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Abstract In Sept.1990, the present authors firstly discussed DLP over composite number and presented an
ID-based Key Sharing Scheme referred to as MK1. In 1991, Maurer and Yacobi presented the similar scheme,
referred to as MY, which is similar to our scheme, MK1. Unfortunately the schemes MK1 and MY are not secure,
In Dec. 1990, the present authors presented a secure ID-based key sharing scheme referred to as MK2. With a
rapid progress of computer power for a last 15 years, our proposed scheme would have more chance to be applied
practically. Regrettably, it is not widely known the fact that (i) the schemes MY and MK1 are not secure, (ii) there
exists a secure scheme, MK2. At this time, present authors review MK2 and clarify the difference between MK2
and other schemes from the standpoint of security.
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1. Introduction

Modern cryptography is based on information theory, the
theory of computational complexity, the theory of finite field
and etc. Typical problems in the theory of integers used in
cryptography would be the prime factorization problem.

A Discrete Logarithm Problem(DLP) has been also exten-
sively studied and successfully applied to the various cryp-
tographic technologies.

In the conventional DLP, usually, a prime number is used
for the modulus. However, DLP can be considered in a more
general standpoint where the modulus is a composite num-
ber, although in such case DL does not necessarily exist.
Hereinafter we shall refer to DLP with a composite number
as DLP over composite number.

‘In Sept. 1990, the present authors firstly discussed DLP
over composite number and presented an ID-based Key Shar-
ing Scheme referred to as MK1[1]. In Dec. 1990, they pre-
sented an improved version of MK1, referred to as MK2[2].

In 1991, Maurer and Yacobi presented the similar scheme
(5], referred to as MY, which is similar to our scheme, MK1.
In 1992, Maurer and Yacobi proposed some schemes as as
improved version of their schemes[6]. Unfortunately the
schemes MK1 and MY are not secure, although MK2 is con-
sidered secure.

With a rapid progress of computer power for a last 15
years, our proposed scheme would have more chance to be
applied practically. In SCIS2005, Abe, Kunihiro and Ohta
discussed the practical parameters of ID-based key sharing
scheme using DLP over n[9]. Tanaka proposed a similar
ID-based key sharing scheme of ours [8].

This paper discusses the problems presented in Ref.[1]
again. At this time, present authors review MK2 and clar-
ify the difference between MK2 and other schemes from the

standpoint of security.

2. Discrete Logarithm Problem over

Composite Number

2.1 Definitions
Several definitions are given first.
[Definition 1] The composite number n can be uniquely

represented as follows:
m
n=[]r*
k=1
where pi’s are prime numbers such that py <p2 < ... <pm

and c’s are positive integers.
[Definition 2] Sets Z, and Z,, are defined as follows:

Z. = {0,1,2,...,n— 1}
Z, = {z |z € Zn,gcd(z,n) =1}

1l

Table 1 Residue class decomposition

H, hy =1 ho e hq
9Hn 9 gha Ex ghq
92H, g2 92hs 92hy

gT =1, | grim=1 g(n)-1p, gmm=1p,

[Definition 3]
g with modulus n is denoted by (g)». That is, the cyclic

The cyclic multiplication group generated by

multiplication group (g)» for an arbitrary element g € Z;, is

represented as follows:

(@n={yly=g" (modn),geZ;,z€Zy,}

where |g|» is the order of g.

[Definition 4] The maximum generating element and etc.,
are defined as follows:

Maximum generating element: element with the maxi-
mum order with an arbitrary positive integer as the modulus;
S»: set of maximum generating element with a positive in-
teger n as the modulus;

A(n):

maximum generating element with a positive integer n as the

Carmichael function which represents the order of the

modulus.
2.2 Theorems on DLP over n
[Definition 5] Define §(n) and m(n) as follows:

§(n) = lem(ged(A(p"), A7),

A(n)/é(n).

m(n)

[Definition 6] Let the set of §(n)-th root of 1 with n as the

modulus be H,:
H,={z|2*™ =1 (mod n)}

The group H, obviously forms a subgroup of Z;. Conse-
quently, Z;, can be decomposed into residue classes on H,.
[Lemma 1] All the elements of Z;, can be decomposed into

residue classes on H, with G.(g) as coset leaders, where

Gn(9)={yly=9g" (modn), g€Snz€Znm}

Proof: Let i + j(i,j € Zx(n)). For any element a belonging
to H,, there holds ag' # ¢° (mod n) and G.(g) can be
used as the coset leaders. There hold |Hn,| - |Grn(9)] = ¢(n).
Consequently, all elements are exhausted. [m]
[Lemma 2] Let the maximum generating element be g.
Then the cyclic multiplication group (g®(™), generated by
g°™ is the same as the set of §(n)-th power residues modulo-
n.

Proof: Let the set of §(n)-th power residues modulo-n be

R,,ie.,
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8(n)

R,={z|z=e (mod n), e€Z}.

It follows from Lemma 1 that for any e belonging to Z,,
there exist € H» and y € G.(g) such that e = zy. The re-
lation €*(™) = g¥(Myd(m) = 43() (1164 ) also holds. Con-
sequently, R. = (¢°(™), holds. o

The following theorem is derived directly from Lemma 2,

which has an important role in this paper.
[Theorem 1] Ife € Z%, e’ hasa logarithm with the max-
imum generating element g as the base and n as the modulus.
Proof: It follows from Lemma 2 that 5™ € (¢*™™), . Con-
sequently, e’(™ has a discrete logarithm with g as the base
and n as the modulus. o

Thus, it is shown that the §(n)-th power of any element
has a logarithm with a composite number n as modulus.

2.3 DLP over Composite Number n

The problem to determine z such that y = g* from given y
and g is called the discrete logarithm problem. In this prob-
lem, a prime number usually is considered as the modulus.
However, it is possible to consider a more general discrete
logarithm problem with the composite number as the mod-
ulus.

As is well known, the multiplication group Z is a cyclic
multiplication group only when n is 2, 4, odd prime num-
ber, or an exponent of an odd prime number. The primitive
element exists only in those cases. ~When the composite
number is used as the modulus, the maximum generating el-
ement is defined to replace the role of the primitive element.

From Definition 3, the following relations hold, where gis

a maximum generating element:

{gGSn
Y €(g)n

y=g" (modn)

In general, for any z such that z € Z(ny there corre-
sponds y € Z, satisfying y = g* (mod n). Conversely, it is
not always true that, for any y such that y € Z., there exists
Z € Zx(n). We call the problem to determine z from given y
and g over n as DLP over n.

2.4 Square-root attack

If the discrete logarithm problem over n can be solved with
the base g, then the factoring problem of n can be solved.
In other words, if one can calculate the discrete logarithm z
of an arbitrary element e € Z;,, he/she can find a factor of

n with the following algorithm:

(—‘“ Square-Root Attack EEEE—

Step 1: Choose ¢’ randomly from Z;,.
Step 2: Lete=¢€? (mod n).

Step 3: Calculate the discrete logarithm z of e with
the base g. If e does not have a discrete logarithm then
goto Step 1.

Step 4: If g°/% = ¢’
Step 5: Factors of n can be obtained as ged(g®/? +

(mod n) then goto Step 1.

e, n).

J

This attack will be referred to as the square-root attack.

In the case applying DLP over n to ID-based key sharing
scheme, it should be noted that the trusted center (TC) can
be used as an oracle of solving DLP over n. The attacker
requests TC to join the system as his/her ID as a spurious
ID to obtain the discrete logarithm of the wanted value. The
example of the square-root attack for MK1 and MY is given
in Table 3.

Using one-way hash function is very important to avoid
this attack. However, it should be noted that the scheme

which uses one-way hash function is not always secure.
3. Secure Conditions

This section gives the conditions that n and g should sat-
isfy in order to construct a secure application using DLP over
n.

3.1 DLP over n under secure conditions

As was discussed in Section 2., Z, is not a cyclic multipli-
cation group, except for the case where a special composite
number n is used. This implies that §(n) = 2 holds for gen-
eral n. To prevent the square-root attack, we clarify the
conditions. and propose another method that any element
e € Z;, corresponds with a discrete logarithm without pow-
ering by §(n).

In the following, the case is considered where the compos-
ite number n is a product of two prime numbers p and ¢
satisfying the following conditions.

[Condition 1] Odd prime numbers p and ¢ satisfy the fol-
lowing relations:

{p =2 +1
g=2¢' +1
ged(p',¢') = 1.

By defining n in this way, we see that §(n) = 2 holds.
From Theorem 1, the square of any element belonging to Z,,
has a logarithm with the maximum generating element as
the base.

Further, the following condition is assumed.

[Condition 2] The maximum generating element g is as-

sumed to satisfy the following condition:
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—1 ¢ {g)n-

Relating to Condition 2, the following lemma is important.
[Lemma 3] The necessary and sufficient condition for the

maximum generating element g to satisfy Condition 2 is the

following:
() When p=3 (mod4)andg=1 (mod4),
(5)=-1 (H=1
{<§)=—1 o {<§>=—1 g
(b) Whenp=¢g=3 (mod 4),
(5)=1
(b )

where (%) denotes Jacobi symbol.

Proof: The following relation holds:

g*(")/2 = g”"" (mod n)
_ (1 (mod p)
“ | -1 (modq)

If Eq.(1) or (2) is satisfied for cases of (a) and (b), then
g*™/2is 1 (mod p) and —1 (mod g), respectively. Con-
sequently, g”")/2 Zz -1
1 is limited to g*/? and 1 in (g)n, there holds —1 & (g)n.
=]
[Corollary 1] There holds (g mod p) € S, and (g mod q) €
S,,ifand only if p=3 (mod 4) andg=1 (mod 4).

[Lemma 4] In this case, an element e satisfying (£) =1

(mod n). Since the square root of

has a discrete logarithm over n.

The cyclic multiplication group (g)» obviously forms a sub-
group of Z;. Consequently, Z; can be decomposed into
f,esidue classes on (g)». Since Condition 2 is satisfied, the
following lemma is derived.

[Lemma 5] When the maximum generating element g sat-

isfies Condition 2, Z., can be decomposed into residue classes

on {g)n with {1, —1} as coset leaders (see Table 2).

Proof: Since Condition 2 is satisfied, {1, =1} can be used as

coset leaders. Since A(n) = p(n)/2 follows from Condition 1,

there holds 2|(g)~| = ¢(n). Then all elements are exhausted.
a

The fact that the residue class decomposition is possible
with the obvious two square-roots of 1 as the coset leaders is
important to maintain the security of the prime factorization
of n. The example of the decomposition is shown in Table 4.
It should be noted that we can not decompose with the ob-
vious two square-roots of 1 as the coset leader when m 2 3.
The example of the decomposition when m = 3 is shown in
Table 5

The following theorem can be derived directly from
Lemma 5.

[Theorem 2] When the maximum generating element g

Table 2 Residue class decomposition 2
(g |1 g g% - gmt
—(g)n |-l —g -9

2 ... —gim)-1

satisfies Condition 2, either e or —e, where e is an arbitrary
element belonging to Z; has a discrete logarithm with g as

the base and n as the modulus.
4. ID-based Key Sharing Schemes

The trusted center (TC) generates a composite modulus
n and a maximum generating element g. It should be noted
that g need not to be publicized. However, g (or an element
of same working as g) can be easily revealed.

We shall denote identity information of user k as IDy. Let
ex € Z, and si be the public key and the personal secret key
corresponding to I Dy, respectively. We assume that TC can
calculate si from e by calculating the discrete logarithms of
ex over each prime factors of n. We also assume that anyone
can calculate ex from IDj with a public algorithm which is
publicized by TC.

K ap denotes the shared key between users A and B. We
shall often use p and q instead of p; and p> when n = p1p2,
for simplicity. h(-) denotes a public one-way hash function
defined by TC.

4.1 Trivial Scheme

We shall describe the trivial scheme of ID-based key shar-
ing system based on Diffie-Hellman key distribution scheme
[10], as an application of the discrete logarithm problem over

composite modulus.

n : composite number,

g € Sn,

ex = h(IDy),

sk = log, 2™ (mod A(n)),
Kap = ejft = ¢°4*2/%"  (Typel),
Kap = ey * =g°4*®  (Type2).

The trivial schemes are not secure against the d(n)-th root
attack because sk is divisible by §(n), which is a similar at-
tack as the square-root attack. That is, there is a case that
factors of n can be obtained by gcd(g“/“") + ek, n).

It should be noted that §(n) is publicized in Type2.

4.2 Murakami-Kasahara Scheme Ver.1

In 1990, we proposed the scheme as an application of the
discrete logarithm problem over composite modulus[1]. In

this paper, this scheme will be referred to as MK1.

n = pqg where §(n) =2, (m=2),
g € Sn,
er = h(IDy),
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Table 3 Residue class decomposition in MK1, MY (n =7- 11,9 = 24)

+ {01 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29

g

' |1 24 37 41 60 54 64 73 58 6 (67) 68 15 52 16 76 53 40 36 17
34 46 26 8 38 65 20 18 47 50 [45] 2 48 74 5 43 31 51 69 39 12

13 4 19 71 10 9 62 25 61
57 59 30 27 32 75 29 3 72

Table 4 Residue class decomposition in MK2 (n =7 11,9 = 2)

i [0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29

g |1 2 4 8 16

64 51 25 50 23 46 15 30 60 43 9

32
1326522754316247173468594151020403 6

18 36 72 67 57 37 74 71 65 53 29 58 39

—9' |76 75 73 69 61 12 24 48 19 38
Table 5 Residue class decomposition whenm =3 (n =3-5-11,9 = 2)
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
9 1 2 4 8 16 32 64 128 91 17 34 68 136 107 49 98 31 62 124 83
—g' |164 163 161 157 149 133 101 37 74 148 131 97 29 58 116 67 134 103 41 82
rlgi 56 112 59 118 71 142 119 73 146 127 89 13 26 52 104 43 86 7 14 28
r2¢' [109 53 106 47 94 23 46 92 19 38 76 152 139 113 61 122 79 158 151 137
Table 6 Residue class decomposition in MMY (n = 7-11,g = 73)
1 {0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 24 25 26 27 28 29

g |1 73 16 13 25 54 15 17 941677124 7646164522362-6836103765319
rg' |34 18 5 57 3 65 48 75 8 45 51 27 46 47 43 59 72 20 74 12 29 38 2 69 32 26 50 31 30
Table 7 Various Schemes
Scheme n Public key: ez Secret key: sz Shared key: K4p Type | Secure

24 = 0sas8/8(n) (Typel
Trivial scheme | General h(ID,) log, ef‘(") e?(n)ug (Typel) - No
ep = g°A°B (Type2)
MKI1 (’90) Pq h(IDg4) log, €2 eyt =g°as8/2 Typel | No
MK2 (’90) pg R(ID4) loggea/log, —ea  ept = g%°acp — | Yes
MY (’91) p1...pm IDg4 log, €% eg'“ =g4°B Type2 | No
AMY (°91) Pq IDg +€ s.t. (Qﬂﬁ) =1 log, ea eyt =g°4°B — No
MMY (’92) p1...pm ID4 logg €% (¢ =g") ezss" =g/sasB Type2 [ No
ID, if (12ay=)
MAMY (92 Y log, e ey = gsass —_ No
('92) |pg 21D, if (1Bay = 1 8y €A B =9
h(ID)  if (R2a)) = .
MK3 (°05 n log, e et =gsasB — Yes
(°05) Pq —h(ID4) if(#d—))z—l Eg €A B =9
sk = log, et (mod A(n)), n = pq where §(n) =2, (m=2),
Kap = e} =¢°4°®/* (mod n). g € Sn where — 1 ¢ (g)n,
. . . ex = h(IDg),
MK1 is not secure because it belongs to Typel of the trivial k (IDx) )
log,er  (mod A(n)) if ex € (g)n
scheme. * = (mod A(n)) if ex ¢ (g)n
og, —exr (mo n)) if ex
For example, in Table 3, Let ID (or hashed ID) of the N 6o . gin
— 254 — 254sp
attacker X be ex = Since e% = | X obtains a Kap =ep® =g (mod n).

logarithm s, = 20 of by requesting TC as IDx. Thus,

X can calculate g 10 = . Finally, the factors can

be disclosed by gcd(:l:, n) =711

4.3 Murakami-Kasahara Scheme Ver.2

20/2

In 1990, we also proposed the scheme as an application of
the discrete logarithm problem over composite modulus [2].

In this paper, this scheme will be referred to as MK2.

For example, in Table 4, Let hashed ID of the attacker
X beex = . Since ex € (g)n, X obtains a logarithm
S =5 of — by requesting TC as IDx Thus, X
can calculate g° = . However, any factor of n can not

be disclosed by gcd(:i: , n).

In this way, MK2 is considered to be secure when n is
difficult to be factored.
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4.4 Maurer-Yacobi Scheme
4.4.1 Maurer-Yacobi Scheme
In 1991, Maurer and Yacobi proposed a similar scheme [5]

of our scheme MK1. This scheme will be referred to as MY.

n = p1p2...pm where §(n) =2,

g  such that (g mod p:) € Sp; fori =1,2,...,m,
ex = IDg,

sk = log, el (mod A(n)),

(mod n).

— 254 _ sas
Kap = eg* =g°4°"

MY is not secure because it belongs to Type2 of the trivial
scheme.

4.4.2 Practical Parameters

In 2005, Abe, Kunihiro and Ohta suggested the using of
n = p1paps in MY [9] for a practical realization. Unfortu-
nately, their suggestion would not be meaningful, because
the scheme MY is not secure.

4.4.3 Alternative Maurer-Yacobi Scheme

Maurer and Yacobi also proposed an alternative implemen- -

tation in [5]. This scheme will be referred to as AMY.

n = pg where §(n) =2, (m=2),
g  such that (g mod p) € S, and (g mod q) € S,
er : the smallest integer greater than 1Dy
such that (%£) = 1.
(mod A(n)),

S4B (mod n).

log, ex

Sk

Kasp

eg' =9
AMY is not secure against the square root attack because
one-way hash function is not used.
- 4.5 Modified Maurer-Yacobi Scheme

4.5.1 Modified Maurer-Yacobi Scheme

In 1992, Maurer and Yacobi proposed a modified version
of their scheme for the purpose of enduring the square root
attack [6]. This scheme will be referred to as MMY.

n = pip2...pm where §(n) =2,
g  such that (g mod p;) € Sp, fori=1,2,...,m,
er = IDy,

log, e?  (mod A(n)),

N
n

tsi  (mod p(n))

Sk
where t € Z, is a secret of the center,

(mod A(n)),

Kap = e?" =g"*4°F where vt =1

By substituting g’ = g”, sx and Kap can be represented

as follows:
sk = logy ez (mod ¢(n)),
Kap = €54 =¢'*4°®  (mod n).

The attackers A and B such that gcd(sa, sp) = 2 can cal-
culate a, 0 satisfying ass + 8sp = 2 by extended Euclidean

algorithm. Then, g’ can be easily disclosed as follows:

g = e3¢ (mod n).
For example, in Table 6, s4 = 14 and sp = 22 are

given for eq = and ep = , respectively. Then,

a = 8 and B = -5 satisfies as4 + Bsp = 2. Consequently,
g=eSe? =39%.407° =73 (mod n) can be disclosed.

Thus, it is clarified that MMY belongs to Type2 of the
trivial scheme. Consequently, we can conclude that MMY is
not secure against the square root attack.

4.5.2 Modified Alternative Maurer-Yacobi Scheme

They also proposed a modified version of their alterna-
tive implementation [6). This scheme will be referred to as
MAMY.

n = pqg where §(n) =2, (m=2),

p = 3(mod8), ¢ = 7(mod8),
g such that (g mod p) € S, and (g9 mod q) € S,
ID, if (122) =1
€ = )
* 2ID, if (12k) = —1

sk = loggex  (mod A(n)),
Kap = et =¢°*°7 (mod n).

This scheme is not secure. The attacker X requests to TC
to join the system as IDx = 2a® (mod n), where a is an
arbitrary integer. Then, there clearly holds (%&) = -1
So, TC gives sx = log, 2IDx = log,(2a)*. Thus, it is clear
that the square root attack can be applied. Consequently,
MAMY is not secure. This deficiency can be recovered by
using a secure hash function.

4.5.3

They proposed the improvement scheme of m 2 3 [6]. In

Another Maurer-Yacobi Scheme

this paper, we shall not treat with this scheme because it is
not non-interactive.
4.6 Tanaka’s Scheme

In 2005, Tanaka proposed a similar scheme [8].

n = pg where §(n) = ged(v,68), (m=2),

p—1=ay=ayé(n),
g—1 = Bé=p86n),
g  such that (g mod p) € S, and (g mod q) € S,

where ged(v',8") =1,

e = IDk,
s, : such that ef = g*°** (mod p),
ye : such that e? = g#¥* (mod g),

di = aB(8'sk +~'yr) (mod A(n)),
Kap = e‘é" (mod n).

From Lemma 1, it is easy to see that ex can be represented
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as

er = T'kg"sk (mod n),

where 7 € H,, g’ € Sn and sk = &8sk +7'ye. Then, it
can be shown that g’ = g (mod n), where v = (7 +6')7!
(mod ~'¢").

Proof: By powering with af to extinguish rx, we have

ezﬂl‘(n) = T:B'S(ﬂ)gvuﬂ(n)(fsl3k+‘7'+yk) (mod n)

= gvatiés:.- _gvaﬁwk (mod n)

gvaﬂstk = e:‘aﬁﬁ (mod P)
greBIve = ej‘“ﬁ" (mod q)

11l

Thus, the following relations hold:

vl = &' (mod~«')
"1y (modd)’
=+ +46 (mod~'¢).
This means that v = (v +4')"! (mod ~'¢'). O
Consequently, we have
Kap = eip =r3Peagefsase  (mod n)

Kpa = e‘ff = r‘;B’Bg"’ﬁ""B (mod n).

afsa
In general, ry

# rjﬂ °B . Consequently, K 4p is not always
equal to K4 in this scheme.
For example, o = 23, =13,y =6, =10, i.e.,, p = 139,

g =131, n = pq = 18209 and g = 2.

ea = 17699,
da = 5083, sa=4, ya=9
ep = T332,

dp = 7774, sp=1, ys=1

Kap = e} = 16584
Kpa = €58 = 1625

In this way, it is seen that Kap # Kpa (mod n). It should
be noted that K35 = K34 = 320 (mod n) holds. Then,
this scheme is regarded as a scheme of Type2 of the trivial
scheme in which g*# is used instead of the maximum gener-
ating element g.

4.7 Proposed Scheme

‘We shall propose a new scheme of non-interactive key shar-

ing. This scheme will be referred to as MK3.

n = pg where §(n) =2, (m=2),

p=3 (mod4), ¢g=1 (mod4),
g  such that (g mod p) € S, and (g mod q) € S,

_ {h(IDk) if (BUBk)Yy =

ek )
—h(IDy) if (2LRe)y =
sk = logger (mod A(n)),
Kap = e =g¢°*°%  (mod n).

This scheme is also considered to be secure when = is difficult

to be factored. From Lemma 4, e, has a discrete logarithm
over n. It should be noted that anyone can easily calcu-
late Jacobi symbol without a knowledge of factors of n. The
difference between MK2 and MK3 is as follows:

e The calculation of Jacobi symbol is unnecessary in
MK2.

e The space of shared keys in MK3 is Z,,, whose order

is two times larger than that in MK2.
5. Secure and Practical Parameters

In this section, we shall discuss secure and practical pa-
rameters of MK2 and MK3.

5.1 Secure parameters

As is described in Section 3., On the condition of the com-
posite number n, n = pqg such that p = 2p' +1,q = 2¢' +1
where ged(p', ¢') = 1 is required in order to avoid the square-
root attack. On the base g € S,, —1 & (g)n is also required
to avoid the square-root attack.

5.2 Practical parameters

To realize these schemes in practical, TC need to calculate
the discrete logarithm of any element e € Z;, in a practical
time. So, p’ and ¢’ need to be factored into some prime fac-
tors. However, if the factors are small, it is well known that

n can be factored by the P — 1 method.

Let

p—1=2p"py? . p,
b, b b by

g—1=2"g¢"g?...q),

where pj, gj, are prime numbers such that p} < p5 < --- < p,

@ < ¢ <

bo € {1, 2}.
In the P — 1 method, if p | K and ¢ f K, then

< ¢,, and a,br are positive integers,

p=ged(a® —1,n) ®3)

for any base a € Z,,.

At the first stage in the P — 1 method, Eq.(3) is usually
calculated by using the prepared K such as K = H:"zl PCi
where P; is i-th prime number and C; is an adequate positive
integer. It is reasonable to set C; = |log, P/ log, P;].

At the second stage, Let P' = P,41,A = KPP at
the beginning and the A and P’ are updated by A <«
Aa® mod n,P' « P’ + 2 while P’ < P,., where w' > w.
The second stage can factor n when p — 1 has only one large
prime factor p, such that p), < P, and all of other prime
factors are less than P,,.

As a special case of P — 1 method, we can consider the
case K = P.\.
A = a,Q = 2 at the beginning and the A is updated by
A A%modn Q « Q+1 while Q £ P.. When this K

is used, the P — 1 method is very strong but it takes much

This case is implemented as follows: Let
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longer time to execute.

It is reasonably assumed that P, < P. < P,/. In order
to be difficult to factor n by the first stage, p), < P, should
be satisfied. In order to be difficult to factor n by the sec-
ond stage, at least two of p}’s should be greater than P, or
p. > P, should be satisfied. In order to be difficult to a spe-
cial case that K = P.!, p, > P, should hold. Consequently,
at least two of p),’s should be greater than P;, or p}, > P,
should be satisfied.

So, we shall give several guideline to determine p which is
secure and practical as follows:

e Some of pjs are small so that it is easy to calculate a
discrete logarithm,

e Some of pjs have the exponent ar 2 2 in order to
reduce the database to solve the discrete logarithm,

® At least two of p’s are larger than P,. in order to be
secure against both the second stage and when the K = P.!
is used.

e p, > P, should hold in order to be secure against the
second stage of the P — 1 methods.

The g}, is defined in a similar manner as p}.

For example, the following p and g satisfy the conditions.

p-1=2pp - p Pl ap, (4)
’ ’ by — ]
g-1= 22‘11')1‘1;72 v -QL_zzqf-xqw (5)

where P, < pl,_, < P, andp, < P, fork=1,2,...,u—2.
Under present circumstances, the size of P, P., P, are
respectively considered as 30, 50, 70-bit, as an example.
Of course, the size of n is set to be large enough to be
secure against other general factoring method such as the

number field sieve method.
6. Conclusions

This paper has discussed the discrete logarithm problem
over composite number presented in Ref. [1] again. Also, this
paper has reviewed MK2 and clarified the difference between
MK?2 and other schemes from the standpoint of the security.

It will be necessary in the future to investigate the discrete
logarithm problem from a more general viewpoint. We hope
that a new security technique will be considered based on

this paper.
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