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Abstract We propose a novel threshold ring signature scheme, where the verifier can be convinced that the sig-
natures, as ordinary threshold (ring) signatures, were produced by the collaboration of at least ¢ anonymous signers
(among n possible signers), while he can be also convinced that the number of the collaborators was at most t'
(t < t'). We formalize the notion of this threshold signature scheme, denoted a (¢,#', n)-ranged threshold signature
scheme. In case t = t/, we call it an exact t-out-of-n threshold signature scheme. Our scheme can be constructed
based only on an ordinary discrete-logarithm setting. No stronger primitive such as pairing cryptosystems are
necessary.

Key words threshold ranged signature, ring signature, undeniable signature, and group signature.

. all possible signers.
1. Introduction P . N .
To realize this property in a threshold signature scheme,

A t-out-of-n threshold signature scheme is a protocol that
allows the creation of valid signatures if and only if more
than or equal to ¢t (out of n) players participate in the pro-
tocol. In a threshold signature scheme, however, the verifier
cannot be convinced of how many players exactly partici-
pated in the signature procedure, i.e., how many members
exactly approved the document . In some applications, it
should be desirable that the signers can tell the verifier the

exact number of them, while preserving anonymity among

1) In the trivial threshold signature scheme, such as t signers pro-
duce normal signatures on the same message with respect to their
own public-keys, it is obvious how many signers join the signing pro-
cedure, but we exclude such a “non-signer-ambiguous” construction

from our target.

however, we must settle an undefined issue. How to define
the “real” signers? In a classic definition of the threshold
signature scheme, it is not formalized.

We consider this problem in the setting of the ring signa-
ture — all the potential signers have their own public-keys
for signatures. Hence, our proposal is categorized in a thresh-
old version of ring signature, called a threshold ring signature
scheme, in which the signers can choose an “arbitrary” set of
possible signers, including themselves, to produce a threshold
signature where the actual signers must cooperate each other
but they don’t need any information of the other members
except for their public-keys.

We then introduce a language of partial signatures, say
L (in NP), where L is a language of a tuple of a set of
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public-keys of all possible players, pkn = (pk,...,pkn),
where N = {1,...,n}, message m and signature o; on m

with respect to public-key pk; in pkn, i.e.,
L = {(pkn,m,0:)|0: is a signature on m, w.r.t. pk; € pkn.}

where the witness is a pair of the corresponding sk; and ran-
dom coins 7 such that o; = Sig,, (m; ).

Suppose that o is the threshold ring signature on mes-
sage m, among participants N. We let o include on :=
(o1,---,0n), in which, there are two types of partial signa-
tures: For some i € N, (pkn,m,0:) € L, whereas for some
i’ € N, (pkn,m,0:) € L. Naturally, we define a participant
i € N to be a real signer if (pkn,m,0:) € L. The decision
problem on L must be hard to allow the protocol to remain
“signer-ambiguous” — For instance, if L is a language for an
undeniable signature scheme, the decision problem on L is
hard.

Another new concept in this paper is ranged threshold
signature. A (t,t’,n)-ranged threshold signature scheme,
0<t <t < n,is a threshold ring signature scheme that
can convince the verifier that the number of the collabora-
tion of the real signers is at least ¢ and at most t', whereas the
verifier has no information about which of n possible sign-
ers participated in the protocol. In addition, the k signers
can dynamically choose lower-bound ¢ and upper-bound ¢’
in range 0 < ¢t £ k £ t' £ n, where n denotes the number of
the possible signers. When t = t/, it is obvious that the ver-
ifier is convinced that exact t (out of n) anonymous signers
approved the document and the signature is called an exact
t-out-of n signature.

1.1 Our Results

We introduce a model and security definitions of the
ranged threshold ring signature, which is signer-ambiguous,
and makes it possible to specify both the lower-bound and
the upper-bound of the signers who actually join the signing
protocol. To rigorously capture the notion of this scheme,
we define the notion of the real signers in a threshold ring
signature scheme. We then suggest a construction based on
an undeniable signature scheme [8]. We also prove our pro-
posal secure in the security model we have introduced. In
addition, it can be converted to a threshold group signature
scheme, equipped with no group manager, no set-up protocol
but an efficient revocation protocol.

1.2 Related Works

The notion of threshold signature has been widely stud-
ied. One of the earliest literature about this topic is found
in [12]. Many other papers, e.g., [10], [11], [16], [17], [22], [23],
have been published. In the literature, a threshold signa-
ture scheme is a regular digital signature scheme, such as
El Gamal, RSA, and DSS, and allows a (static) group of n

players who share a secret key among them with respect to
one public-key, to sign messages via their collaboration.

Related notions to our topic include group and ring signa-
tures.

A group signature scheme, originally due to[7] and fol-
lowed by many other papers, e.g., [2]~[4], [6], allows a mem-
ber of a (static) group to sign messages on the behalf of the
group, while preserving his anonymity. A notable aspect of
these group signature schemes is that there is a group man-
ager who can revoke the anonymity of members if necessary.
Usually, the group manager need set up a special type of key
assignment protocol and hence, it is difficult to change the
group dynamically.

A ring signature scheme, due to [21], is similar to a group
signature scheme. The difference is that a ring signature
scheme has no group manager, no set-up procedure, and al-
lows the group to be dynamic, but has no revocation pro-
cedure. In these schemes, the Public-Key Infrastructure is
assumed. The signer who wants to sign a message can choose
an arbitrary set of possible signers, called the ring, including
himself and he can sign messages only using his secret-key
and the public-keys of the “ring” members.

Our proposals are a kind of the threshold version of the
ring signature. We assume that all the potential signers have
their own public-keys for signatures. We call these schemes
“threshold ring signature schemes” to distinguish them from
ordinary threshold signature schemes. Like a group/ring sig-
nature scheme, a threshold ring signature scheme is “signer-
ambiguous”, which means that the verifier cannot distinguish
who participated in the protocol from those who didn’t.

A few implementations of threshold ring signature schemes
have been proposed [1],[5]. In addition, the witness indis-
tinguishable proofs shown in [9] can be combined with the
Fiat-Shamir technique to create a threshold ring signature
scheme. Actually, our concrete proposals are produced based
on their WI technique.

An intuitive notion of “exact t-out-of-n signature” is dis-
cussed in [19], although the definitions are not given. They
also proposed a few heuristic implementations [18], [19], but
no security analysis is given.

No known reference describes a definition capturing the
notion of “exact t-out-of-n signature”, and a threshold ring
signature scheme which makes it possible to specify the ex-
act number of the signers who actually participate in the

protocol.

2. Ranged Threshold Signature: Model

and Security Definitions

2.1 Notations and Syntax
Let X be a probability space on finite set S(C {0,1}").
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We denote by £ «— X the operation of sampling an element
of S according to the distribution of X, and assigning the re-
sult of this experiment to the variable z. We also write, for
a finite set S, £ v S to denote the operation of sampling
an element of S uniformly, and assigning the result of this

experiment to the variable z. We write z := a to denote the

operation of assigning the value of a to the variable z. Let A
be a probabilistic algorithm. We write y «— A(z1,...,z,) to
denote the experiment of running A for given (zi,...,zn),

picking r uniformly from an appropriate domain, and as-
signing the result of this experiment to the variable y, i.e.,
y:= A(Z1,...,Zn;T).

Let €,7 : N — [0,1](C R) be positive [0, 1]-valued func-
tions. We say that €(k) is negligible in k if, for any constant
c, there exists a constant, ko € N, such that e(k) < (1/k)°
for any k > ko. We say that 7(k) is overwhelming in k if
(k) £ 1 — 7(k) is negligible in k.

For a finite set S, we denote by as vector (a:)ies. Let #S
be the number of the elements in S. For a subset T C S, we
write S — T to be the complement of T in S, i.e., SNT.

Here, we define a ranged threshold signature scheme.

a) Syntax.

A ranged (t,t',n)-threshold signature scheme is a tuple of
algorithms, ¥ = (Gen, Sig, Comb,Ver, Rec), such that, for
keN,

e Gen, the key generation algorithm, is a probabilistic
polynomial-time algorithm that takes security parameter k,
and outputs (pk, sk), denoted a pair of a public-key and a
secret-key.

(pk, sk) — Gen(1%).

e Sig, the signing algorithm, is a probabilistic
polynomial-time (in k) algorithm that takes range [¢,t'], a
vector of public keys, pky £ (pki)icn, where N 2 {1,...,n},
one secret key, ski, where i € N, and message m € {0,1}",

and that outputs (partial) signature o;.
o: « Sig, ([t t'],pkn,m).

Here, note that o; is a (partial) signature that participant %
who has possession of secret-key sk; can generate on a mes-
sage by himself.

e Comb, the signature combining algorithm, is a prob-
abilistic polynomial-time (in k) algorithm that takes range
[t, ], a vector of public keys, pkn, a vector of the secret keys,
sks £ (ski):es, where S C N, signatures o5 2 (0:):es, and
message m € {0,1}", and that outputs threshold signature

g.
o — Combskg([t, '], pkn,os, m).

e Ver, the signature verification algorithm, is a deter-

ministic polynomial-time (in k) algorithm that takes range

[t, '], a vector of public-keys, pkn, message m € {0,1}*, and
threshold signature o, and that outputs a bit.

1/0 « Ver([t, t'], pkn,m, o).

e Rec, the share recovering algorithm, is a deterministic
polynomial-time (in k) algorithm that takes ranged [t,t'],
a vector of public-keys, pky, message m € {0,1}*, and
threshold signature o, and that outputs a vector of strings,

on 2 (0:)ien-
on = Rec([t, t']), pkn,m, 7).

For simplicity, we write (pks, sks) «— Gen(1¥) to denote
the experiment of (pk:,sk;) « Gen(1¥) for i € S and
assigning (pks, sks) = (pki,ski)ics. Similarly, we write
05 + Sig ([t, t'], pkn,m) to denote the experiment of o; «—
Sig,y, ([t,t'], pkn,m) for i € S(C N) and assigning o5 :=
(0i)ies. In addition, we write o «— ThrSig, . ([t,t'], pkn,m)

to denote the following experiment:

os « Sig,s([t,t'], pkn,m);
o «— Comb,ks([t,t'], pkn,0s,m);

return o.

We call this imaginary algorithm the threshold signing algo-
rithm.

b) Correctness.

For every enough large k € N, ¥ must satisfy the fol-
lowing correctness condition: For every integer n,t,t/,
0st<t' <n,forevery SCN ={L,...,n}, t S#S <,
and for every m € {0,1}", if (pkn, skn) «— Gen(1¥), o5 —
Siggig ([t '), pkn,m), o — Combskg([t,t'], pkn,0s,m), and
o = Rec ([t, t'], pkn,m, 0), then it always holds that

Ver([t,t'],pkn,m,0) = 1 and o5 = 0%,

where o5 := (0:)ies and o := (0})ies.

c) Partial signature.

We say that o, is the partial signature of i with respect to
([t,t'), pkn,m, 0) if o)y := Rec([t, '], pkn,m, o) and o; = 0.

d) Language of partial signatures.

Here, we define language L in NP, derived from ¥ as fol-
lows,

3r, r', and Ipk; € pky s.t.
(pk:, ski) = Gen(1¥;7) A
o = Sigsk, ([tv tl]apkNvm; T’)'

L2 ([t,t'], pkn,m, 0v)

We denote by L([t, ], pkn,m) the language of the (partial)
signature o; on ([t,t'], pkn,m), namely o; € L([t,t'], pkn,m)
iff ([¢,t'), pkn,m,0:) € L.

2.2 Security Definitions

In the following, we define security requirements for a
ranged threshold signature scheme — “signer-ambiguity”,

“soundness”, and “exculpability”.
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e) (Computational) Signer-Ambiguity.

We consider the following game of ¥ against adversary D
with respect to parameters, N, and s, where s £ n(= #N).
At the beginning of the game, (pkn, skn) are generated by
Gen(1*) and a random subset S whose order is s is chosen
from N. Then, D takes (pkn,s) and submits any sequence
of queries to threshold signing oracle ThrSig ([, -], Pk, ),
where we denote by ThrSig, ([, -], pkn, -) the threshold sig-
nature oracle that takes range [t,t'], where t £ s < t/,
and message m € {0,1}", and that returns o, with re-
spect to sks. At the end of the game, D outputs z € N.
We say that D wins (the game) if ¢ € S. We define the
advantage of D against ¥ with respect to N and s, as
Adv*™(Z, D, N, s)(k) =

ky. .
Pr[ (pkn,skn) — Gen(1¥); S Cu N; ieS _57

i DT Sars (LolPkN ) (s o)

where the probability is taken over the choice of subset S
from N, the coin tosses of Gen, Sig, and Comb in £ and
those of D.

[Definition 1] (Signer-Ambiguity) We say that ¥ is
signer-ambiguous if, for every probabilistic polynomial-time
(in k) adversary D, every N, and every s(£ n), the advan-
tage Adv*™P(Z, D, N, s)(k) is negligible in k.

f) Soundness.

We define the soundness condition for a ranged threshold
signature scheme. Let A be a probabilistic algorithm (ad-
versary) that takes 1% and outputs ([t,t'],pkn,m,0). We
define the advantage of A against ¥, Adv*""4(Z, A)(k), as
the probability that A outputs ([t,t'], pkn,m,0) such that
Ver([t,t'],pkn,m,0) = 1 and, letting o; be the partial sig-
nature of i with respect to ([t,t'], pkn,m,0), the number of
o1’s that belong to L([t,t'], pknx,m) does NOT lies in [t,¢'],
where the probability is taken over the coin tosses of A.
[Definition 2] (Soundness) We say that ¥ is sound if
for any probabilistic polynomial-time (in k) algorithm A4,
Adv*"*d(E, A)(k) is negligible in k.

g) Exculpability.

We consider the following game against an adversary F

_ with respect to (N, S’), where S’ C N. At the beginning of

" the game, (pkn,skn) are generated by Gen(1*). Then, F

takes pkn, and skg/, and submits any sequence of queries to

: threshold signing oracle ThrSig, where we denote by ThrSig
the threshold signature generation oracle that takes the vec-
tor of public-keys, pkn, the set of the signers, S, range [t,1'],
where §{ £ § £ # £ n, and message m € {0,1}", and that
returns & on message m, with respect to skz. Finally, F
outputs ([t,t'],m, o). We say that F entraps a participant if
the following condition holds:

(1) Ver([t,t'], pkn,m,0) =1,

(2) m was not submitted to ThrSig for signing, and

(3) There is 0; € L([t,t'], pkn,m) such that i & S’
and o; is the partial signature of i with respect to ([t,t'],
pkn,m,0).

We define the advantage of F' against ¥ with respect to
N and S’ as the probability that F' entraps some partici-
pant. Namely, Adv®™"*P(Z, F, N, S’)(k) = Pr((pkn, skn) «
Gen(1¥) : F™S8(pky, sks:) entraps a participant.], where
the probability is taken over the coin tosses of Gen, Sig, and
Comb in ¥ and those of F.

[Definition 3] (Exculpability) We say that ¥ is excul-
pable if, for any probabilistic polynomial-time adversary F
and any S’ C N, Adv®™™™P(Z, F, N, S')(k) is negligible in k.

We say that ¥ is “strongly” exculpable if, ¥ is exculpable
in the same condition except that sentence 2 above is re-
placed by the sentence that the same ([t,t'], pkn,m, o) did
not appear in the query/answer list between F' and ThrSig.

3. Proposed Scheme, Protocol 1

In this section, we present our proposal, Protocol 1.

Protocol 1 is intuitively constructed as follows: Each real
signer produces partial signature o; on message m, by using
an undeniable signature scheme. Then, by collaborating each
other, the real signers make fake partial signatures, o;:’s, for
i’ € S, where S denotes the set of the real signers. Since
0 is an undeniable signature, nobody except them can see
whether o; is valid or not. Then, they collaborate and pro-
duce two non-interactive zero-knowledge proofs: One proves
that the number of o;’s such that (pkn,m,0:) € L is at least
t, whereas the other proves the number of oi’s such that
(pkn,m,0:) € Lis at least t' (Namely, # of (pkn,m,0:) € L
is “at most” t').

Now let us start the concrete description of Protocol 1.
Let-G be multiplicative group of prime order g and let g be
generator of G. Let H : {0,1}* — G, H' : {0,1}" — G,
and H” : {0,1}* — Z, be distinct hash functions. We de-
note by N = {1,...,n} the set of n players. Let (y:,z:)
be the public/secret key pair of participant i € N such that
yi =9° €G. Let yv = (¥1,---,Yn)-

h) Signing procedure :

Let S(C N) be a set of the signers who collaborate with
each other to generate a signature on message m.

(1) Al participants of S collaborate to select randomly
T,T' Cy Nst. #T =t,#T =t and T C S C T', and
collaborate to select randomly 7 —u {0, 1}*.

(2) Each participant i € S computes o; = h"*, using his
own secret key z; € Zg, where h = H([t,t'],yn, m,7), and
distributes o; to the other members of S.

(3) Al participants of S collaborate to select randomly
oi +—y Gforie T'—8 (If T' — S = 0, just ignore this step).
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(4) Each participant in S sets o: = H;/:O(Aj)ij €eG
for all : € N — T', where Ao = H'([t,t'],yn,m,7) € G, and
A; =Tlier (ok/A0)™* € G for j =1,...,t, where

-1

kit Kt
mi,ky ™M1k, 1 1

1 t
My’ ky me k,, ke ke

is the inverse matrix of van der Monde matrix and 7" =
{k1,...., ke }.

Notice that there exists a polynomial of degree t', a(z) €
Zg[z], such that Ao = h*® € G and 0: = h*®) € G for
1€ N.

(5) Each participant i € S selects randomly w; «yu Zq,
sets a; = g¥,b; = h** € G, and distributes a:,b; to the
other members of S.

(6) All participants of S collaborate to select randomly
zi,¢i +u Z,, and set a; = g¥y*,b; = h*o* € G for
i€EN-S.

(7) Al participants of S collaborate to select randomly
ci—yZgforie S—T (If S— T =0, just ignore this step).

(8) Each participant in S sets a polynomial of degree
(n —t) in Z4[z], B(z), such that

B(0) = H"([t,t'],yn, m,7, h, (A:)t—o,an,bn) € Zq, and
BGE)=ci€Zy forie N-T,

where (A:)i_, = (Ao, A1,-..,Av), an = (a1,...,as), and
bv = (b1,.-.,bn).

(9) Each participant i € S sets z: = w; — B(i)z; € Z,
using secret key z: € Z,, and distributes z; to the other

members of S.

(10) All participants of S output signature o
(r, (A)_,, B(z), zn), where (A, = (Ai,...,Ay) and
v = (21,-.-,2n).

[Remark 1] 1In Step 1, 3, 6, and 7, all participants in S
need collaborate with each other to pick up some random
elements. In the other steps, no interaction is required.

i) Verification procedure:

The verifier is given parameter [t, '], public keys yn, mes-
sage m, and signature o = (r, (A,-)f':l,ﬁ(z),z)v).

(1) The verifier checks 7 € {0,1}*, and h, Ao, A1, ..., Ay €

G, where
h=H([t,t'],yn,m,7) and Ao = H'([t,t'),yn,m,7).

(2) The verifier checks that z; € Z, and o; € G for all
TT5=o(49)"

(3) The verifier checks that B(z) € Z,[z], deg B(z) =
(n—1t), and B0) = H"([t,t'],yn,m, 7 h, (A:)izo, @y, by),
where (A:)t_o = (Ao, ..., Ay), dy = (a},..

i1 € N, where o;

.,ay) and by =

(b4,...,bYy) such that a} = g*y??) € G and b = h*c?®)
e€Gforie N.

(4) If all checks above are passed, the verifier accepts,
otherwise rejects.
[Remark 2] The partial signature of ¢ with respect to
([t,¥'], yn,m) is (r, 0:) and the language of (partial) signature
Lis

Jz; € Zy,3r € {0,1}*,

Jy: € yn s.t.

L2 ([t t),yn,m, (r,04))

i = g™ and
i = H([t,t'],yn,m, 7).

1Un)-
Notice that (a part of) the partial signature, o;, of partici-

where yn = (y1,...

pant i € S who really joined the signature procedure has the
form of o; = h¥i, which can be seen an undeniable signature
proposed by Chaum [8].

j) Confirmation procedure:

There is an efficient 4-move zero-knowledge interactive
proof on language L for confirmation, see [8], in which par-
ticipant 4 can prove that log, (y:) = logy, (:)-

k) Disavowal procedure:

There is an efficient 4-move zero-knowledge interactive
proof on language L for disavowal, see [8], in which partici-

pant i can prove that log, (y:) F logy, (o).
4. Security Analyses

In this section, we provide security analyses of the pro-
posed scheme.

[Theorem 1] (Signer-Ambiguity) Protocol 1 is com-
putationally signer-ambiguous under the decisional Diffie-
Hellman assumption in the random oracle model.

Proof. Suppose for contradiction that there is an ad-
versary D with advantage €, which means that, by defini-
tion, D can correctly guess i € S with probability £ + e.
We now construct an algorithm A to solve the decisional
Diffie-Hellman problem. Let (g,g’,u,v) be a given instance,
where g,g',u,v € G. When (g,9',u,v) is a DDH tuple,
log, (u) = log,/ (v) holds. We construct A as follows:

(1) Pick up at random S Cy N and i « S.

(2) Pick up at random z; € Z, for j € S — {3}.

(3) Sety::=wuandy;:=g" for j € S - {i}.

(4) Pick up at random y;s «— G for i’ € N — S.

(5) Feed (t,t',s,yn) to D, where s = #8.

(6) In case D submits a fresh query to random oracles,

H' and H", pick up a random element in G to reply with.
Store the query/answer pairs in the lists, Qg+ and Qg , re-
spectively.

(7) In case D submits a fresh query to random oracle

H, pick up random a «—y Z, and returns g’*. Store these
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value in the query/answer list Qn, as well as a.

(8) Incase D submits a signing request on {[t, t'], yn~,m},
first, pick up random r «y Z,. Second, set g'* as
H([t,t'],yn,m,7) and 0; = v*, where a «—y Z, (In case
H([t,t'],yn,m,7) has already been booked in Qx, use the
corresponding o). Generate the (threshold) signature o, with
respect to sks_ ), following the signature procedure in Pro-
tocol 1.

(9) Finally, when D outputs i, output 1 if ' = i, oth-
erwise flip a coin b € {0, 1} to output.

Here, notice that if (g, g, u,v) is a DDH tuple, o is identi-
cal to the real signature using skg, otherwise if it is a random
tuple, o is identical to the real signature using sks_(;}-

The advantage of A against the DDH problem is defined

as
Pr[A(g,9"-u,v) = 1/(9,9', u,v) € DDH]
— Pr[A(g,9',2,v) = 1/(9,9',u,v) ¢ DDH].

Here, Pr[A(g, g .u,v) = 1|(9,9',u,v) € DDH] = Pr[i’ =]
+Prfi’ $1]- Prjb=1i & i]

1 € 1 € 1 1 e 1
—(;*;)*(l‘(ﬁ*;))'i‘i'(;*;)*i’
where Prfi’ = i] = Pr[i’ € S]-Prf¢’ =i|i’ € §] = (2 +¢)-
.
On the other hand, Pr[A(g,¢’.u,v) = 1|(g,9',u,v) &
DDH] = Prfi’ =4 + Pr[i’ +14]-Prjb=1Ji' # 4]

(i‘ﬁﬁ)*(l“(i“n—_}ﬁ) 3
-3 (:11 - n—.—ﬁ) ty
where Prfi’ = i) = Pr[i’ ¢ S\{i}]: Pr[¢' = ili' & S\{i}]

=(1-(+9) =

Therefore, the advantage of A becomes (% + ——27) - €.

To suppress the advantage of A to be negligible in k, e must
be negligible in k. [m]
[Theorem 2] (Soundness) Protocol 1 is sound in the
random oracle model.

Proof. Let A be an adversary that fools the verifier, after
it accessed the random oracles g(k) times in total.

First, consider Case 1: #{i € N|(r,0:) € L([t,t'],pkn,m)} <
t.

Ver([t,t'],pkn,m,0) = 1 implies that a; = g"'yf(i) eqG
and b; = h* af(i) € G for i € N, which means that
log,(a:) = z: + z:A(3) and log,, (b:) = z: + z;B(i) for i € N.
Note that if z; + i, B() is determined. Hence, Case 1 im-
plies that there are at least (n —t + 1) determined B(i)’s,
meaning polynomial B(z) of degree (n — t) is uniquely de-
termined. Since H” is a random oracle, for any given
(it ¥'], yn,m, 7, h, (As)i=o, aly, by), the probability that

H"([t,t), yn,m, 7, h, (A:)ico, v, biv) = B(0)

is at most ¢!

, where the probability is taken over the choice
of H”. Therefore, for any A with at most gy~ queries to
random oracle H”, the verifier accepts the signature with a
probability at most 1~

Next, consider Case 2: #{i € N|(r,0:) € L([t,t'],pkn,m)} >
t.

Since Ver([t,t'],pkn,m,0) = 1, we have o; =
H;;O(A,-)'j € G for 1 € N. Hence, there is a polynomial
of degree t', a(z) € Z4[z], such that a(i) = log,(o:) for
i € N. Case 2 implies that at least (¢’ + 1) z;’s are on poly-
nomial a(z), which determines the polynomial. Since H' a
is random oracle, for any given ([t,t'},yn,m,7), the proba-
bility that “log;, (H'([t,t'], y~,m, 7)) = a(0)” is at most ¢~ *,
where the probability is taken over the choice of H'. Thus,
for any adversary A with at most gy number of queries to
random oracle H’', the verifier accepts the signature with a
probability at most 2.

To sum up, for any invalid instance, and any adversary
with at most g(k) queries to the random oracles, the verifier
can be fooled only with probability at most 1((152. a
[Theorem 3] (Exculpability)

under the computational Diffie-Hellman assumption in the

Protocol 1 is exculpable

random oracle model.

Proof. Suppose for contradiction that there is subset
S’ C N and adversary F that, given S’, entraps a signer
against Protocol 1. We then show that we can construct A
that given a random instance, (g,Y,Y’), where g,Y,Y' € G
outputs Y’ such that Y = g¥. We construct A as follows.

(1) Pick up z: «u Zq as sk; and compute y; = g** € G
fori € S'. Pickupri «u Zgtosety, =YY" € G for
ieN-S.

(2) Feed pkn and sks: to adversary F.

(3) In case F submits a fresh query to random oracles,
H’' and H”, pick up a random element in G to reply with.
Then store the query/answer pairs in the lists, @5+ and Qg+,
respectively.

(4) In case F submits a fresh query to random oracle
H, pick up random u <y Zg and return Y'*. Then store
the query/answer pair in the list Qx.

(5) In case F submits query ([£,#],5,pkn,m), where
{ < 5(= #8) £t £ n, to the signing oracle ThrSig, return
o as follows.

(a) Pick up at random T, 7" C N s.t. #T =1, #T" =t
andTcScT.

(b) Pick up at random r «—y {0,1}* and v <y Z,,
to define hash value H([{,#],yn,m,7) to be g*. In case
H([f,#],yn,m,7) has already been booked in Qu, A halts.

Otherwise, set 0; = y; for all 4 € §. Here, notice that since
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0; = h'®s¥ and h = ¢°, o, is identical to the real partial
signature using the secret key z; such that y; = g*+.

(¢) Pick up at random o; «—y G for all i € T — S.

(d) Set Ao = H'([t,t"],yn,m,7) € G as follows: If
H'([t,'],yn,m,7) has already been booked in Qg, set the
value as Ap; otherwise, select Ag at random.

(e) Compute A; = [[ieq (0x/A0)™* € G for j =
1,...,t', following Step 4 in the signature procedure in Pro-
tocol 1.

(f) Compute o; = H;-’=0(Aj)ij €Gforie N-T.

(g) Pick up a random polynomial of degree n—t, 8(z) €
Zg[z].

(h) Pick up random 2; <y Z, to compute a; = g*y*®
and b; = h*g?®") for alli € N.

(i) Set H"(&],yn,m,mh, (A)g,an,bn) = B(0).
In case it has already been booked in Q~, A halts.

(i) Return o = (r, (A:)y, B(z), zn).

(k) Store the query/answer pair in the list Qrs.

(6) Finally, F outputs (z,0), where z = ([t, '], pkn, ™),

such that Ver(z,0) = 1 and m & Qrs. Then, retrieve on_g
1/ur;

from o, pick up at random o; <y on_s’, and output o;
Here, notice that, since o; = h'®5s¥% and h = g¢°, o; is

identical to the real partial signature using the secret key z;

such that y; = g**. Hence, log, (a:) = log, (b:) for i € S.
It implies that the simulation of A for signing with respect
to S is identical to the real signature, unless h or 3(0) has
already been booked in the query/answer lists. Hence, the
probability of failure is at most %{- +5q“,{—', where gy and gy~
denote the numbers of queries of F' to the random oracles,
H and H", respectively.

If F entraps a signer, then there is at least a 0; € on_g
such that o; = h™* where z; = r;log, Y and h = Y'*, which
implies o; = Y'*"¥ such that Y = g¥. Although we don’t
see who is entrapped, but with probability at least =L, we
can simply guess the entrapped player i ¢ S’. Note that,

- since m € Qrs (by definition), the value h above does not
lie in the list Qx at most with probability gfn

Hence, if F' entraps a signer with probability € after it ac-
cesses the random oracles, H and H”, g and gg« times, re-
spectively, A can solve the computational DH problem with
probability at least 2 (5 I 5{;’,,’—'). ]

Ift =1t

Protocol 1 is “strongly” exculpable under the discrete loga-

[Theorem 4] (Exculpability in case t = t) ,
rithm assumption in the random oracle model.

Proof. Suppose for contradiction that there are subset
S8' C N, where #S’ = t, and adversary F such that F takes
sks: and existentially forge a signature of some participant
i ¢ S'. Then, we show that we can construct algorithm A
that solves the discrete logarithm problem. Let g,Y € G be

a given instance of discrete logarithm problem. The goal of
A is to output log, Y.

A runs F as same as in case of ¢ < t’ except that: In case F’
submits a fresh query to random oracle H, pick up a random
element in G to reply with, instead of Y'*. Then store the
query/answer pair in the list Qg.

Suppose that F' outputs a valid message/signature pair,
(z,0), such that (z,0) € Qrs, and there is a o; in ¢ such
thatie N - S'.
denotes the advantage of F'.

This happens with probability €, where €

Then, A rewinds F on the same input including the same
random coins to F, following the standard technique of
knowledge extractor in [13], [20].

In the replay, A behaves as same as in the first
play except that, letting ¢ = ([t,t'),pkn,m) and ¢ =
(r,(Ad)iz0,B(z),2n), when F submits ([t,t], pkn,m,r,h,
(A:)izo, an,bn) to H”, where a; = g%y?™ and b =
h“'afi ® pick up at random B(0) to reply with as
H"([t,t'],pkn,m, 7, h,(A:)izo,an,bn). If B(0) = B(0), A
halts. However, it happens only with probability ¢~*.

Suppose F outputs a valid message/signature pair,
(«',0") € Qrs, such that z = 2’ and o’ = (r, (Ao, Ay,...,
Ay), B(z),%n). This event happens with probability $€7
following [20].

Since the degree of 3(z) is also n — ¢, there are at least
t4’s, i € N, such that 8(i) % B(i). Therefore, A obtains
at least t pairs of (a:,bi,B(¢),2:) and (ai,bi,B(i),éi) such
that B(3) # B(i) and hence, it can compute at least ¢ logs,
log,(y:)’s, as 5(—3:—;‘(7)’&

Consider the case that every i above lies in S’. Then, the
number of o;’s that belongs to L must be at least ¢ + 1,
because F' has entrapped at least a participant i’ (i.e., oy
belongs to L), and every o; € os/ belongs to L, because
log,(y:) = log,(0:) holds. By theorem 2, the probability is
at most 1. Hence, with an overwhelming probability, A
can extract at least one secret key log,(y:) for i € N — &',

and hence it can output log, Y dividing by r;.

2
To sum up, the success probability of A is at least q;” -
1_ 9y _ — g _
q q 32% q o =

5. Applications

A possible application of these protocols is to a group sig-
nature scheme. Our proposal can provide a threshold group
signature scheme which has no group manager, no set-up pro-
tocol but an efficient revocation protocol (by using efficient
confirmation and disavowal protocols). Another possible ap-
plication is to anonymous petition or simple anonymous vot-
ing, in which the signers can tell everyone exactly how many
people approve or disapprove of an issue, while preserving

anonymity among all possible signers.
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6. Extension

By definitions above, it is clear that the ranged thresh-

old signature schemes are at best computationally signer-

ambiguous. In some application, however, it might be more

desirable that signer-ambiguity is unconditional. To realize

this property, we have a definition of the unconditionally-

signer-ambiguous ranged threshold signature and another

construction. Due to the space limitation, however, it has
been described in [14].
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