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Abstract Koblitz curves belong to a special class of binary curves on which the scalar multiplication can be
computed very efficiently. For this reason, they are suitable candidates for implementations on low-end processors.
However, such devices are often vulnerable to side channel attacks. In this paper, we propose two countermeasures
against side channel attacks on Koblitz curves. Both of them utilize a fixed-pattern recoding to defeat simple power
analysis. Our first technique extends a known countermeasure to the special case of Koblitz curves. In our second
technique, the scalar is recoded from left to right, and can be easily stored or even randomly generated.
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. ared to elliptic curves defined over prime fields.
1. Introduction P P P

But some special binary curves called Koblitz curves are

Since they have been proposed, elliptic curve cryptosys-
tems (ECC) have been thoroughly studied, because in con-
trary to RSA-type cryptosystems, they are well-suited for
implementations on memory-constrained devices and low-
end processors. However, when no coprocessor is available
to speed-up modular multiplications, elliptic curves defined
over prime fields are still to slow for practical implementa-
tions on such low-end processors. One possible solution is
to use elliptic curves defined over binary fields: such binary
curves rely on simple and carry-less operations such as shift
and xor. Indeed, binary curves can be implemented easily
on general-purpose processors, and the simplicity of their

atomic operations results in a considerable speed-up com-

even faster. Indeed, on Koblitz curves, with the right repre-
sentation of the scalar, it becomes possible to replace the el-
liptic doubling operation by much faster operations, namely
squares. Since their efficient arithmetic has been pointed
out [11], no significant security flaw or practical attack has
be found on Koblitz curves.

Side channel attacks are powerful attacks which use a priori
innocuous information such as timings or power consumption
to break implementations of cryptosystems [10]. On light and
specialized cryptodevices such as smartcards, side channel
attacks are a major threat. There are two types of attack
strategies based power consumption analysis: simple power
analysis (SPA) and differential power analysis (DPA). In the
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frame of SPA, the attacker uses only one power trace to guess
the secret information, whereas he is allowed to use a statis-
tical tool in order to extract information from several power
traces in the frame of DPA [10].

On Koblitz curves, the standard DPA countermeasures
can be deployed: among others, randomized projective co-
ordinates, randomized scalar or randomized base point [3].
However, SPA resistance is problematic: the known counter-
measures for general curves are either based on dummy op-
erations [2], [3] or scalar recoding using properties of binary
representations [15]. First, even though dummy-based coun-
termeasures are straight-forwardly applicable, they should
be avoided. Indeed, fault attacks can exploit dummy opera-
tions: one type of attacks is defeated, but only to let in a new
powerful attack with devastating consequences [18]. Second,
to benefit from the fast arithmetic of Koblitz curves, that is,
replacing elliptic doublings by squares, one has to first re-
code the scalar to a new representation. On general curves,
scalars are usually represented using a binary representa-
tion d = .77 di2’, or a close variant of it. However, on
Koblitz curves, a totally different representation is deployed:
d= E::Ol d;7*, where 7 is solution of a quadratic equation.
As a consequence, many tricks which manipulate the binary
representation are not applicable anymore.

In this paper, we propose two new countermeasures against
side channel attacks on Koblitz curves. The first technique
extends the mechanisms of a countermeasure for general
curves, namely the SPA-resistant NAF,, [15], to the spe-
cial arithmetic of Koblitz curves. The original SPA-resistant
NAF,, utilizes special properties of binary expansions to gen-
erate a secure representation. We show how to transpose the
mechanisms of the countermeasure to Koblitz curves. The
second technique utilizes a two-round recoding. First, it gen-
erates a zero-free representation using the principles of our
first countermeasure. Second, it applies a windowing tech-
nique in order to take advantage of pre-computed points and
consequently reduce computational costs. Then, we empha-
size interesting properties of our schemes. On elliptic curves,
left-to-right computations are usually faster, because they
are compatible with the most efficient coordinate systems [4].
Thus, it is preferable to use a left-to-right recoding approach
as well: the recoding and the scalar multiplication can be
combined, and no memory is needed to store the scalar in
multiple representations. We show practical situations where
our ideas are compatible with a left-to-right recoding. First,
when the scalar is fixed (e.g. EC-ElGamal decryption), us-
" ing our representation, the scalar can be recoded (off-line)
and stored once for all, and a windowing technique can be
applied on the fly. In this situation, on-line computations are

fully left-to-right. Second, when a secret ephemeral is needed

(in EC-DSA signature generation or EC-DH), we can gen-
erate this ephemeral on the fly while computing the scalar
multiplication, already recoded with our technique, allowing
left-to-right strategies to work in harmony with the recod-
ing stage. Therefore, in all practical situations where SPA-
resistance is needed, our countermeasures can be deployed
to protect secret information against side channel attacks,
providing a high security level, great efficiency, smart and

small memory usage.
2. Preliminaries

In this section, we discuss known facts: we introduce
Koblitz curves and discuss the feasibility of side channel at-
tacks on them.

2.1 Koblitz Curves

Koblitz curves are binary elliptic curves which offer a very
efficient arithmetic with no significant security drawback [11].
They are defined over a binary field Fom by the equation:
&, =y*+zy = 2% +ax?+ 1, where a € {0,1}. We denote by
&a(F2m) the additive group of the points of the elliptic curve
over Fam , along with the point of infinity O, neutral element
of the addition law. The main interest of Koblitz curves is
that elliptic point doublings can be replaced by the efficiently
computable Frobenius automorphism & : (z,y) — (22,1%).
Since the quadratic equation (z*,y%) + 2(z,y) = u(z?,3?)
where g = (—1)!7* holds for all points on the curve, the
Frobenius map can be regarded as 7 = (u + v/—7)/2, solu-
tion of the equation ®2 = u® — 2. The Lucas sequence Uy,

is useful to compute with powers of 7:
Uo = O,Ul =1and Uw+1 = [I.Uw - 2Uw_1 for w 2 1.(1)

The approach for fast computations over Koblitz curves
is to convert a scalar d to a radix T expansion such as
d=Y7_,di*, d: € {0, +1}. However, in order to fully take
advantage of the Frobenius map, the 7 expansion must be
sparse and short. In [17], Solinas proposed two efficient algo-
rithms to satisfy these properties: partial reduction modulo
§ = (™ —1)/(7 — 1) and radix-7 NAF recoding. Addition-
ally, a width w radix 7 NAF expansion (TNAF,) can be

constructed from the following map:

&, : uo+u1-T € Z[T] — uo+u1-tw mods 2 € Z/2¥Z,(2)

Up
where t, = 2=5=1

mod 2% and the notation mods 2% refers

to the signed re‘}”)resentatives modulo 2%. Interestingly, the
elements up+u; -7 with odd uo correspond exactly to the odd
representatives modulo 2 under ®,,. Thus, the map ®,, de-
fines (easily computable) congruence classes in the ring Z[r].
Then, the digits of the TNAF,, are computed by iterating
the procedure described in Algorithm 1.

Since the digits u of the TNAF,, belong to the set u €
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Algorithm 1: Conversion to TNAF,, [17]

-1

INPUT: Scalar d, width w, per-curve parameters u, § = ——;
OUTPUT: (df'") ..... d(()“‘)), TNAF,, representation of d;

(1) uo «— dmod § with(17]; uy «— 0;1 — 0

(2) while uo # 0 or u; ¥ 0 do
(a) if uo mod 24 0 then u — ®(up + 7u,) else u — 0 ;
(b) wo —up—u;di —u;re—up/2
(c) une—u1+ur;u1«——r;dfw)o-u;h—l+l;

(3) return (d{*),..., a$™y;

{£1,43,...,£(2*"! = 1)}, only 2*~2 — 1 non-trivial points
must be pre-computed, with 2*~2 — 1 point additions and
one point doubling. Therefore, the total cost of the scalar

multiplication using TNAF,, is on average:

Cnar = (m+a)ECFRB

3
+ (£ +2°"* - 1) ECADD + ECDBL ®

where ECFRB, ECADD and ECDBL stand for the compu-
tational cost of the Frobenius map, point additions and point
doublings, respectively.

2.2 Side Channel Attacks on Koblitz Curves

Side channel attacks are a serious threat for light embed-
ded devices running cryptographic applications: such devices
often leak critical information through unexpected and a pri-
ori innocuous channels: timings or power consumption, for
instance [10]. One can classify side channel attacks relying
on power analysis into two categories [10]. The first class of
attacks is called simple power analysis (SPA): in this situ-
ation, the attacker attempts to reveal the secret parameter
with one single power trace. The second class is called dif-
ferential power analysis (DPA): the attacker is allowed to
gather several power traces and analyzes them with the help
of a statistical tool.

In general, SPA on ECC utilizes the fact that point ad-
ditions and doublings have different implementations, lead-
ing to different power traces(3]. By recognizing the oper-
ation chain from the power consumption, the attacker can
reveal the secret information. To implement Koblitz curves,
a polynomial basis is generally preferred. In this case, point
doublings are replaced by the Frobenius map, whose compu-
tational cost is small but not negligible [7]. In other words,
it is realistic to expect that the computation of one single
Frobenius map can be detected within one power trace: in
this case, SPA is straight-forwardly applicable.

In (3], Coron extended DPA to elliptic curve cryptosys-
tems. On the one hand, DPA is not applicable to EC-DSA,
where the base point is fixed and public, and the scalar is a
random ephemeral, different for each signature: on the con-
trary, the settings of DPA require a fixed scalar and variable

base points. On the other hand, the scalar multiplications in

EC-ElGamal decryption can be attacked by DPA. Therefore,
depending on the situation, DPA resistance is not always
required. When necessary, the standard DPA countermea-
sures such as randomized projective coordinates, randomized
scalar, randomized base point or randomized field parameter
have to be deployed (3], 8], [14].

Another class of attacks closely related to side-channel at-
tacks consists in injecting faults during computations, for
instance by feeding the power supply with higher voltage.
Then, by analyzing the output of the cryptosystem, the at-
tacker can sometimes recover critical information about the
secret parameters [1] A simple countermeasure is to check
for faulty results and discard them. However, if the fault is
injected on a dummy operation, the result is not faulty: with
these safe-error fault attacks, it becomes possible to detect
dummy operations [18]. As a consequence, it is preferable to

avoid dummy operations in practical implementations.
3. Proposed SPA-Resistant Techniques

In the following, we describe two methods to protect the
scalar multiplication on Koblitz curves against side-channel
attacks.

3.1 Motivation

Since standard DPA countermeasures such as random-
ization of the coordinates of the base point are straight-
forwardly applicable on Koblitz curves, achieving DPA re-
sistance is not a major problem. Moreover, depending on
applications, DPA attacks are not always applicable: for in-
stance, the signature scheme EC-DSA is immune to such
attacks. On the other hand, SPA is always applicable and
the countermeasures for general curves do not take advan-
tage of the complex multiplication, which is the key of the
efficiency on Koblitz curves. Currently, there is no scalar
multiplication scheme on Koblitz curves which is (1) effi-
cient (2) resistant to SPA attacks (3) flexible (4) free from
dummy operations. By efficient, we refer to an acceptable
overhead in terms of memory and computational cost com-
pared to unprotected scalar multiplication schemes. Thus,
the countermeasure has to make use of the fast arithmetic of
Koblitz curves (i.e. replacing point doublings by the Frobe-
nius). Our SPA attack model assumes that the attacker is
able to distinguish individual 7 multiplications. Hence, we
consider the standard case of a software implementation us-
ing a polynomial basis. By flexible, we mean here that a
window method can be deployed, allowing trade-offs between
memory consumption and computational cost. Finally, we
avoid dummy operations since they are vulnerable to safe-
errors attacks [18].

On general elliptic curves, the SPA-resistant NAF,, is a

fast SPA countermeasure which recodes the scalar using a
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fixed pattern[15]. Depending on a system parameter, the
width w of the algorithm, some points are pre-computed
in order to speed-up the computations: w is the trade-off
parameter between memory and efficiency. Thus, the coun-
termeasure seems to satisfy our criteria. Unfortunately, the
recoding of the scalar is based on properties of binary expan-
sions; on Koblitz curves, such biné.ry expansions are replaced
by T expansions and the countermeasure is not applicable
anymore. In the following, we show how to adapt the SPA-
resistant NAF,, to the case of Koblitz curves.

3.2 SPA-resistant TNAF,,

Recall that to generate the TNAF., one computes rep-
resentatives of congruent classes modulo 7% with the map
&, :do+dy 7 € Z[r] — do+d1-tw mod 2. Then, d— P, (d)
is divisible by 7*. However, we aim at generating a fixed
pattern: we look for a new set of representatives modulo 7%,
which verify d — u is divisible by 7%, but additionally d — u
is not divisible by 7***.

Proposition 1. Let the map V., be defined as:

Uy Zlr] — Z/2YZ

4
do+dit — (do + ditws1 mod 2¥F1) —2¥ )

For any d € Z[r], d — Yu(d) is divisible by 7 but not by

Tt

Proof. Recall that d is divisible by 7% iff ®.,(d) = 0[17].
We first prove that d — ¥, (d) is divisible by 7, in other
words, that ®.(d — ¥w(d)) = 0. Let d = do + d1 - 7 € Z[7].
Then, & (d — ¥u(d)) = di (fw — tws1) mod 2*. Moreover,
tw—twil = (Ug;_I-‘Uw—lUw+2U3:—1)/(UWUW+1)_1 mod 2%.
We can write that U2 — pUs—1Uw+2U2%_; = [Uw — Uw-1 - 7|
and Uy — Uw—1 -7 = 771 Because |r
tw — twtr = —2*U; Uz}, = Omod 2¥. It follows that
®, (d — Vu(d)) = 0. Besides, it is trivial that: ®wi1(d —
U, (d)) = —2* # 0 mod 2***. Then, Pu+1(d— Yu(d)) £ 0
and d — ¥,,(d) is not divisible by 7**+*. O

w—ll — 2w—l,

As a consequence, ¥, can be used to generate SPA-
Note that the input of the

recoding algorithm is p = ro + r1 - 7 € Z[r], corresponding

resistant TNAF,, expansions.

to an integer d which was first reduced modulo & in order
to generate a shorter recoding. More precisely, the SPA-
resistant TNAF,, recoding has [(m + a)/w] non-zero digits;
with the original TNAF,, thanks to the reduction modulo
&, the recoded scalar has m + a digits.

Based on the recoding computed by Algorithm 2, Algo-
rithm 3 protects the scalar multiplication on Koblitz curves
against SPA.

Proposition 2 (7-SPA resistance). The ability to dis-

tinguish individual T multiplications and point additions in

Algorithm 2: Conversion to SPA-resistant TNAF,,

INPUT: p =10 + 71 - T € Z[7] with ro odd, width w;
outeut: (d{™,...d{")) = TNAF,, (p);

(1) co+—1710;¢1 ~—71,l—0;
(2) while ¢; 0 or [co| > 2 do
(a) u+e ¥yu(co+ca -‘r);df"’) —u;cp+—co—u;l—1+1;
(b) for j from 1 to w do (co,c1) — (c1 + pco/2, —co/2);
(3) dg"")«—\llw(co+c1~r);le—l+l;

(4) return (dgf;, .. .dg:'));

Algorithm 3: Scalar multiplication using SPA resistant TNAF,,

INPUT: a scalar d, base point P, width w;
OuTpPUT: multiplied point Q = dP;

(1) pre-compute 3P,5P,...,(2% — 1)P; p + d mod §;
(2) if pis divisible by 7 then p’ «— p+1; else p' — p+ T;
(3) compute (dff)l, .. .dé"’)), from p’ with Algorithm 2;
(4) QO
(5) for i from | down to 0 do
(a) for j from 1 to w do.Q — 7Q;
(b) ifd™ > 0then Q — Q+d{™ P;else Q — Q—(—d!"))P;
(6) if pis divisible by 7 then Q — Q — P; else Q — Q — 7P;
(7) return Q;

power traces confers no advantage for finding the scalar in
Algorithm 3.

Proof. Since the main loop (i.e. Step 5) is 7-SPA resis-
tant because the scalar representation has a fixed pattern,
the only concern is that the scalar multiplication scheme re-
quires an “odd” input p (i.e. indivisible by 7). If p is divisible
by 7, one can add 1 to p = d mod 4, and adjust the result
of the scalar multiplication by subtracting P. To prevent at-
tackers from distinguishing the cases where p is odd or even,
one can always add 7 to p if it is odd, and subtract 7P from

the result of the scalar multiplication Q = (p + 7)P. O

It follows that our scheme is 7-SPA resistant, that is, as-
suming strong abilities for the attacker, who is able to dis-
tinguish individual 7 multiplications. In fact, in our attack
model, the information arisen from SPA is of no use for at-
tackers. In terms of computational cost, Algorithm 3 com-
putes [(m + a)/w] point additions in the main loop. The
pre-computation of 2! — 1 points requires 2¥~1 _ 1 point
additions and 1 point doubling. Making the cases p odd and
p even indistinguishable by SPA requires one more point ad-
dition. Then, the total computational cost of Algorithm 3
is:

Cstnar, = (m+a)ECFRB

5
+ (2¥~! + [=t2]) ECADD + ECDBL. ©)

Note that the computational cost of ECFRB is small but not
negligible.



3.3 Zero-Free Representation

The recoding of the SPA-resistant TNAF ., utilizes a right-
to-left strategy: the scalar must be first recoded and stored
in its new representation, wasting memory. However, we can
partially fix the problem, using a two-round recoding. In the
first round, the scalar is converted to a zero-free representa-
tion, using a right-to-left approach. In the second round, a
windowing technique is applied in order to take advantage
of pre-computed points and reduce computational costs. We
will see that in many practical situations, it is not even nec-
essary to compute the first round in the runtime.

First, we explain how to convert the scalar to a zero-
free representation. The set of digits of the SPA-resistant
TNAF,, consists of £1,%3,...,+(2¥ — 1). Especially, when
w = 1, the representation uses only two digits, namely 1
and —1, and the scalar multiplication is carried out with-
out pre-computations. Unfortunately, since zeros are absent
from the new representation, about m point additions are
necessary to compute the scalar multiplication, whereas the
original TNAF needed only m/3 point additions. On the
other hand, this zero-free representation has several interest-
ing properties. First, it is SPA resistant. Second, since the
only possible digits are 1 and —1, one can easily store the
recoded scalar in memory by representing the digit 1 with
the bit 0, and —1 with the bit 1, for instance. Addition-
ally, a random representation can be easily generated from a

random bit sequence.

LLj-1g1 g1 g1 j-1j1 j-1-1}-1}] zerofree

(L —191 1 31 —1j1 —1]=1 1| peo

0 1 0 3 0 1 0 1 0 -3

k-1 1 31 1 -1j1 -1 -1]-1j w=3

0 0 3 0 0 5 0 0 1 -1

-1 1 131 -1 1 -1§-1}=1] p—4
(LI1] 5 0 0 0 5 -1 -1

K1 Windowing technique on zero-free representation

It remains to reduce computational costs. In fact, it is easy
to apply a windowing technique to the zero-free representa-
tion, while preserving the original SPA-resistance: simply
divide the scalar into windows of w consecutive digits, from
left to right, and if the right-most window is not full, treat
each digit independently in a window w = 1 ®" | as shown
in Fig. 1. Then, the computational cost of the scalar multi-

plication (excluding pre-computations) is:

Czr, = (m+a)ECFRB

+ (|=f2]|+m+a—w|=te|)ECADD. (©)

(1) : The number of windows w = 1 does not depend on the scalar:

attackers cannot use this information to mount attacks.

In each (full) window, the possible digits are £7* "1+ ... £
741, and +1 in the rightmost windows. Therefore, it suffices
to pre-compute the points 7~ P+...£7P+ P and compute
point additions or subtractions depending on the sign of the
leftmost digit in each windows. Interestingly, these points
can be pre-computed using simultaneous additions and sub-
tractions: the computational cost of the simultaneous com-
putation of P+ @ and P — Q is ECAS = 4M + I instead of
4M + 21, where M and I denote the cost of field multiplica-
tions and inversions, respectively. In a naive approach based
on tree exploration, one computes P, then 7P+ P, after that
72P4 7P+ P, and so on. This technique requires 2* ™! —1 si-
multaneous additions-subtractions, which is slower than the
2¥~1 _1 additions in the case of the SPA-resistant TNAF,,.
However, in a more efficient approach, one can re-use partial
results in order to compute the next steps. Figure 3.3 illus-
trates this pre-computation technique: the partial results at
a given depth in the tree are re-combined using simultaneous

additions-subtractions in order to expand the tree.

TP+ P
P <
TP —P...

4 2 Efficient pre-computations in the zero-free method

3P4+ 72P4+ TP+ P...
P4+ 12P-7P—-P..
TP+ 712P4+7P—P..
SP+712P—-7TP+P...

With this pre-computation approach, at the ith level of
the tree (starting from P, level 0), there are 22'-1 points,
and 22" ~2 simultaneous point additions-subtractions are re-
quired to compute them from level ¢ — 1. As a consequence,
the computational cost of pre-computations at level i, cor-
responding to a pre-computed table with width w = 2° is
1+, 22’ =2ECAS. This is expected to be faster than in
the case of the SPA-resistant TNAF,,. In the general case,
using a hybrid approach which combines levels of the tree at
different depths (for example, w = 5 can be computed using
w = 2 and w = 3), the pre-computations are indeed faster
than those of the SPA-resistant TNAF,,.

4. Applications, Improvements and Com-
parisons

We describe applications of our techniques in the frame
of standard ECC protocols, and show how they compare to
other schemes.

4.1 Efficient Representation for Fixed Scalar

When the scalar is fixed (for instance the secret key in EC-
ElGamal), part of the recoding work can be pre-processed
off-line, that is, once for all during the initialization of the

smartcard. In particular, instead of storing the integer value
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of the secret key, one can reduce it modulo § and store the
corresponding element of the quadratic field co+c1 -7 € Z[7],
or even recode it off-line to an SPA-resistant representation
®2)  Especially, we can compute the zero-free representation
(that is, the SPA-resistant TNAF;) off-line and choose the
window size w in the runtime. Storing the recoded scalar
takes only m + a bits.

In Algorithm 4, we consider how to use the windowed
zero-free method to compute the scalar multiplication with
fixed scalar. Since the zero-free method is based on a fixed-
pattern recoding, the scalar multiplication is SPA-resistant.
However, to generate the zero-free representation, the SPA-
resistant TNAF; needs an input co +c¢17 where ¢ is odd (i.e.
the scalar is not divisible by 7). Therefore, after reducing the
scalar, we check whether co is divisible by 7 or not; if this
is the case, we add 1 and set an additional parity bit d, to
0, and if not, we add 7 and set d, to 1. After computing
the scalar multiplication, we adjust the result by subtract-
ing P or 7P depending on the parity bit. Since the first
(right-to-left) zero-free recoding round has been eliminated,
the second (left-to-right) windowing round can be carried out
on-the-fly during the scalar multiplication, with no further

memory consumption.

Algorithm 4: Computing Q = dP for fixed d

INPUT: Base point P, zero-free recoding (dm4a—1 - --do), parity bit
dp, width w;
OuTPUT: Q = dP;

(1) pre-compute T* P+ 7" 2P+ ...+ 7P+ P,
(2) Q—0;i—m+a-1;
(3) whilei2wdo
(a) for j from 0 to w—1do Q « 7Q;
(b) Q@ « Q + (-1%ir* P 4 (—1)%i-17¥=2p 4 .. 4
(—1)%i-wH1 Py i — i — w;
(4) for j from 0 to i do Q — 7Q + (-1)%-i P;
(5) ifd, =0then Q — Q— P else Q + Q — 7P; return Q

4.2 Random SPA-Resistant Representation for
Secret Ephemerals
In many cryptographic protocols, a random ephemeral is
needed. Since the knowledge of the ephemeral generally al-
lows to recover the secret key, it is important to protect
scalar multiplications with the ephemeral against SPA. One
can always generate a random integer multiplier, reduce it
modulo 8, convert it to an SPA-resistant representation and

finally perform the scalar multiplication. However, it would

(#?2) : In this case, DPA countermeasures based on scalar blinding
are not available, since the recoding is fixed. However, one can still
deploy other types of countermeasures, such as randomized projective

coordinates or randomized base point [3].

be preferable to generate a random SPA-resistant represen-
tation instead of a random integer, and even better, to gen-
erate the successive coefficients of the representation on-the-
fly, from left to right. Additionally, since the integer value
of the random multiplier is often needed along with the mul-
tiplied point, we should compute this integer value without
excessive overhead.

In the following, we present a method for generating a ran-
dom windowed zero-free representation along with its integer
value. Our technique takes w random bits and generates the
coefficients of the windowed zero-free representation one af-
ter the other, on-the-fly and from left to right. To compute
the integer value of the multiplier, we simply reverse Algo-
rithm 2. This method employs only additions, shifts, and
one final integer multiplication with 7 to compute the inte-
ger value of the zero-free representation. Since Algorithm 2
is right-to-left, its reversed counterpart works left-to-right,

and can also be executed on the fly.

Algorithm 5: Generating a random point Q = kP

INPUT: Base point P;
OuTtpuT: Random integer k and the corresponding point Q = kP;

(1) pre-compute T*~'P+7*"2P+ ... +TP+ P;
(2) Qe+~ 0;c0—0;¢c1+0;i—m+a—1;
(3) whilei2w
(a) pick w random bits didi_1 ... di—w+1;
(b) for j from 0 to w — 1 do Q — 7Q; (co,c1) «— (—2c1 +
(—-1)%=3,co + per);
() @ « Q+ (-D%r*7'P 4 (-1)%-17v72P + ..+
(1) 4i-wH1P; § — 4 — w;
(4) pick i+ 1 random bits did;_1 ... do and a parity bit dp;
(5) for j from 0 to i do Q — 7TQ + (—l)d'—JP; (co,c1) «
(=2¢1 + (=1)%=3, co + per);
(6) ifd,=0then Q — Q—P;co+—co—1l;elseQ «— Q—7P;
cy+—c1—1;
(7) k « co+c1-7mod #€&,; return k and Q;

Proposition 3. The distribution of random zero-free chains
is close to the uniform distribution. In fact, its statistical
distance A(g) = S5~ |P(g = i) - -#-lg—n| to the uniform

distribution ts bounded by:

#Ea—1m+a—1

a0 5\ > 11 It @m0

i=1

Proof. To bound the statistical distance, we use the fact
that for any random variable X, we have: A(X) <
%\/5#51"_1 lE[e%%‘aLHZ, where ' denotes the complex
v/=1 and i is used as index. See([9] for a proof. Obvi-
ously, the distribution of windowed zero-free T expansions

does not depend on the width w; more precisely, we only

have to study the distribution of signed “binary” zero-free



# 1 Approximated values of a, where A(g) < 2=™/@ for several
bitlengths m

m 109 113 131 163 233 239 277 283 359 409 571

a 40 43 42 39 36 35 35 36 33 32 30

representations, that is, the distribution of the SPA-resistant
TNAF;. Since all bits of the SPA-resistant TNAF; expan-

sion Z;"z‘;“*l(—l)di 77 are chosen independently, we have

|Bfe ¥ C0T ) o et g DY )
279 1445, 2#‘?‘.,‘ ’jt _gén. -
Additionally, |Ele #e. -V TIH = |8 5 | =

| cos( 2’;#’5:1 )|, and 77 = U;T—2U;_1, which proves the result.
O

Conjecture 1. The statistical distance of g to the uniform
distribution is bounded by A(g) < 2”™/5.

We computed approximations of the sum by using a
smaller pool of random values of i € {1,2,...,#E. — 1}.
According to our numerical experimentations for several
bitlengths m and 8192 random values of 4, the experimen-
tal statistical distance is indeed smaller than 2~™/%: writing
A(g) ~ 27™/*, the experimental value of a seems to de-
crease as m grows, which tends to show that our conjecture
is reasonable.

4.3 Comparison with Known Methods

a) Fast scalar multiplication on Koblitz curves.

The fastest scalar multiplication on Koblitz curves is the
TNAF,, [7]; although our proposed techniques do not intend
to compete with the (insecure) TNAF,,, Table 2 puts in ev-
idence the overhead introduced to achieve SPA-resistance.
Roughly speaking, for the same memory consumption, the
TNAF. utilizes a window size w + 2 where our techniques

have w. This is the price to pay to achieve SPA resistance.

& 2 Compared computational costs (m = 163)

296 M, 126 bytes
301M, 294 bytes

424M 294 bytes
456 M, 630 bytes

398M 294 bytes
442M, 672 bytes

insec. TNAF,,  SPA-res. TNAF,, zero-free method
[7],(17) Alg. 2,3 Alg. 4,5
w=1 - 1312M, 0 bytes 1312M, 0 bytes
w=2 437M, O bytes 680M, 42 bytes  670M, 84 bytes
w=3 338M, 42 bytes 488M, 126 bytes 490M, 168 bytes
w=4
w=35

b) SPA-resistant methods.

SPA countermeasures on binary curves, such as the Mont-
gomery ladder [13], are also applicable to Koblitz curves.
However, the computational advantage introduced by = mul-

tiplications is lost in that case. But still, the Montgomery

ladder requires only 978 multiplications for m = 163, pro-
On the

one hand, when memory resources are extremely scarce, the

tects against SPA with no pre-computed points.

Montgomery ladder performs better than our methods. On
the other hand, when some memory is available for pre-
computed tables, as soon as w = 2, our methods beat the
Montgomery ladder.

Some SPA countermeasures using T expansions were pro-
posed in [6]. However, these countermeasures are not opti-
mal in terms of memory and computational cost: our meth-
ods are more efficient. In [16], the SPA-resistance properties
of the TNAF,, using a change-of-basis strategy is pointed
out. In a normal basis, the operation 7* P is a simple cyclic
shift of the coordinates of P. Thus, they claim the time for
computing 7P is independent from w, and therefore, the
position of nonzero digits is concealed in the TNAF,,. How-
ever, it is controversial whether the cyclic shift has a static
implementation in software, without using dummy opera-
tions. Second, the method leaks the number of nonzero dig-
its of the TNAF,, representation. Even though this problem
can be partially fixed by introdﬁcing additional operations,
some information is still leaked. Third, they did not discuss
how to efficiently store or randomly generate the TNAF,,.
Finally, even though the method seems to have the same
computational cost as the original TNAF,,, there are several
drawbacks which may practically slow down the scheme. If
dummy operations are used in order to have a static im-
plementation of cyclic shifts and change-of-bases, the latter
operations will run much slower. Additionally, since point
additions are inserted to conceal the number of nonzero dig-
its, it is not clear what the average cost of the countermeasure
is.

c) Secret ephemerals and compact encoding.

Two methods for generating ephemerals on Koblitz curves
have been proposed. In[5], the Frobenius is utilized to in-
crease the entropy of standard generators. While this idea
leads to a very efficient scalar multiplication, our scheme
has several advantages compared to[5]. First, our scheme
is SPA-resistant, whereas side channel attacks are not dis-
cussed in [5]. Second, we can use the same (off-line) pre-
computation table for the known point scalar multiplica-
tions in the signature generation and verification of EC-DSA,
which is impossible in the case of the generator proposed
in{5]. In[9], a compact encoding of the NAF; is proposed;
since their encoding can be randomly generated, they also
discuss how to obtain random TNAF,. Unfortunately, their
idea seems only applicable for a width w = 2. On Koblitz
curves, the computation cost of the scalar multiplication can
be drastically reduced with window methods, therefore. this

is an important drawback of their method. Besides, the
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straight-forward implementation of the TNAF; is vulnera-
ble to SPA.

5. Conclusion

We presented two new scalar multiplication methods on
the SPA-resistant TNAF, and the win-

dowed zero-free method. The first technique extends the

Koblitz curves:

mechanisms to the SPA-resistant NAF,, to the arithmetic of
Koblitz curves, whereas the second technique is specifically
designed for left-to-right computations in some practical sit-

uations. Both of our schemes are efficient, SPA-resistant,

allow to flexibly choose how much memory is used in order
to speed-up the computations, and free from dummy op-

erations. Therefore, we claim that our schemes achieve a

High security level for an acceptable overhead compared to
insecure methods. Additionally, we proposed practical ap-
piications, such as fixed-scalar and random ephemeral mul-
tiplication schemes. In this cases, the windowed zero-free
method can be optimized by introducing a full left-to-right
and on-the-fly recoding.

‘Therefore, in all practical cases, we show that our counter-
measures can protect the scalar multiplication against SPA
on Koblitz curves, with low memory requirements and com-
putational cost.
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