4] Let R be areduction which (tr,qx,gx. ¢, €F, €R)-
reduces inverting RSA to breaking PFDH[ko]. From R
we can construct a reduction R, which (t%,¢%,¢2, €%, €r)-
reduces inverting RSA to breaking PFDHO[ko], with:

= =q% 2% +q qu = q¥ (A-8)
er = ep/2- (1 —27F0)q €n=e€x (A-9)
th =tr (A-10)

Proof: From a forger Fo which (t%,q%,q2, €%)-breaks
PFDHOlko|, it is obvious from lemma 3 that we can con-
struct a forger F which (tr,qu, gz, g, €r)-breaks PFDH(ko,
with parameter settings as (A-8), (A-9) and (A-10). Accord-
ingly, given R, using F we can invert RSA. Notice that this
procedure shows a algorithm to invert RSA given a forger
Fo using R. Thus, it is easy to see that in fact we have suc-
ceeded in constructing an R/ where ¢} = er and t} = tr.
[m]
Now, let R be a reduction algorithm which (tr,qn, s, 4,
er, €r)-reduces inverting RSA to breaking PFDHko]. Ac-
cording to lemma 4, we can construct a reduction algo-
rithm Ro which (t%,q%,q2, €%, ¢%)-reduces inverting RSA
to breaking PFDHO[ko] with parameter settings as shown in
(A-8), (A-9) and (A-10). If R can run or rewind the forger at
most r times, so can R,. First recall the following theorem
from [4].
[Theorem 5] Let R, be a reduction which (t%, ¢, ¢%, €%,
€%)-reduces inverting RSA to breaking a unique signature
scheme. If Ry is allowed to run or rewind a forger at most r
times, then from Ro we can construct an inverter algorithm
T which (tr, er)-breaks RSA, with:

tr=(r+1)-t% (A-11)
_ 0\ -1
€] = E(})g A E?;* . _6:51)(0 1) ‘ (1 - qTE) (A12)
a5 4y

Using equations (A-8), (A-9) with gz 2 g5, ¢ < 2ko=1 and
erp(—1) £ 1/2, we obtain:

o ezp(=1) (1 _ q%)*‘

ETTS %
2€ep 1 1
£r- % Fo—1 —1
(1 —27k0)a 2(gs — q)27%0~1 (1 - (gz — g)27%0~1qy")
oko+1 oko+2

roep——F———< ST €F
(1-2k0)a(gs —q) gz~ q

Hence, the inverter algorithm-Z will succeed with probability

at least:
2k<1+2
€ER—T-€F - ,
9= —4q
and thus theorem 2 is proven. u]





