
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

ルーティングを用いた素因数分解回路について

伊豆 哲也† 國廣 昇†† 太田 和夫†† 下山 武司†

† 富士通株式会社, 〒 211-8588 川崎市中原区上小田中 4-1-1
†† 電気通信大学 情報通信工学科, 〒 182-8585 調布市調布ヶ丘 1-5-1

E-mail: †{izu,shimo}@jp.fujitsu.com, ††{kunihiro,ota}@ice.uec.ac.jp

あらまし 近年, RSAベースの PKIに対する新しい脅威として, 素因数分解専用ハードウェアが注目を集めている.

いくつかの装置で使用されている時計回り置換というルーティングアルゴリズムは停止性に対する証明を欠いて

おり, 例外処理のための追加装置を必要としている. 本稿は時計回り置換におけるパケットの交換ルールを解析し,

“farthest-first” という性質を満たすいくつかの代替交換法を提案する. 理論的な証明はないものの, 実験的にはこれま

での提案アルゴリズムよりも優れた振る舞いを見せている. また関係式探索ステップに対し, 部分トーラスを用いた実

装法も提案する.

キーワード 素因数分解, ASIC, RSA, 時計回り置換, YASD

Analysis on the Clockwise Transposition Routing

for Dedicated Factoring Devices

Tetsuya IZU†, Noboru KUNIHIRO††, Kazuo OHTA††, and Takeshi SHIMOYAMA†

† FUJITSU Limited, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan
†† Dept. of Information and Communication Eng., The University of Electro-Communications,

1-5-1, Choufugaoka, Chofu, 182-8585, Japan
E-mail: †{izu,shimo}@jp.fujitsu.com, ††{kunihiro,ota}@ice.uec.ac.jp

Abstract Recently, dedicated factoring devices have attracted much attention since it might be a threat for a

current RSA-based PKI. In some devices, the clockwise transposition is used as a key technique, however, because

of the lack of theoretic proof of the termination, some additional circuits are required. In this paper, we analyze

the packet exchanging rule for the clockwise transposition and propose some possible alternatives with keeping the

“farthest-first” property. Although we have no theoretic proof of the termination, experimental results show actual

availability in the clockwise transposition. We also propose an improvement on the routing algorithm for the relation

finding step, which establishes two times speed-up.

Key words Integer factoring, ASIC, RSA, clockwise transposition, YASD

1. Introduction

The integer factoring problem is one of the most funda-

mental topics in the area of cryptology since the hardness of

this problem assures the security of some public-key cryp-

tosystems such as the famous RSA. The number field sieve

method (NFS) [LLPM90] is the best algorithm for integer

（*0）：A part of this work is financially supported by a consignment

research from the National Institute of Information and Communica-

tions Technology (NICT), Japan.

factoring（*1）. NFS has 4 major steps, the polynomial selec-

tion step, the Relation Finding (RF) step or the sieving step,

the Linear Algebra (LA) step, and the final step. Among

them, RF and LA steps are theoretically and experimentally

dominant steps. Because of these steps, factoring 1024-bit

integers is considered infeasible in next 10 years (by the same

approach).

In order to overcome the difficulty, ASIC-based dedi-

（*1）：Very recently, a new world record, a 663-bit integer was factored

by NFS [RSA200].

— 1 —

研究会temp
テキストボックス
社団法人　情報処理学会　研究報告IPSJ SIG Technical Report

研究会temp
テキストボックス
2005－ＣＳＥＣ－30（49）　　　　2005／7／22

五味
テキストボックス

五味
テキストボックス

五味
テキストボックス
－349－

cated factoring devices have been studied actively. In

2001, Bernstein employed a sorting algorithm for LA step

with standard ASIC architectures [Ber01]. Then Lenstra

et al. enhanced the device by using a routing algorithm

[LSTT02]. Furthermore, the design is substantially im-

proved by Geiselmann-Steinwandt [GS03b] On the other

hand, Geiselmann-Steinwandt applied these algorithms to

RF step, and proposed two designs DSH [GS03a] and YASD

[GS04]. Shamir-Tromer improved an optical sieving device

TWINKLE [Sha99] into a novel ASIC-based device TWIRL

[ST03]. Both YASD and TWIRL handle RF step corre-

sponding to 768-bit integers, properties are quite differ-

ent: the speed of TWIRL is about 6.3 times faster than

YASD, but required circuit area of YASD is smaller than

that of TWIRL. Recently, Franke et al. proposed a chal-

lenging device SHARK for RF step based on the lattice siev-

ing [FKP+05]. By these contributions, it is expected that

the linear algebra step is easily processed compared to the

relation finding step in factoring large integers.

A purpose of this paper is to analyze the clockwise trans-

position routing used in [LSTT02], [GS04], since there is no

theoretic proof of the termination in finite steps. In fact,

Geiselmann et al. showed a concrete “livelock” example for

which the algorithm falls into infinite loop. We show possi-

ble alternatives for packet exchanging rules in the routing.

Althogh we have no theoretic proof of the termination, ex-

perimental results show the availability of these alternatives.

We also propose an improvements of the clockwise transpo-

sition for RF step, a use of sub-tori in the routing, which

possibly establishes two times speed-up.

This paper is organized as follows: in section 2, we briefly

introduce the clockwise transposition routing, and analyze

the packet exchanging rules in section 3. Section 4 shows

our experimental results. We also propose an improvement

of YASD in section 5.

2. Preliminaries

This section briefly introduces the clockwise transposition

routing [LSTT02].

2. 1 Clockwise Transposition Routing

In some factoring devices for both RF and LA steps, the

clockwise transposition routing algorithm on a mesh is used

as a key technique. A mesh has a set of m × m processors

(called nodes) in a two-dimensional network. Each node is

connected to its upper, right, lower, and left nodes (if exist)

and is able to hold a packet, a paired data of value and target

node (to be routed), or Nil. When a packet is reached its

target node, the data is took into the node and the packet

is changed to Nil, and exchange the packet to its one of

the neighbors. For a given mesh filled with packets, a pur-

pose of the routing is to deliver all packets to their target

nodes. Since we are intereted in the behavior of packets,

we omit describing packet values. Moreover, for simplicity,

we identify a node in the i-th row and the j-th column as

(i, j) (0 <= i, j < m).

The clockwise transposition routing [LSTT02] is an algo-

rithm for the routing problem. The algorithm is proceeded

by a repetition of the following 4 steps until all packets are

delivered to their target nodes (also see Table 1), where t

denotes the time:

t ” 0 (mod 4) For every column j and odd row i, a node

(i, j) compares and exchanges packets to its upper node

(i − 1, j) (if exist).

t ” 1 (mod 4) For every row i and odd column j, a node

(i, j) compares and exchanges packets to its right node

(i, j + 1) (if exist).

t ” 2 (mod 4) For every column j and odd row i, a node

(i, j) compares and exchanges packets to its lower node

(i + 1, j) (if exist).

t ” 3 (mod 4) For every row i and odd column j, a node

(i, j) compares and exchanges packets to its left node (i, j−1)

(if exist).

Compared directions changes in “clockwise” manner for

nodes in odd rows and odd columns. Here, the packet ex-

changing is ruled by “farthest-first exchange” [LSTT02]. De-

tails of the rules are discussed in the following sections.

Unfortunately, there is no theoretic proof whether the

clockwise transposition terminates in finite steps or not.

However, it is claimed that the algorithm terminates in 2m

steps with high probability [LSTT02]. Although Geiselmann

et al. showed a concrete “livelock” example for which the

algorithm falls into an infinite loop, and a “pathology” for

which the algorithm does not terminate in 2m steps, experi-

mental results show that such exceptional cases are very rare

in factoring so that we can expect the termination of the al-

gorithm with high probability.

2. 2 Torus

In [GS04], Geiselmann-Steinwandt added a torus structure

into the mesh: the leftmost nodes are connected to the right-

most nodes and the uppermost nodes are connected to the

lowermost nodes. In this torus structure, since the maximum

distance from a node to its target becomes half, the clockwise

transposition for RF step only requires reduced steps. This

structure is also applicable to LA step [GKST05]. In the fol-

lowings, a mesh with this torus structure is described as a

torus. Strongly note that the wiring problem for realizing the

torus structure is not a serious problem [GS04], [GKST05].

3. Packet Exchange

This section analyzes packet exchanging rules for the clock-

— 2 —

五味
テキストボックス
－350－

五味
テキストボックス

Table 1 Clockwise transposition routingr r r r r r r r
? ? ? ? ? ? ? ?6 6 6 6 6 6 6 6r r r r r r r rr r r r r r r r
? ? ? ? ? ? ? ?6 6 6 6 6 6 6 6r r r r r r r rr r r r r r r r
? ? ? ? ? ? ? ?6 6 6 6 6 6 6 6r r r r r r r rr r r r r r r r
? ? ? ? ? ? ? ?6 6 6 6 6 6 6 6r r r r r r r r ⇒

r r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r r-

-

-

-

-

-

-

-

¾

¾

¾

¾

¾

¾

¾

¾

-

-

-

-

-

-

-

-

¾

¾

¾

¾

¾

¾

¾

¾

-

-

-

-

-

-

-

-

¾

¾

¾

¾

¾

¾

¾

¾

⇑ ⇓r r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r r-

-

-

-

-

-

-

-

¾

¾

¾

¾

¾

¾

¾

¾

-

-

-

-

-

-

-

-

¾

¾

¾

¾

¾

¾

¾

¾

-

-

-

-

-

-

-

-

¾

¾

¾

¾

¾

¾

¾

¾

-

-

-

-

-

-

-

-

¾

¾

¾

¾

¾

¾

¾

¾

⇐

r r r r r r r rr r r r r r r r
? ? ? ? ? ? ? ?6 6 6 6 6 6 6 6r r r r r r r rr r r r r r r r
? ? ? ? ? ? ? ?6 6 6 6 6 6 6 6r r r r r r r rr r r r r r r r
? ? ? ? ? ? ? ?6 6 6 6 6 6 6 6r r r r r r r rr r r r r r r r

wise trasnposition routing. The rule is very naive in terms

of that the termination of the algorithm depends on many

factors including the exchanging rule and initial packets. In

addition, the beginning step also has an effect on the termi-

nation.

We denote a target node of the node (i, j) as p(i, j) in the

followings.

3. 1 Farthest-first Rule

The packet exchanging rule for the clockwise transpotion

routing is described as follows [GKST05]: suppose we are

comparing two nodes (i, j) and (i, j + 1) horizontally. We

exchange packets when

• p(i, j) = Nil and j + 1 > j1

• p(i, j + 1) = Nil and j0 > j

• p(i, j), p(i, j + 1) |= Nil and j0 >= j1

where p(i, j) = (i0, j0), p(i, j + 1) = (i1, j1) if they are not

Nil. The 3rd rule is described as the “farthest-first along the

direction” rule [GKST05]. For virtical cases, the similar rule

is easily established. Note that in the original rule [LSTT02],

the 3rd condition was given as “j0 > j1”. However, this con-

dition does not work well for the livelock and the pathology

examples described in the next section.

3. 2 Livelock and Pathology Examples

Geiselmann et al. showed a livelock for which the routing

algorithm fails into an finite loop, and a pathology for which

the routing algorithm requires more than 2m steps on an

m × m mesh [GKST05]. The liverock and the pathology for

m = 4 are in Table 2. In fact, the routing actually falls into

a 4m-step loop for the livelock.

As we have mentioned, the clockwise transposition is naive:

for the livelock example, the algorithm terminates if we

change the first step from ‘upper’ procedure to other pro-

cedures.

Treatments for such livelock cases differs in RF step and

LA step. In RF step, packets in an infinite loop can be

omitted since the step does not require all packets [GS04].

However, on the other hand, in LA step, any omission is

not permitted. Thus Geiselmann et al. proposed additional

circuits to treat such cases [GKST05].

3. 3 Exchanging Rule in Torus

In order to apply the clockwise transposition in the torus,

the exchanging rule should be modified. Geiselman et al.

proposed the following algorithm [GKST05]: before the rout-

ing, search the shortest paths of all packets to their target

nodes. If the path crosses the borders (i.e. wires between

the leftmost and the rightmost nodes, and the uppermost

and the lowermost nodes) add (subtract) m to (from) cor-

responding addresses of target nodes. Then apply the same

exchanging rule as before.

However, this modification does not solve the termina-

tion problem either theoretically nor experimentaly. Thus

— 3 —

五味
テキストボックス
－351－

五味
テキストボックス

Table 2 The livelock and the pathology example [GKST05]

Livelock (m = 4)

0 1 2 3

0 (3,0) (2,0) (1,0) (0,0)

1 (3,1) (2,1) (1,1) (0,1)

2 (3,2) (2,2) (1,2) (0,2)

3 (3,3) (2,3) (1,3) (0,3)

Pathology (m = 4)

0 1 2 3

0 (0,0) (1,0) (2,0) (3,0)

1 (0,1) (1,1) (2,1) (3,1)

2 (0,2) (1,2) (2,2) (3,2)

3 (0,3) (1,3) (2,3) (3,3)

we would like to explore other possible rules with keeping

the “farthest-first” property.

3. 4 Rephrasing Exchanging Rule

In order to use the clockwise transposition routing in the

factoring devices, exchanging rules without any livelocks

are required. Thus we start from rephrasing the previous

“farthest-first rule” by a 1-dimensional `0 distance function.

Suppose we are comparing two nodes (i, j) and (i, j + 1)

with their target nodes being non-Nil, namely p(i, j) =

(i0, j0), p(i, j + 1) = (i1, j1). Intuitively, the farthest-first

rule along rows should be described as

（ 1） |j1 − (j + 1)| > |j0 − j| and |j1 − (j + 1)| >= |j1 − j|,
or

（ 2） |j0 − j| > |j1 − (j + 1)| and |j0 − j| >= |j0 − (j + 1)|.
However, and interestingly, these conditions are not equiv-

alent to the 3rd condition j0 >= j1. In fact, we have the

following proposition, which is a beginning of our discussion.

All proofs of the following propositions are omitted, since

most of them are obtained by elementary arithmetics.

Suppose a node (i, j) has a packet with its target node

(i0, j0) and a node (i, j + 1) has a packet with its target

node (i1, j1). Then the following “farthest-first along the

compared direction” rule

（ 1） |j1 − (j + 1)| > |j0 − j| and |j1 − (j + 1)| >= |j1 − j|,
or

（ 2） |j0 − j| > |j1 − (j + 1)| and |j0 − j| >= |j0 − (j + 1)|,
is equivalent to j0 >= j1 and j0 + j1 |= 2j + 1. Especially, the

rule is not equivalent to the condition j0 >= j1.

On the other hand, the following very similar conditions

are not equivalent to the 3rd condition j0 >= j1 either.

In the same assumption to Proposition 1, conditions

（ 1） |j1 − (j + 1)| >= |j0 − j| and |j1 − (j + 1)| >= |j1 − j|,
or

（ 2） |j0 − j| >= |j1 − (j + 1)| and |j0 − j| >= |j0 − (j + 1)|,
are equivalent to j0 + 1 >= j1. Especially, the rule is not

equivalent to the condition j0 >= j1.

In proposition 1, 2, distances between nodes are measured

by the `0-distance, namely absolute values of the difference

of coordinate values. By changing the distance function, we

have other possible alternatives for the “farthest-first” rule

as follows:

(a) 1. d((i, j+1), p(i, j+1)) > d((i, j), p(i, j)) and

d((i, j + 1), p(i, j + 1)) >= d((i, j), p(i, j + 1)), or

2. d((i, j), p(i, j)) > d((i, j + 1), p(i, j + 1)) and

d((i, j), p(i, j)) >= d((i, j + 1), p(i, j)),

(a’) 1. d((i, j+1), p(i, j+1)) >= d((i, j), p(i, j)) and

d((i, j + 1), p(i, j + 1)) >= d((i, j), p(i, j + 1)), or

2. d((i, j), p(i, j)) >= d((i, j + 1), p(i, j + 1)) and

d((i, j), p(i, j)) >= d((i, j + 1), p(i, j)).

By a definition d((i, j),Nil) = 0, the above rules include

Nil cases. Thus we can describe the exchanging rule math-

matically. Moreover, by applying other distance functions

d(·, ·), other exchanging rules can be obtained. In the fol-

lowings, we use 4 distance functions on an m × m mesh or

torus:

• 1-dimensional distance in a mesh: dm
1 ((i, j), (i′, j′)) =

|i − i′| or |j − j′|
• 1-dimensional distance in a mesh: dt

1((i, j), (i
′, j′)) =

min(|i − i′|, m − |i − i′|) or min(|j − j′|, m − |j − j′|)
• 2-dimensional distance in a mesh: dm

2 ((i, j), (i′, j′)) =

|i − i′| + |j − j′|
• 2-dimensional distance in a mesh: dt

2((i, j), (i
′, j′)) =

min(|i − i′|, m − |i − i′|) + min(|j − j′|, m − |j − j′|)
Note that 0 <= dm

1 (·, ·) < m, 0 <= dt
1(·, ·) < m/2, 0 <=

dm
2 (·, ·) < 2m, and 0 <= dt

2(·, ·) < m.

Let us consider other possible way to rephrase the 3rd

condition j0 >= j1. In Proposition 1 and 2, the additinal con-

ditions j0 + j1 = 2j +1 and j1 = j0 +1 imply dbefore = dafter,

where dbefore = d((i, j), p(i, j)) + d((i, j + 1), p(i, j + 1)) =

d((i, j), dafter = d((i, j), p(i, j + 1)) + d((i, j + 1), p(i, j)). By

treating this case seperately, we have the following satisfac-

tory rule equivalent to j0 >= j1 for d = dm
1 .

(b) 1. dbefore > dafter, or

2. dbefore = dafter and d((i, j + 1), p(i, j + 1)) >

d((i, j), p(i, j)) and d((i, j + 1), p(i, j + 1)) >= d((i, j), p(i, j +

1)), or

3. dbefore = dafter and d((i, j), p(i, j)) > d((i, j +

1), p(i, j + 1)) and d((i, j), p(i, j)) >= d((i, j + 1), p(i, j)).

We also have the following similar conditions:

(b’) 1. dbefore > dafter, or

2. dbefore = dafter and d((i, j + 1), p(i, j + 1)) >=

d((i, j), p(i, j)) and d((i, j + 1), p(i, j + 1)) >= d((i, j), p(i, j +

1)), or

3. dbefore = dafter and d((i, j), p(i, j)) >= d((i, j +

— 4 —

五味
テキストボックス
－352－

五味
テキストボックス

1), p(i, j + 1)) and d((i, j), p(i, j)) >= d((i, j + 1), p(i, j)).

Consequently, we obtain 4 mathematical descriptions of

the “farthest-first” rule and 4 distance functions, namely 16

possible exchanging rules. Since we have no theoretic proofs,

terminations are not assured. However, experimental results

and practical availability will be shown in the next section.

4. Experimental Results

This section shows experimental results of some packet ex-

changing rules. In the previous section, we established 4 al-

ternative exchanging rules and 4 distance functions, namely

16 rules. With these rules plus the original 2 rules, we com-

pute required steps in some cases.

Firstly, we routined the livelock example under these ex-

changing rules and with changing the initial step. Numerical

results are summarized in Table 3 (m = 4) and Table 4

(m = 8), where ‘u’, ‘r’, ‘lo’, and ‘le’ stands for upper, right,

lower, and left step as an initial step, respectively, and ‘NT’

stands for non-termination. As described in [GKST05], the

naiveness of the algorithm can be observed. For example,

changing an initial step has an effect of the termination. In-

terstingly, begining from ‘u’ inclines to fall into ‘NT’. Com-

pared to these results, the number of NT seems more in Table

3. But this may be because of the smallness of m and does

not show any algorithmic defects.

Next, we routined a mesh filled with m2 non-Nil pack-

ets with m = 8 (Table 5), and m2 non-Nil packets with

m = 8. Of courese, although these are just examples, we

can observe some properties. First, the original rule with dm
1

works well in a sense that it does not fall into ‘NT’. Second,

rules (a), (a’) work worse than (b), (b’). Moreover, an effect

of the torus structure is observed. In these examples, rules

(b), (b’) combined with distance functions dt
1, dt

2 work bet-

ter than other cases. However, changing initial step seems

to have less effect here.

5. Improvements

The clockwise transposition is used for both RF and LA

steps [LSTT02], [GS04]. However, the efficiency of RF step

case, YASD, is not compatible to TWIRL: YASD is 6.3 times

slower than TWIRL without considering the frequency and

3.2 times with considering the frequency. This section pro-

poses an improvement on YASD, which establishes two times

speed-up.

5. 1 Structure of YASD

First, we describe procedures in RF step. Suppose we are

going to find relations (a, b) from a given interval [a0, a0+S−
1] and a fixed value b (here we assume a0 being even with-

out loss of generality), where a pair (a, b) is called a relation

if it satisfies three conditions (i) gcd(a, b) = 1, (ii) Fr(a, b)

is Br-smooth for a given multivariable polynomial Fr(x, y)

and an integer Br, and (iii) Fa(a, b) is Ba-smooth for a given

multivariable polynomial Fa(x, y) and an integer Ba. An in-

teger x is described as B-smooth if x is a product of prime

integers smaller than B. Since log x ≈
P

p<B, p|x log p, the

sieving method for RF step proceeds as follows: first, we pre-

pare S registers s[ai] (ai ∈ [a0, a0 + S − 1]). For each prime

p < B, find the smallest integer a ∈ [a0, a0 +S−1] such that

F (a, b) = 0 (mod p), here F (x, y) = Fr(x, y) or Fa(x, y), and

B = Br or Ba. Since the polynomial F (x, y) has a property

that

F (a, b) = 0 (mod p) ⇒ F (a + p, b) = 0 (mod p),

we set s[a] ← s[a] + log p, s[a + p] ← s[a + p] + log p,

Finally, pick up a’s such that s[a] ≈ log F (a, b), which can

be treated as candidates as the relations.

YASD is a dedicated factoring device for RF step by us-

ing the clockwise transposition [GS04]. Each node has three

parts, the main part, the mesh part, and the memory part.

The main part generates pairs (a, p) such that F (a, b) = 0

(mod p) as packets and these packets are sent to the mesh

part. The mesh part proceeds the clockwise routing as in the

previous sections. When a packet reaches the target node, it

is delivered to the memory part which consists of u registers

s[a1], . . . , s[a1 +u− 1] and the log value log p is accumulated

to the corresponding register s[a]. Note that there is no need

to hold all primes in all nodes: In fact it is sufficient to hold

at least 1 node for large primes.

5. 2 Use of Sub-torus

This section proposes to use sub-tori for RF step simi-

lar to for LA step proposed in [GKST05]. For an m × m

mesh, we divide nodes into 4 sets T o,o, T o,e, T e,o, T e,e, nodes

in odd-rows and odd-columns, nodes in odd-rows and even-

columns, nodes in even-rows and odd-columns, and nodes

in even-rows and even-columns, respectively. Then, we give

the torus structure to these sets. Thus we have 4 sub-tori in

the mesh. Since the size of sub-tori is halved, efficient rout-

ings on these sub-tori are expected. But a problem arises:

how to generate packets in which a packet with its target

node being odd-odd, for example, is sent to an odd-odd node

from a main part. One idea is to let 1 main part to hold 4

nodes (odd-odd, odd-even, even-odd, and even-even). Then

all packets can be easily sent to the proper sub-torus. How-

ever the frequency is reduced to 1/4. So, we do not want to

change the number of main parts and nodes.

For this problem, we have an algorithmic and hardware-

oriented solutions. In YASD, each prime is held by at least

1 node. We increase the frequency of each prime 4 times

so that all primes can be sent to all types of sub-tori. As a

drawback we require 4 times larger memory for main parts

— 5 —

五味
テキストボックス
－353－

五味
テキストボックス

Table 3 Required steps for the livelock example (m = 4)

Distance Original (a) (a’) (b) (b’)

Function u r lo le u r lo le u r lo le u r lo le u r lo le

dm
1 NT 15 14 19 NT 15 14 19 NT 23 22 21 NT 15 14 19 NT 15 14 21

dm
2 — NT NT NT NT 21 16 20 18 38 NT NT NT 17 12 19 15

dt
1 NT NT NT NT NT 12 11 14 NT 23 7 25 NT 15 7 17 NT 16 7 18

dt
2 — NT NT NT NT NT 11 7 13 NT NT NT NT NT 16 7 18

Table 4 Required steps for the livelock example (m = 8)

Distance Original (a) (a’) (b) (b’)

Function u r d l u r d l u r d l u r d l u r d l

dm
1 NT 42 36 38 NT NT NT 58 NT NT NT NT NT 42 37 41 NT 40 41 44

dm
2 — NT NT NT NT 41 44 39 46 93 NT NT NT 43 44 39 43

dt
1 NT NT NT NT NT NT 35 NT NT 60 NT NT NT 28 26 32 NT 34 26 37

dt
2 — 62 NT 77 NT 33 32 33 37 40 NT 31 NT 25 31 21 26

Table 5 Required steps for a mesh with m2 non-Nil packets (m = 8)

Distance Original (a) (a’) (b) (b’)

Function u r d l u r d l u r d l u r d l u r d l

dm
1 24 22 21 20 45 40 NT NT NT NT 43 NT 22 22 25 22 31 24 22 26

dm
2 — NT NT NT NT 30 44 33 30 39 38 28 34 31 28 28 27

dt
1 NT NT NT NT NT 36 39 NT NT NT NT NT 19 23 18 21 20 22 21 23

dt
2 — NT NT NT NT 25 34 29 27 23 41 30 19 21 22 22 20

Table 6 Required steps for a mesh with m2/8 non-Nil packets (m = 8)

Distance Original (a) (a’) (b) (b’)

Function u r d l u r d l u r d l u r d l u r d l

dm
1 16 17 17 16 NT 18 19 20 NT NT NT NT 16 17 17 16 16 17 17 16

dm
2 — NT 18 19 15 16 20 19 20 16 17 17 16 16 17 17 16

dt
1 NT NT NT NT NT NT 17 11 NT NT 35 NT 11 10 10 12 11 12 10 12

dt
2 — NT NT 17 13 11 10 12 12 11 11 10 12 11 12 11 12

(to hold primes).

The other solution is to put a cyclic permutaion buffer

device between 4 main parts and 4 nodes. Let us explain

in detail. First, we change the memory part so that T o,o

has registers corresponding to a ∈ [a0, a0 + S − 1] such that

a ≡ 0 mod 4. Similarly, T o,e, T e,o, T e,e correspond to a ≡
1, 2, 3 mod 4. Next, we divide primes (except 2) into two sets

P1 = { p | p ≡ 1 mod 4 } and P3 = { p | p ≡ 3 mod 4 }. More-

over, we divide these sets into 8 sets P
(i)
1 = { p ∈ P1 | p ≡

i mod 4 }, P
(i)
3 = { p ∈ P3 | p ≡ i mod 4 } (i = 0, 1, 2, 3).

The numbers of primes in these sets P
(i)
j will be almost same.

Then, suppose a main part generates packets for a prime

p ∈ P 0
1 and we have a ∈ [a0, a0 +S−1] such that F (a, b) = 0

(mod p) and a ≡ 0 (mod 4), Namely the target node of this

packet belongs to T o,o. Then, since the next packet corre-

sponds to a + p, the target node of this packet belongs to

T o,e. Thus the target node of this main part will be chaged

in a cyclic way: T o,o, T o,e, T e,o, T e,e, T o,o, Moreover,

4 main parets can generate packets in this way in simulta-

neously (see Fig. 1). Here the cyclic permutaion device can

be easily implemented so that a drawback of this solution

is rather small. By this improvement. we can establish the

reduction about 1/2.

6. Concluding Remarks

This paper analyzes the dedicated hardware device based

on the clockwise transposition. First, we discuss possible al-

ternatives for packet exchanging. Although we have no the-

oretic proof of the termination, experimental results show

actual availability of some exchanging rules in the clockwise

transposition for integer factoring. We also proposed an im-

provement on the routing algorithm for the relation finding

step, which establishes two times speed-up.

References

[Ber01] Daniel J. Bernstein, “Circuits for integer factorization:

a proposal”, preprint, 2001. http://cr.yp.to/papers/

nfscircuit.pdf

[RSA200] F. Bahr, M. Boehm, J. Franke, and T. Klein-

jung, “RSA200”, May 2005. http://www.crypto-world.

com/announcements/rsa200.txt

[FKP+05] Jens Franke, Thorsten Kleinjung, C. Paar, J. Pelzl, C.

Priplata, C. Stahlke, “SHARK: A Realizable Special Hard-

ware Sieving Device for Factoring 1024-bit Integers”, Work-

shop on Special Purpose hardware for Attacking Crypto-

graphic Systems (SHARCS), pp.27-37, 2005. Also, to ap-

— 6 —

五味
テキストボックス
－354－

五味
テキストボックス

Figure 1 Cyclic wiring between main parts and mesh parts

pear at CHES 2005.

[GKST05] Willi Geiselmann, Hubert Köpfer, Rainer Steinwandt,

and Eran Tromer, “Improved Routing-based Linear Algebra

for the Number Field Sieve”, IEEE ITCC 2005, 2005.

[GS03a] Willi Geiselmann and Rainer Steinwandt, “A dedicated

sieving hardware”, PKC 2003, LNCS 2567, pp.254-266,

Springer-Verlag, 2003.

[GS03b] Willi Geiselmann and Rainer Steinwandt, “Hardware to

Solve Sparse Systems of Linear Equations over GF(2)”,

CHES 2003, LNCS 2779, pp.51-61, Springer-Verlag, 2003.

[GS04] Willi Geiselmann and Rainer Steinwandt, “Yet another

sieveing device”, CT-RSA 2004, LNCS 2964, pp.278–291,

Springer-Verlag, 2004.

[LL93] Arjen K. Lenstra and Hendrik W. Lenstra, editors. The

development of the number field sieve, Vol. 1554 of Lecture

Notes in Mathematics (LNM), Springer-Verlag, 1993.

[LLPM90] Arjen K. Lenstra, Hendrik W. Lenstra, M.S. Manasse

and John M. Pollard, “The Number Field Sieve”, STOC

1990, pp.564-572, 1990.

[LSTT02] Arjen K. Lenstra, Adi Shamir, Jim Tomlinson, and

Eran Tromer, “Analysis of Bernstein’s circuit”, ASI-

ACRYPT 2002, LNCS 2501, pp.1–26, Springer-Verlag,

2002.

[Sha99] Adi Shamir, “Factoring large numbers with the TWIN-

KLE device (extended abstract)”, CHES 1999, LNCS 1717,

pp.2-12, Springer-Verlag, 1999.

[ST03] Adi Shamir and Eran Tromer, “Factoring large numbers

with the TWIRL device”, CRYPTO 2003, LNCS 2729,

pp.1–26, Springer-Verlag, 2003.

— 7 —

五味
テキストボックス
－355－

五味
テキストボックス

