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Abstract We present a modification of the KASUMI type permutations and analyze the security of it using the

notion of pseudorandomness. Our modification is similar to the KASUMI type permutations except the use of just

two round MISTY-type permutation as the round function. Note that the values of each round functions of two

round MISTY-type permutation can be computed simultaneously. So our modified permuatation can be computed

more efficiently than the original KASUMI type permuation. Furthermore our results have a sligtly more good (or

same) upper bound of success probablity of arbitrary attacker in the sense of (super) pseudorandomness.
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1. Introduction

Brief history Luby and Rackoff[4] introduced a theory
for the security of block ciphers by using the notion of pseu-
dorandomness. One of the purposes of the security analysis
using the notion of pseudorandomness is to measure the se-
curity of the structures used in the block ciphers. Roughly
speaking, the security of the structure is analyzed after the
main functions (such as round functions in Feistel transfor-
mations ) is replaced with a pseudorandom function or pseu-
dorandom permutation. With this replacement, Luby and
Rackoff showed that the three round DES type permutation
is a pseudorandom permutation and the four round one is a
super-pseudorandom permutation. [4]

KASUMI is a block cipher which has been adopted as a
standard of 3GPP [1]. where 3GPP is the body standardizing

the next generation of mobile telephony. The overall struc-

KASUMI block cipher, Pseudorandomness, Provable security

ture of KASUMI is a Feistel permutation and each round
function consists of two functions, FL function and FO func-
tion. Each FO function consists of a three round MISTY
type permutation, where each round function is called an
FI function. And each FI function consists of a four round
MISTY type permutation. See [1],[2] for details.

Recently Iwata, Yagi, and Kurosawa[2] presented results
about the pseudorandomness of KASUMI for adaptive ad-
versarial model. They first idealize KASUMI as follows.

® FEach FL function is ignored.

e FEach FI function is idealized by an independant
(pseudo) random permutation.

They call such an idealized KASUMI a “KASUMI type
permutation,” and proved that the four round and six round
idealized KASUMI type permutation are pseudorandom and

super-pseudorandom, respectively, for adaptive adversaries.
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Motivation The results of [2] are related to the following
question:

e How to provide a construction method of a (super)
pseudorandom permuation with large input size using sev-
eral independent pseudorandom permutations with small in-
put size.

More specifically, their results shows that there exist

(1) aconstruction method of a 4n-bit input size pseudo-
random permuation using “twelve” independent n-bit input
size pseudorandom permutations, and

(2) a construction method of a 4n-bit input size super
pseudorandom permuation using “eighteen” independent
n-bit input size pseudorandom permutations.

The results of [2] shows that the high level structure of
KASUMI block cipher can be used to get the above results.
Here, we can think a next natural question. That is, how
to reduce the number of using n-bit input size pseudorandom
permutations in order to obtain a 4n-bit input size (super)
pseudorandom permuation, while it preserves security of the

above results.

Our contribution In this paper, we show that there exist

(1) a construction method of a 4n-bit input size pseu-
dorandom permuation using “ten” n-bit input size pseudo-
random permutations, and

(2) a construction method of a 4n-bit input size super-
pseudorandom permuation using “sixteen” n-bit input size
pseudorandom permutations.

We will first define a modification of the high level struc-
ture of KASUMI block cipher and then prove our above re-
sults with the modified structure in the adaptive adversarial
model.

Our modification is similar to the KASUMI type permu-
tation except the use of just two round MISTY-type permu-
tation as the round function of it. Details can be shown in
Section 2.2. Here note that two round MISTY-type permu-
tation can be computed parallelly (the values of each round
functions can be computed simultaneously). So our modi-
fication can be computed more efficiently than the original
KASUMI type permutation. Furthermore our results have
slightly more good (or same) upper bound of success proba-
bility of arbitrary attacker in the sense of (super) pseudoran-
domness. A summary of our results is given by Table 1. The
model of attacker (and the meaning of ¢) will be described

momentarily.
2. Preliminaries

Our overall treatment follows the nicely laid out framework

of Iwata, Yagi, and Kurosawa [2].

#£ 1 Summary of the previous results and our contributions. (#
BP means the number of basic permutations and UP an

upper bound of success probability.)

Pseudorandom Super-pseudorandom
# BP UP # BP UP
15 =T 9q(q =
2 12 15 qlg - 1) 18 alg = 1)
2l 2n — 1
this paper 10 Tala - 1) 16 Sala = 1)
2n — 1 2n —1

2.1 Notation

For a bit string = € {0,1}*", we denote the first n bits
of z by zr., the next n bits of z by z.r, the third n
bits of £ by zg, and the last n bits of z by xy ;. That
is, ¢ = (#LL,TLR,TRL,TRR). For a set of l-bit strings
{z91z) € {0,1} }i<igq, we say {z(V}1<igq are distinct to
mean z(9) £ 20 for 1< Vi< V5 < q.

If S is a set, s & S denotes the process of picking an el-
ement from S uniformly at random. Denote by P, the set
of all permutations over {0,1}", which consists of (2")! per-
mutations in total. For functions f and g, g o f denotes the
function z — g(f(z)).

2.2 A Modification of KASUMI type permuta-

tion

In this section, we provide the definition of our modifica-
tion of KASUMI type permutations. We call it “the MKA-
SUMI type permutation”.

[Definition 1] (The basic MKASUMI type permutation) Let
z € {0,1}*". For any permutations p;,p, € P,, define the
basic MKASUMI type permutation 9p, p, € Pin as

Yp1.p2 (z) =Y

where yLL = ZTRL, YLR = TRR, YRL = TRL ® p1(TRR) O

p2(zrL) ®zrL, and yrr = TRL @ p1(TRR) D TLL.

[Definition 2] (The r round MKASUMI type permutation)
Let r 2 1 be an integer, and p1, p2, ..., p2r € P be permu-
tations. Define the r round MKASUMI type permutation

¢(p17p27 ~'~:p2r) € Pyn as

¢(P1»P2» ~--1p2r) = l/"P‘.’.v"—I»P:Zr ° ¢'P2y-—3<}72r~2 ©---0 ¢'P1VP2

See figures in Appendix for illustrations. In this paper, for
1£1<qgand 1 <5 < 2r, let I}é) denote the input to p;
when the input to ¥ is z(Y and the output is y(*). Similarly,
let O;i) denote the output of p; when the input to ¥ is z(9
and the output is y(*).

2.3 Pseudorandom and Super-pseudorandom Per-

mutations

Our adaptive adversary A is modeled as a Turing machine
that has black-box access to an oracle (or oracles). The com-
putational power of A is unlimited, but the total number of

oracle calls is limited to a the number g. After making at



most q queries to the oracle(s) adaptively, A outputs a bit.
In this paper, we assume that A never asks a query if its
answer is determined by a previous query-answer pair.

The pseudorandomness of a block cipher ¥ over {0,1}*"
captures its computational indistinguishability from Pin,
where the adversary is given access to the forward direction
of the permutation. In other words, it measures security of
a block cipher against adaptive chosen plaintext attack.
[Definition 3] (Pseudorandomness) Let ablock cipher ¥ be
a family of permutations over {0,1}*". Let A be an adver-

sary. Then A’s advantage is defined by
AdvyP(A) = [Pr(p E U A =1) - Pr(RE P, - AR = 1)|

AY indicates A with an oracle which, in response to a query
z, returns y « ¢(z). AT indicates A with an oracle which,
in response to a query z, returns y + R(z).

The super-pseudorandomness of a block cipher ¥ over
{0,1}*” captures its computational indistinguishability from
Py, where the adversary is given access to both directions
of the permutation. In other words, it measures security of
a block cipher against adaptive chosen plaintext and chosen
ciphertext attacks.

[Definition 4] (Super-pseudorandomness) Let a block ci-
pher ¥ be a family of permutations over {0,1}*". Let A
be an adversary. Then A’s advantage is defined by

AdvF'P(A) =
IPrip Ev: 4" = 1) = Pr(RE Py ARET =1

-1 . . S
A¥¥" indicates A with an oracle which, in response to a

query (+,z), returns y « %(z), and in response to a query

-1
ARR™ indicates A with an or-

(=, y), returns x < ¥~ '(y).
acle which, in response to a query (+, z), returns y « R(z),

and in response to a query (—,y), returns z < R~ (y).

3. Five round MKASUMI type permuta-
tion is pseudorandom.

[Theorem 1] For 1 £ 7 £ 10, let p; € P, be a random
permutation. Let ¥ = ¢(pi1, ..., p1o) be a five round Variant
KASUMI. And let R € P4, be a random permutation and
Y ={ | =1(p1,-.,pr0),pi € Pn for 1 <1< 10}.

Then for any adversary A that makes at most g queries in
total,

- 7q(g—1
AdvBP(A) < —2(n——1—)

Proof Let O be either R or . The adversary A has oracle
access to O. A can make a query z and the oracle returns
y = O(z). For the i-th query A makes to O, define the
query-answer pair (z(,y()) € {0,1}*" x {0,1}*", where A’s
query was () and the answer it got was y(‘), Define view v
of Aasv={zM, yW) . (9, y)).

Since A is computationally unbounded, we may without
loss of generality assume that A is deterministic. This im-
plies that for every 1 < ¢ £ g the i-th query () is fully deter-
mined by the first ¢ — 1 query-answer pairs, and the final out-
put of A (0 or 1) depends only on v. Therefore, there exists
a function Ca(-) such that Ca(z™,yV, . (=D 4=y =
) for 1 £1 < q andCa(v) = A’s final output.

We say that v = ((z(M), yM)), ..., (29, y(9)) is a possible view
if for every 1 <1< q, CA(z“),ym, ...,x(i_l).y(‘_l)) =z,
= {v|Ca(v) = Fur-
ther, we let vg,,q be a set of all possible view v =
(=, yM), ..., ({9, y(?)) which satisfies the following four
conditions: (1) Ca(v) = 1, (2) {yfrz)l,}lgigq are distinct,
3) {y(}&}lg.gq are distinct, and (4) {z(};)b @xg)ﬂ ® yg)L )
y(};)}l}létéq are distinct. '

Evaluation of pr We first evaluate pr = Pr(R E Py,
AR =1). We have pr = RlA%=1

(24n)!
number of R such that

Let vone 1 and v is possible}.

. For each v € vone, the

R(z) =y forall1<i<q 1)

is exactly (2'" — g)l. Therefore, we have pr =

#{R|R satisfying (1)} _ (2% —q)
Devone ) = #vone - Gl

Evaluation of p;, We evaluate py, = Pr(y Ev.av= 1),

where ¢ & ¥ means that pi Fil P, for 1 £ <10 and then let
,--,P10)|JAY =1
((2m)n1e

We have the following lemmas. A proof of Lemma 1 is

¥ « Y(p1,...,p10). Then we have py =

given in Section 4..

[Lemma 1] (Main Lemma) For any fixed possible view v =
(=M, yM), .., (?,y?)) such that {ygl}lggéq are dis-
tinct, {y{h}icicq are distinct, and {z%), @ s\ @ v @
yﬁ}i}ls,gq are distinct, the number of (py, ..., p1o) which sat-

isfies

YD) =y for 1<ViLyq (2)

is at least (1 — 1. 2=y fom1}6 . f(on _ g)1}4,

2 27 —1

q(g—1 247)1

2n_1  (2Tn—q)r"

[Lemma 2] #vgooa 2 #vone — 3 -

Proof The proof is almost similar to the proof of [2]. So we
omit it.
Then from Lemma 1 and 2, we have

by 2 Z #{(p1, ..., p10)|(p1, ... p10) satisfying (2)}

€ugand {(2n)!}lo
11 g(g-1), {2" -}
) eZ =7 =) Ty
3 -1 2471 !
2 (hoone = 5 - o T
LY alg — 1)) Her -9
2 2n-1 {(2n)}
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= (p ﬁ; qQ(g:i)),(l 121 Q(lI:l))
e -9t @)
{3 @ -q)
Now it is easy to see that i132_:_)'1)}_2_ —(;24—");—), 2 1 (this
can be shown easily by an induction on gq). Then Py 2
(pr—§ 4= (- 8 4=y 2 pr - = Apply-

ing the same argument to 1 — py and 1 — pgr yields that
l—py 21— R——Z-(,;q—ll,andwehavelp,/, pnli—%&q—ll.

From Theorem 1, it is very easy to show ¥ = ¥(p1, ..., p10)
is pseudorandom even if each p; is a pseudorandom permu-

tation by using a standard hybrid argument [4].
4. Proof of Lemma 1

First, we need following two lemmas.
[Lemma 3] Let v = ((zV, V), ..., («?,

possible view. Then

y'9)) be a fixed

#{(p1,p2,p3,p4)| F1,jsuch that 1 £ i< 3 < g and 19 = 19

< glg=1) 5(2"”‘
=75 2n1
Proof First we fix ¢ and j such that 1 £ 1 < 57 £ g, and

consider the condition

I =1 ®)
in the following four cases:
Case 1: x :{: x First, consider the condition
Pi(zlk) @) z‘u =p@Ei) ol ol (1)
The number of p; which satisfies (4) is at most éT_L since

z! )R + zgk. Thus

#{ (p1,p2,p3,ps)| (p1,p2,ps, pa) satisfies both (3) and (4)}

ey
g 2L 5)

Next, consider any p; which does not satisfy (4), that is,

pi(ahe) @2, @3, +piaPR) @) @P).  (-9)

For this p;, we consider the condition

pa(2l)) ® pr(aly) & 2, @ w“

=pa( Ig}.) ®p (IRR) ® xRL @ :c

(6)

which is equivalent to 1}’) = I, Since (—4) holds. the

number of p; which satisfies (6) is at most %2—'1_-)% and thus
we have

#{ (p1.p2,p3.pa)| (pr,p2,p3, pa) satisfies (3), (—4), and

271}

o) < L2E )

Next, consider any p; which satisfies (—4), and any p»

which dose not satisfy (6). That is,

P?(IRL) EBI“(”RR) GRS z( )
b o nE ol ot (o)
which is equivalent to I{" % I{).
ps3, the number of ps which satisfies

For these pi1, p2, and any

p() @0 @ 1)) & X5}
=p) ool &1 o xg)
which is equivalent to (3), is at most éﬁ—"_)% Thus,

#{ (p1,P2,ps,ps)| (p1,p2,ps,pa) satisfies (3),(—4), and

271 ! 4

(~oyy < L ®)
Thus, from (5),(7), and (8), we have
#{ (p1,p2,p3,p4)| (p1,p2,p3,pa) satisfies (3)}

3-{2"))"
< .
<) ©)
Case 2: xRL + z(]) and zg)ﬂ = xﬁﬁi. For any p,

the number of p, which satisfies (6) is at most %i—n_)% since

zRL * zRL, and thus we have

#{ (p1,p2,p3,p4)| (p1.p2,p3,pa) satisfies (3) and (6)}
o femy

5T (10)

Next, for any pi, any p. which satisfies (=6), and any ps,
1—)— There-

the number of ps which satisfies (3) is at most 37—

fore we have

#{ (P1,p2,P3,p1)| (P1,p2, p3, pa) satisfies (3) and (—6)}

{eemny*
< Tyt (11)

Thus, from (10), and (11), we have

#{ (p1.p2,p3,pa)| (p1.p2,ps, ps) satisfies (3)}

2-{(2")Yy*
< .
$ 57 (12)
* zLL IRL = Ig)L For

any p; and any pz, (—6) is satisfied. Therefore, for any p;,

(1) (4)

,and Tpp = T3p.

Case 3: :cLL

any pz, and any ps, the number of ps which satisfies (3) is at
most 1—_)— Thus we have

27

#{ (p1,p2.p3.pa)| (p1.p2.ps, pa) satisfies (3)}

271)!}4

< ey

Ty (13)
Case 4: =) + x(L"}t. x(L)L = Y, xf,é)L =z, and

ot = a8

ps that satisfies (3). Therefore we have

In this case, there exists no pi,pz,ps, and

#{(p1, 2,3, pa)| (P1,p2, p3, pa) satisfies (3)} = 0. (14)



Completing the proof. By taking the maximum of

(9),(12),(13), and (14).

#{(p1,p2.p3.pa)| (P1,p2, 3, pa) satisfies (3)}

< _.i2i"__)r)__
of 1 and 3, the lemma follows.
(Lemma 4] Let v = ((zV,yM), ..

possible view. Then

for any case. Finally, since we have (g) choice

(29, y(D)) be a fixed

#{(p1,p2,p3,p4)| Fi,jsuch that 1 <1< j< g and Iéi) = [5(”}

< ala=1) 2-{(2™)1}*
= "2 2n-1
Proof

the proof is almost similar to the proof of Lemma 3. So we

If we prove the lemma in the following four cases,

omit the details.

Case 1: x(') + :::(J)
Case 2: z :{:x and xR —z%) .
Case 3: I(L}, 4: xu_, x%)L = zg}‘ and ZR) = zg}a.
Case 4: i} # zip zj) = zf), o, = s§), and
20— r(J)
RR = TRR

[Lemma 5] Let v = ((z(l) ¥y, .., (29, y(D)) be a fixed

possible view such that {z @ z( ) rR® y( ) ® yRR}ISqu are

distinct. Then

#{(p1,p2,ps,ps)| T4, jsuch that 1 <1 < j < q and O

-1 2m)1}?
< ﬂgi’l 27 —1
Proof First, we fix + and j such that 1 £ i1 < 5 < ¢q,

- O(J)

= O,(,’) is equivalent to the following condition:

and consider the condition O Now observe that

o)

Po(I{) ® 23], ® i), @ 2k © vk

= pa(1} J)) @IRL ® y(J) G)x(J) GBy(JJ)Lz
Then the number of p; which satisfies the above condition

is at most since our assumption. Therefore,

(™)
2" -1

#{(p1.p2,ps. pa)| (p1.p2,ps. ps) satisfies O) = O{)}

< i%_'lm and since we have (‘27) choice of 7 and j the lemma

follows.

Proof of Lemma 1 (See figures in Appendix.) Initially,

PO NG YO
Number of (pi, m‘p‘,).

. y(") are fixed.
From Lemma 3, 4, and 5, the

number of (p;... ) such that:

o IV 4:1;], Y419 and 0 + O for 1 £ Vi <
Vi<q,
is at least {2"1}% — q(qz—l) . L;"Y_}: _ 2q(%—1) . {22”"!_}1" _ 3q(‘12—1) .
(2n.!4

57— Fix any (pi1,....ps) which satisfy these three condi-

tions.

=0}

Number of ps. For any fixed ¢ and j such that 1 £ : <

7 £ g, the number of ps such that

ps(IN e ) &1l =ps(19) @ 1Y) @ 1Y),

is at most £ne since

which is equivalent to 1§"’ = 17(j), T

19 410
Similarly, the number of ps such that

ps(Ie o1 @yl oy, = ps(I7 )01 @1 dyfhevy),

which is equivalent to Os(,i) = Oe(,j), is at most -2(3—"_)%, since
Ié') + IEEJ)'

Then the number of ps which satisfies:

o 419 and O + 0 for 1S Vi< Vi< g,
is at least (2")! — ﬂq;;,%(—f—“)—!—}—. Fix any ps which satisfy the
above two conditions.
Number of ps. For any fixed 7 and j such that 1 <1 <

7 £ q, the number of ps such that

re(I) @ 1)) @ 0 © O @ o), @ iy

=po(I") @ 17 © 0 & 0F) ® 23} @ vk,

which is equivalent to O§) = O is at most g—n_)li, since
041

Similarly, the number of ps satisfies

re(l) e I @ 1) © 00 = po(1) @ I & 1§ @ 0,

I(’), is at most 27X since

which is equivalent to Iéi) = L

)

Similarly, the number of ps satisfies

po (1)1 1P 0yl dyl = po(I)BIV BIV @y) @y ),

which is equivalent to ng)) = 0%), is at most éi—n_L; , since
ISR

Then the number of ps satisfies:

o O 0V [ £ 1 and OF) + 0Y) for 1 < Vi <
Vi<q,

is at least (2")! — 22(e=0{D}

227 1)
above three conditions.

,Pm)‘
such a way that {I;l]}léiSq are distinct, {Og')}lgigq are

Fix any ps which satisfy the

Number of (pr,... Now p1,...,pe are fixed in

distinct, {Iéi)}lg,gq are distinct, {Oéi)}lélgq are distinct,
{Oé‘)}lg,gq are distinct, and {Of;’}lé,'gq are distinct. We
know from our condition that {Ié')}léggq are distinct and
{I,(;)}lgzgq are distinct. Therefore. we have exactly (2" —gq)!
choice of p; for each 1 = 7,8.9,10.

Completing the proof To summarize, we have:

® atleast (1-3- %%l) -{2"1}* choice of py, ..., ps.

® atleast (1 — %El) - {2"} choice of ps.

e atleast (1— 2. 4221y (571} choice of pg.

e exactly {(2" — q)!}* choice of p7. ..., pio.


研究会Temp
テキストボックス


Then the number of (p1, ..., pro) which satisfy (2) is at least

alg - 1)).(1,ﬁ’1;1_)).(1_§.‘17(L1_)).{2"1}5

(1-3.
27— 1 2" — 1 2 2n—1

(@ =gy 21— 2 LDy oy g - gt

5. Eight Round MKASUMI type permu-
tation is super-pseudorandom.

[Theorem 2] For 1 <1< 16, let p; € P, be a random per-
mutation. Let ¢ = ¥(p1, ..
KASUMI. And let R € Py, be a random permutation and
U={¢]|%=1(p1,...p16),pi € Pofor 1< < 16}.

Then for any adversary A that makes at most g queries in

., p16) be the eight round Variant

total,

Advrr(a) < 2L

Proof Let O be either R or ¢. The adversary A has or-
There are two types of queries

,y). For the i-th query A

acle access to O and O~
A can make: either (+,z) or (—
makes to O or O}, define the query-answer pair (z(‘), y(i)) €
{0,1}*" x {0, 1}*", where either A’s query was (+, ) and the
answer it got was y() = (’)(z({)) or A’s query was (—,y) and
the answer it got was z() = 0~ Y(y')). Define view v of A
x| 1)) Lz (a ,y(q))).

Since A is computationally unbounded, we may without

as v =

loss of generality assume that A is deterministic. This im-
plies that for every 1 < i < g the i-th query 2 is fully deter-
mined by the first i — 1 query-answer pairs, and the final out-
put of A (0 or 1) depends only on v. Therefore, there exists
a function Ca(-) such that Ca(z®,yM, .. z(=) yli=) =
either (+,z)) or (—,y)for1 £ i £ gandCa(v)
A’s final output.

(9, y(9)) is a possible
27 ytY) €

We say that v = {(z,yM), ..,
view if for every 1 £ 1< g, C’A(x“),y(l)

{(+, ), (=, y")}. Let von. = {v|Ca(v) = 1 and v is possible}.

Evaluation of pr  We first evaluate pr = Pr(R & p,,.:
— 4
ARRT! - 1). We have pr = #Von. - Szt ! as was done in

2%n)!
the proof of Theorem 1.

Evaluation of py  We evaluate py = Pr(3 E v
APYT = 1), where ¢ & ¥ means that pi & P, for

1 £ 1 £ 16 and then Iet ¥ « Y(p1, ...

Vo Aw‘ﬁ _1
Py = #{(py 1(716))| 2 }

,p16). Then we have

We have the following main lemma. A proof of this lemma
is given in Section 6..

[Lemma 6] (Main Lemma) For any fixed possible view v =
(=, ¢y, ..., (= (@) y(9)), the number of (p1, ..., p1s) which

satisfies

w(.'c('))=y({) for1<Vi<gq (15)

is at least (1 — 224=1)). fom1}12 . f(9n

2" —1

- g}
Then from Lemma 6 , we have

Z #{(p1, -

p10)|(p1. .4..p15) satisfying (15)}

Py = n)1116
S {2}
9%(g-1), {2"-9!}
> 1- .
2 L 0T Ty
v€Vga0d
9g(g — 1) {@" -9}
= #Vone (1 —
Hme (=) T
9(¢—1), {@"—q}* (")
= (1= . .
el ) Ty e
. —a)1)} 4 4anyy _
Since 18— bl . G0 > 1, py 2 pr- (1 - 2 2
PR — 92,,_11 . Applying the same argument to 1 — py and
1 — pr yields that 1 —py 2 1 — pr — 9—;(,%1 and we have
Iy — prl| < 2=

6. Proof of Lemma 6

Initially, z(1, @y y(Q) are fixed.

Number of (pi1, ...,ps). From Lemma 3 and 4, the number
of (p1, ..., pa) such that I % Iéj) and I & I for 1 £ Vi <

Vj £ q, is at least {2"1}* — 2q(¢;—l) . {,_,2:!_}: - 3"(2—1) . (22:_!_}:.

Fix any (p1, ..., pa) which satisfy the above two conditions.

Number of (pi3, ...,p16). From Lemma 3 and 4, the num-

ber of (pi3, ..., p16) such that If? * Il({) and Il(;) + 11('21) for

: : : np4 _ 2q(g=1) {2"1}'  3q(q—1
1 %VJ < Vj £q,is at least {2"!1}* — =L {2,,_}1 — q(g ).
22n;1 . We have used the symmetry of MKASUMI type per-

mutation. Fix any (pi3, ..., p16) which satisfy the above two
conditions.
Number of ps. For any fixed 1 and j such that 1 £ 1 <

7 £ g, the number of ps such that
ps(I) @ 10 o 1) =ps(I) @ 1P & I,

which is equivalent to I() = 1(]) is at most %"_)T* since
J 8 + Ié").

Then the number of ps which satisfies I} # I{?) for
1 £ Vi < V3 < g, is at least (2")! — ﬂ%’:—ll~¥t—n_)—;. Fix

any ps which satisfy the above condition.
Number of pi;. For any fixed ¢ and j such that

1 £1 < 7 £ g, the number of p;; such that
mUIN eI a1 =pn) o1 & 1.

which is equivalent to I} = I, is at most é,,—)T, since
i)+ 1)

Then the number of p;; which satisfies Iéi) F Iéj) for
1 € Vi< Vj< g, is at least (27)! — 2=l . 21 py
any pi1; which satisfy the above condition.

Number of ps. For any fixed ¢ and j such that 1 <1 <

7 £ g, the number of ps such that

pe(I{) @ 1) & O & O @ o'y & 1"



® Oé’) @ O(J @xm ® I Q)
[ ,,)!

=pe(I) o 1))

which is equivalent to 07(') = O7J , Is at most 55—, since
41,

Similarly, the number of pe satisfies

pe(l) @ 1 @ I &0 =ps (1) @ I ® I & O,
which is equivalent to Ié‘.) = Ié"). is at most 5(?.—1)% since

14 1

Similarly, the number of pe satisfies

pS(Is(z))$I§i)®1§i)@[1(;)®ll( _Pe(I(]))EB[(J)GB[ J)@I(J)®Il2 i
which is equivalent to 010 = Of{) , i1s at most %“—_L; , since
)

Then the number of pe satisfies O + O, I{) & 1),
and Oﬁ,) * O%) for 1 £ Vi < Vj £ gq, is at least

(2")! _ 3q(g-1) (2" !.
2 2n—1

three conditions.

Fix any ps which satisfy the above

Number of pi,. For any fixed 1 and j such that

1 <1< j £ g, the number of p;2 such that

palif]) & 1) & 18] 6 0 © 0 @ ot

- PlZ(Il(;)) ® 1_51) ® 1(1) ® O(J) ® O(J) ® y(LJ}17

O(’), is at most since

which is equivalent to Oéi) H,
19 419
Similarly, the number of p;2 satisfies

Pl e 1§ 0 1 0 0% = pa(1) @ 1 6 1% @ 0,

19 s at most -1 since

which is equivalent to I{) = 1) L

1() + 1(]).

Similarly, the number of p;, satisfies

p(IeP eIV eIPell) = pu(1)elP eI o1 &18),

which is equivalent to Oéi) = Oéj -(——n_)T , since
[1(2) + ](J)_

Then the number of py; satisfies 0" & 0§, I{) & 1)
and Of) + O for 1 £ Vi < Vj £ gq, is at least
(2r)! — 2alg=n) N

three conditions.

, 1s at most

Fix any pi12 which satisfy the above

Number of (p7,...,p10). Now p1....,pe,p11, ..., p16 are fixed
in such a way that {I;‘)}lg,gq are distinct, {O;")}lé,‘éq are
distinct. {I{"}1igq are distinct, {O{"}1<igq are distinct,
{Ié’)}lé,gq are distinct. {Ogi)}lgggq are distinct, {11(:))}1§i§q
are distinct, and {0{'0)}151'9; are distinct.

Therefore, we have exactly (2" — ¢)! choice of p; for each
1=7,8.910.

Completing the proof To summarize, we have:

* at least (1 — % %%l)z - {2™}®  choice of
P1..-..P4.D13,.... P16

e atleast (1- 5 %’,—'7111)2 -{2™}? choice of (ps,p11).

e atleast (1-%- %%:—111)2 -{2™1}? choice of (ps, pi2)-
* exactly {(2" — ¢)!}* choice of pz, ..., p1o
Then the number of (pi,...,p1s) which satisfy (15) is at
least
5 -1 1 q(g—-1 3 q(g—1
(1__4‘1((1—))2.(1__.u)2.(1,§._2("f1))2

22 (@ - 2 (- 2Dy orpz g2 gy,

7. Discussion and Concluding Remarks

In this paper, we showed that 5 round MKASUMI type
permutation is pseudorandom and 8 round MKASUMI type
permutation is super~pseudorandom. Until now, we found
a distinguisher for 3 round MKASUMI type permutation in
the notion of pseudorandomness and found a distinguisher
for 4 round MKASUMI type permutation in the notion of
super pseudorandomness. It is easy to make a distinguisher
for 3 round MKASUMI type permutation in the notion of
pseudorandomness. So we omit it. We can distinguish
4 round MKASUMI type permutation from random per-
mutation (in the notion of super pseudorandomness) using
just two plaintext queries and one ciphertext query as fol-
lows: Choose two distinct plaintexts z(!) = (a,b,¢,d) and
z?) = (a’,b,c,d) and denote the corresponding two cipher-
texts by y!) = (e, f,g,h) and y® = (e’ f',g',h’), respec-
tively. Then it is easy to see that

1) oVeI1VeolP eIP =agd,

2 o eI) ®d=p(f)®edh,

@) o er) @d=pi(f)ec o

By (1), (2), and (3), pr(f)®p7(f') = a®a' Gedec’' ®hdh'.
Hence we can obtain the value of p7(f) @ p7(f') since we
know a,a’,e,e’,h, and h'.
(e, f' 9@ p1(f) @ pr(f'), h ® pr(f) ® pr(f')) and denote the
corresponding plaintext by ) = (a”,b",¢”,d"). Then it is
easy to check that ¢ @ ¢”’ = d @ d” holds. Therefore we can

Next, choose ciphertext y(a) =

make a distinguisher with this property. But the following
problems still remain to be solved.

e Can 4 round MKASUMI type permutation be pseu-
dorandom?

e Can 5, 6, and 7 round MKASUMI type permutation
be super-pseudorandom?
In addition, it is still open whether 5 round original KASUMI
type permutation can be super-pseudorandom.
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