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Abstract The GHS Weil descent attack by Gaudry, Hess and Smart was originally proposed to elliptic curves
over finite fields of characteristic two. In this paper, we consider GHS Weil descent attacks to algebraic curves
whose function fields are Galois extensions of the rational function field. Lower bounds of genera of the function
fields of their Weil restrictions are obtained when the function fields of the curves are tame Galois extensions. This
class of curves can be divided into cyclic Galois extensions which contain superelliptic curves as a special case and
non-cyclic Galois extensions which contain Cy; curves. If we restrict ourselves to genus four or three cases, there
are only two such Cyp curves: Cyg,Cy3. Therefore, a detailed analysis on security against such attacks is shown
for cryptosystems based on superelliptic curves and on Cyg,Cy3, Such analysis is based on the above theoretical
results and computational complexity comparisons between Pollard’s rho algorithm, Gaudry’s variant of the ADH
algorithm and Gaudry-Enge version of the ADH algorithm.
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1. Introduction

It was Frey who first suggested application of Weil descent.
to elliptic curve based cryptosystems [7]. Gaudry, Hess and
Smart developed this idea to show the so-called GHS Weil
descent attack [12]. In this algorithm, a hyperelliptic curve is
constructed by the Weil restriction of an elliptic curve over a
finite field of characteristic two and with a composite exten-
sion degree. This hyperelliptic curve is defined over a smaller
definition field (a subfield of the original definition field) and
has a bigger genus comparing with the original curve. The
elliptic curve discrete logarithm problem (ECDLP) is then
transformed to a hyperelliptic curve discrete logarithm prob-
lem (HECDLP) over the subfield, and finally the HECDLP is
attacked by using e.g. Gaudry’s variant [11] of the Adleman-
DeMarrais-Huang algorithm [1].

The GHS Weil descent attack has been generalized by
many researchers, and security against these attacks has been
also discussed. For example, it was extended by Galbraith
to certain classes of hyperelliptic curves over characteristic
two [9], and by Arita to some elliptic curves over finite fields
of characteristic three[2]. Diem generalized the GHS Weil
descent attack to hyperelliptic curves over finite fields of ar-
bitrary odd characteristics [5]. Recently, Diem’s results are
extended to several classes of both superelliptic curves and
Artin-Schreier curves by Thériault [27][28]. Besides, Hess
generalized the GHS Weil descent attack to arbitrary Artin-
Schreier extensions [14] [15]. Furthermore, a part of Diem’s
results were extended to algebraic fields whose function fields
are cyclic Galois extensions [17].

In this paper, we first show a framework and algebraic
structure for the GHS Weil descent attacks to algebraic
curves whose function fields are Galois extensions of the
rational function field. In fact, the curves with tame Ga-
lois function fields can be divided into cyclic and non-cyclic
cases, corresponding to two important classes: superelliptic
curves and C,p curves, both have been used in cryptosys-
tems [3] [10] [13]. The superelliptic curves are special cases
of tame cyclic Galois extensions. For Cgp curves which be-
long to non-cyclic cases, if we restrict ourselves to genus four
or three curves used in cryptosystems, there are only two
such curves: Coz and C43. Therefore, based on algebraic
i)roperties obtained in the next section, we evaluated genera,
particularly their lower bounds, of the function fields of the
Weil restrictions for curves with tame Galois function fields
for both cyclic and non-cyclic cases. Non-Galois cases are
also discussed in section 3. Furthermore, a detailed analysis
on security against Weil descent attacks is shown for cryp-
tosystems based on superelliptic curves and Co2,Cys3. Such

an analysis is based on the above theoretical results and com-

parisons of computational complexities between Pollard’s rho
algorithm to the original curve, the Gaudry-Enge version of
the ADH algorithm and Gaudry’s variant of the ADH al-
gorithm to its Weil restriction. In particular, we showed
classes of superelliptic curves and Cgz, C43 curves which are
safe against GHS Weil descent attack and also certain classes
which should be avoided.

Through this paper we assume that K = Fgn , k = Fq (n ¥
1) are finite fields, g is a power of a prime number, z is tran-

scendental over K, K (z)*?? is the separable closure of K (z).

2. GHS Weil Descent Attack to Curves
with Galois Function Fields

Bellow, we show a framework and consider its algebraic
properties of the GHS Weil descent attack on algebraic
curves whose function fields are Galois extensions of rational
function fields, which is a generalization of GHS Weil descent
attack.

Let L be a degree a Galois extension field of K(x). Let
Cl°(L) be the class group of the degree 0 divisors of L, ok
the Frobenius automorphism of K over k. ok i is extended
to an automorphism Gk, of K(x)**?. Consider the Galois
closure of L/k(x):

F':=L k(L) 0% (L)- 1)

If ged(n, a) = 1, then ok, can be extended to an automor-
phism of F'/k(x) such that its order is n.. Then, consider
the fixed field of F' by the automorphism & i:

F:={a€F'|x/;(a) =a}. (2)

Moreover, the following mapping can be constructed as the

_composition of conorm and norm maps (4] (26}:

Ngpi g 0 Conpryy, : CI°(L) — CI°(F). (3)

This map will be called the GHS conorm-norm homomor-
phism as in the elliptic curve case [12]. In particular, if L is
a prime order cyclic extension and there exists no interme-
diate field p of K/k such that p C K and L/u(z) is Galois,
then a large prime order subgroup of #CI°(L) (therefore the
DLP over CI°(L)) is preserved by the GHS conorm-norm
homomorphism [17]. Thus, if a new curve is constructed by
Weil restriction of the original curve over a finite field K/k,
then the DLP over CI°(L) is transformed to the DLP over
CI°(F). The new curve is defined over a smaller definition
field k and it has a genus bigger than the original curve.
Now [F': K(z)] = [[ln e (1 £ Im<n,3aila, ai > 1),
and F' is regular over K as K := F' N K. We obtain the
following results for Gx/x and F'.
[Lemma 1] If ged(n,a) = 1, then the Frobenius automor-

phism ok, on K(z) can be extended to an automorphism
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of F'/k(z) of order n, and all such extensions are conjugate
to each other in Gal(F'/k(z)).
Proof) Similar to proof in [17]. [u]
Furthermore, existence and properties of the fixed field F'
of F' by 6k is given in the following proposition.
[Proposition 1] If ged(n,a) = 1. Then either of the follow-
ing statements hold:
e If F' is regular over K, then there exists a subexten-
sion F of F'/k(x) such that it is regular over k and KF = F';
¢ Otherwise, then F' is regular over K 2 K, 3 2 ksuch
that AK = K. Further, there exists a subextension F/X(z) of
F'/X(z) such that it is regular over A and AKF = KF = F'.
In both cases, all subextensions defined in such a way are
isomorphic to each other.
Proof) Similar to proof in [17]. o
Notice that K is algebraically closed in the field F’ if and
only if F' is regular over K since k is a perfect field. Thus
existence and regularity of the subfield F of F' were guaran-
teed by the above theorem. By using these properties of such
constant field extensions, we can analyze genera of function

fields F' in the next section.
3. Genera of Function Fields F

3.1 The Case of Tame Cyclic Extensions
In this section, suppose that tame cyclic extensions L :=
K(C) = K(z,y) is defined by the following equation

C:y® = f(a) =] pi(a)" (4)
=1

where f(z) is factorized into s(> 0) pairwisely distinct irre-
ducible monic polynomials p;(z) € K|[z] such that K 3 ¢ +
0,Z 51 + 0. We will assume a | ¢ — 1, ged(a,l;) = 1 for
1< i< s. a|q—1 implies that k contains a primitive a-th
root of unity and gecd(char(k),a) = 1.
26, p.196]

® K is the full constant field of L, [L : K(z)] = a, and
L/K(z) is cyclic.

¢ Let Pi(resp. Pw) denote the zero of p;(z) (resp. the
pole of z) in K(x). The places Pi,---, P, are totally ram-
ified in L/K(z). All places Qoo € Pr with Qe | Poo

have the ramification index e(Qwo | Pe) = a/d where

[Proposition 2]

d := ged(a, £l deg pi(z)).

¢ Noplaces P € P () other than Py, - - -, P, Peo ramify
in L/K(z).

® The genus of L/K is g = 251 (Z'::l deg p;(z) — 1) —
a1 o
If gcd(n,a) = 1, then the following lower bound of g(F) is
obtained.
[Theorem 1] Assume d = 1 or a. Define a := 0 for d =a,
a =1 for d = 1. Applying the GHS Weil descent attack to
the above tame cyclic extension field L/K(x), the resulting
function field F' has the following properties.

Let n := l_l:p‘p“,mC p"P
w of K/k such that 4 C K and L/u(z) is Galois, then

g(ﬂ%(ﬁﬁa) % Z p"? (l—al) ~1] +1,

i=1 pnpE0

. If there exist no intermediate field

with 1 £ ¥m < n,3a; | a, @ > 1. In particular, if a is a

prime number,

Z,,,ﬂ$
g(F)gJ s } % Z p"r (1—3 —1[+1.

P.npF0

(©)

Proof) The proof is basically the same as the case of superel-

liptic curves [17]. u}
This bound can be further improved as follows.

Let Gal (K(z)/k(z)) 2 Gal (K/k) 3 ox denote the Frobe-

nius automorphism of K(z)/k(z), which extends to &% in

K(x)**. Denote o} (7(C)) = i (_I?(C)) From this,

i (K(C)) = Ko, (K(C)) and

KF' =K(C)-ox (K(C)) --- o7 (K(C)). (6)

Then [KF':K(z)] = [[7,a: 1 £ M < n,%a; | o, @ >
1). If a is a prime number, then [?F’ : ?(a:)] =a™.
[(Definition 1]° Let ¢a(n) be the multiplicative order of a
modulo n. If ged(n,a) = 1. Then ¢a(n) = [Fa[(n] : Fa)
where (r, is a primitive n-th root of unity [24, p.216]. O
One can obtain a lower bound of 7 as follows.
[Theorem 2] Let n,a be prime numbers (n + a).
Then M = T@a(n) or M = 1 + T¢a(n) (7)
n—1
RPwet

Proof) The proof is basically the same as the case of superel-

for some 7 =1, --

liptic curves [17]. u]
From this theorem, it is easily seen that 2 = ¢4(n). By using
this and g(F) = a™ [% {n (1 - }l)} — 1] + 1, one obtains.
[Theorem 3] Let n,a be prime numbers (n % a). Then

9(F) 2 a®™ [% {n (1 - i)} - 1] +1. (8)
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[m]

- This new lower bound (8) improves the lower bound (5) in
the sense that it provides tighter estimates than (5) in most
cases.

3.2 The Case of Cab Curves
[Definition 2] [21][22] (23] A Cap curve is defined by the

following equation

C/K: aijz'y’ =0
05igh,0<j<a,ai+bjgab

(aij € K, o0 F 0,04 F 0),

©)

where gcd(a, b) = 1 and C is non-singular on the affine plane.
[m]

Then C is an absolutely irreducible affine algebraic curve
with exactly one K-rational place at infinity, and the infin-
ity is totally ramified [20] [21] {22] [23]. Hereafter, we assume
ged(char(k),a) = 1, ged(n,a) = 1.

3.2.1 Galois Extensions

Here, we consider curves C such that K(C)/K(z) are the
tame Galois extensions, which contain Cap curves. We will
discuss the case of non-Galois extensions briefly in 3.2.2 .

Again Gal (R(z‘)/k(x)) >~ Gal (?/k) 3 ok denotes the
Frobenius automorphism of K (z)/k(z), which extends to &%
in K(z)**?. Denote o} (?(C)) = G} (f(C)) From this,
ok (K(C)) = Ko i (K(C)) and

KF =K(C) -0k (K(C))-- 077" (K(C)) - (10)

[, (<M <0

Then we have [7{‘ ! :7(2)] =
a, a; >1).
[Lemma 2] The following conditions are equivalent:

(1) KF'/K(z) is ramified at a place p € PR (a)-

(2) € {0,---n — 1} such that
oL (f(C)) /K () is ramified.
Proof) Let p € Pi(z)’P/ € Pgp, P |
P' n o} (K(C)).
o‘,‘; (?(C)) /K (z) is ramified at p. Since e(P; | p) | a,
a,'c(?(C)) /K (z) are tame (i.e. char(k) { e(P: | p)). Then
we can use Abhyankar’s lemma [26, p.125] to prove the above

There exists ¢

o, P =
We consider p € P?(z) such that

equivalence. [m]
By Lemma 2, we can consider places of K (z) which ramify
in.at least one of the extensions o, (—I?(C )) in order to count
places ramified in KF'/K(z). Here, let R:= {p € Pz (2 | o
is ramified in K(C)/K(z)}. Now, regard a Cap curve C as

2

0<i<b,0<j<a aitbi<ab

f) = ayz'y’ €K(@)ly]. (1)
Let d(f) be the discriminant of f. Denote € := deg,(d(f))-
Then #R S e+ 1. On the other hand o} (K(C))/K(z)
is ramified at oi(R). From this, KF'/K(z) is ramified

at UPSJoi(R). Hereafter let t := # U™ oi(R). Hence

t<m-#R <m(e+ 1) £ n(e + 1). Therefore we obtain

m2 .

"= L + 1] (12)
Let P|p be ramified where p € U?Joi(R). P € P, { (&))"
By using Abhyankar’s lemma (26, p.125], e(P']p) | a
for all P’ € Pgp, which are ramified over p. Since
ged(char(K),a) = 1, KF'/K(z) is tame.  Here, by us-
ing [26, p.95 Cor II1.5.6],

29 (KF’/?) —-2= [—F' : K(x) ] (2g (?(z)/—lf) - 2)
+ > Y (e(P'lp)-1)degP. (13)

pEUT ol (R) Pl

Now, [?F’ :?(z)]:Hi.‘la“ 9(K(z)/K) =0, deg P' = 1.
Since KF'/f(z) is a Galois extension, e(p)f(p)u = [KF' :
K(z)] =[], @ Thus,

[Theorem 4]

g(fF’/f):—ﬁE,+%ﬁE,— Z (1 " ))+1
i=1 =1 peurlol(R)
(14)
2 :ﬁ(&z__lt-l)+1 (15)
> al= ( 2~ )+1, (16)

where @ is the minimal natural number such that a | a and

a>1 9 (KF'/K) = g(F'/x') = g(F/K)

(¢ :=KnF,x:=KnNF). 0

We will analyze Coz and Cy3 by using (14)(16) in section 4.
3.2.2 Non-Galois Extensions

Furthermore,

Now, we discuss the case of non-Galois extensions
K(C)/K(z) briefly.
Let N be the Galois closure of K(C)/K(z). Then, consider

the Galois closure of N/k(z):

F' :=N- &K/k(N) aK/k(N) (7

Then the existence and properties of Weil restriction can be
Lo b 1 €31 < a 3 | a,

b; > 1) in place of L and a in section 2 respectively, e.g. we

proved by using N and a' :=

can obtain the similar results as Lemma 1 and Prop 1.

Furthermore, again Gal (?(z)/k(z)) =~ Gal (F/k) EX
denotes the Frobenius automorphism of K(z)/k(z), which
extends to &) in K(z)**" as well as in 3.2.1. Let N be the
Galois closure of K(C)/K(x). Denote o (ﬁ) = &} (W)
‘From this,

fF’=N~ok(ﬁ)---a:_l (N) (18)

Then we have [717' : 7(:1:)] = I_LF:I a; (1£3m < n, 3|

a', @i > 1). Consequently KF'/K(x) is tame. We can

obtain the similar equation to (14) for genera.



4. Analyses of the GHS Weil Descent At-
tack

4.1 Analysis for Superelliptic Curves

In this section, we analyze security of superelliptic curves
based cryptosystems against the GHS Weil descent attack
shown in section 2. Besides, a comparison is provided
between Pollard’s rho algorithmm and Adlemen-DeMarrais-
Huang algorithm.
[Definition 3] A superelliptic curve is defined by the fol-

lowing equation.

C/K :y®* = f(z) = apz’ + -+ a1z + a0 (19)

Assuming that the following conditions hold:
alq—1, ged(f(z), f'(z)) = 1, ged(a,b) =1 ora. (20)
m]

Here, a|g— 1 implies that k contains a primitive a-th root
of unity and gcd(char(k),a) = 1. If gcd(a,b) = 1, then the
point at infinity is totally ramified. When gcd(a,b) = a, it is
unramified. Now since k contains all a-th roots of unity and
ged(char(k),a) = 1, K(C)/K(z) is a Kummer extension.

First we compare between complexities of Pollard’s rho al-
gorithm over CI°(K(C)) and Gaudry’s algorithm [11] over
CI°(F ). Complexities of both algorithms are known as fol-
lows.

® Cost of Pollard’s rho algorithm
Cp =0 (9K (€)™ 10g.™?) (21)
® Cost of Gaudry’s algorithm

Cc :=0 (9(F)*q*(log 9)*+ 9(F)*(9(F)!)q(log q)?) (22)

Now let h := log, (qg(K(C))"), then

g = 25TRtETw (23)

From (21) (23),
n2g(K(C))*q™ ™™ = n?g(K(C))2%. (24)

Similarly from (22) (23),

9(F)'q*+9(F)* (9(F))g = o(F)*27RET +g(F)* (g(F )2 70(ems

(25)

Consider cryptographic applications, we assume in (24) and
(25) that h 2 160. We can prove:

[Theorem 5] Let n,a be prime numbers (n 2 5,n % a),
and let C be a superelliptic curve which is non-hyperelliptic
curve (b 2 3), g(K(C)) £ 4, h < 546. Then we have Cp <

Cg. m}

Thus for the above cases, the GHS Weil descent attack us-
ing Gaudry’s algorithm does not provide a faster attack than
Pollard’s rho algorithm.

[Remark 1] Here, we compared Cp with the lower bounds
of Cc. When h = log, (qg(K(C))") exceeds certain value
(depending a prime number n), Cp becomes larger than
the lower bounds of Cg. In fact the upper bound of h =
log, (qg(K(c))") such that Cp < Cg can be showed as fol-
lows: if n =5, Cp < Cg for h £ 546, if n = 13, Cp < Cg
for h £ 971, if n = 11, Cp < Cg for h £ 10770. Such up-
per bound of h = log, (qg(K(C))") increases when the lower
bound of g(F) increases.

[Remark 2]
9(F) has an upper bound (by the equation (13) of superel-

If we increase g (i.e. h ) with fixed n, a, and b,

liptic curve cases). Hence Cp > Cg when h is large enough.
Although it does not mean that Cp becomes greater than
Cg as soon as h exceeds the upper bound in Remark 1, the
DLP over CI°(F) has less cost than the DLP overCI°(K(C))
for large key lengths. This is also the same in theorem 6.

Moreover when g(F) is larger, Enge and Gaudry’s im-
provement [6] of the subexponential algorithm by Adleman-
DeMarrais-Huang [1] should be employed. Bellow, we com-
pare between complexities of Pollard’s rho algorithm on
CI°(K(C)) and the ADH algorithm on CI°(F). Complex-
ities of Enge-Gaudry’s algorithm [6] are known as follows.

¢ Cost of Enge-Gaudry’s algorithm [6]

Ca:=0 (e(ﬂ+o(1))vmgqg“’>\/log 1ogq9<F)) _when il(F) S oo
oggq

(26)

Recall h = log, (qg(K(C))"). then ¢ = 29(K(E)~ . From (21)
(23),
R h 2 R
2 2,4 b2 2
n“g(K(C))"22 | ——=—1log2 | =22h*(log2)’. (27
9(K(C)) (g(K(C))n g) (log2)®. (27)

Similarly from (23) (26),
eﬁ\/logqsﬂ")\mog log ¢9(F)
=es/E\/g(F)RT;iaﬁ log 2.\ /log 9(F)-+log 5refzyys +log 2

(28)

By calculating lower bounds of g(F) using (5) and (8), we
obtain the extent when (28) > (27).

[Theorem 6] Let n,a be prime numbers (n > 7,n +
13,n % a), and let C be a superelliptic curve which is non-
hyperelliptic curve (b 2 3), g(K(C)) £ 4, h < 1765. Then
we have Cp < Ca4. [m]
Thus for the above cases, the GHS Weil descent attack using
the ADH algorithm does not provide a faster attack than
Pollard’s rho algorithm.

[Remark 3] Here, we compared C'r with the lower bounds
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of C4. When h = log, (qg(K(c’)") exceeds certain value
(depending a prime number n), Cp become larger than the
lower bounds of Ca. If n = 13,b = 4,5,6,h 2 160, Cp be-
come larger than the lower bound of C4. In fact the upper
bound of h = log, (qg(K(c))") such that Cp < C4 can be
showed as follows: if n = 11, Cp < C4 for h £ 1765, (In
particular, the value of (28) become slightly larger than (27)
when h = 1766,n = 11,b = 5,6.) andif n =7, Cp < Ca
for h £ 5025. Furthermore if n 2 17, the upper bound of
h = log, (qg(K(c))"') such that Cp < C4 becomes larger.
Such upper bound of h = log, (qg(K(c))") increases when
the lower bound of g(F) increases.

4.2 Analyses for Cgz Curves and C43 Curves

Finally, a comparison is provided between Pollard’s rho
algorithm and Gaudry’s algorithm for Cqp curves C. In par-
‘ticular, we analyze Co; curves and Cj3 curves whose function
fields K(C)/K(x) are tame Galois extensions. (They have
the genus 4 and 3 respectively.)

4.2.1 Co Curves

We consider a Cys curve C such that K(C)/K(z) is a tame

Galois extension. Now, regard C as

f(y) = a0y’ + cosy® + - -

+a13zy’ + arazy® + a0z + aoo € K(z)[y)-

By computing the discriminant of f, € := deg_(d(f)) = 16.
Since R := {p € Pg, | p is ramified in K(C)/K(z)} £
e+1 =17, it follows that t := #U2 0} (R) £ m-#R < m-17.
Therefore m = I'—l%] Similar to 3.2, we obtain

o(F) = H +%Hai > (1—;%)“

! =1 peulJokR)
(29)

(30)

> 3f171( t—1)+1.

By substituting the lower bound of g(F) by (30)
g(K(C)) = 4 into (24) (25), we obtained the following re-

sult.

and

+ Otozy2 + a0y +anzy + azy’

Conditions The extent of t such that Cp < Cg
(1) h < 160,n < 100 t218
(2) h < 320,n < 100 t>18
(3) h £640,n < 100 t =26
(4) h £1280,n £ 100 t=235

Thus we found that Cp < Cg when t 2 35 under the above
conditions.

Next we consider ¢t £ 34. By substituting the value of g(F)
by (29) and g(K(C)) = 4 into (24) (25), we show curves such
that Cp > Cg for t < 34, h := log, (¢°(“)") < 1280,
n < 100 in Appendix.

Symbols used in the table of Appendix are:

t:= # U™ ogL(R) i.e. the total number of places p € PRz
ramified in KF'/K(z)

A : the total number of places p € Pz, such that e(p) =3
B : the total number of places p € ]P’K(E) such that e(p) =9
E : the value of possible HTL @ (1<¥m<n,da |9, a@>

1)
A:Cp>Cqg
O:Cp<Cq

[Remark 4] Within 3 < ¢t £ 34, h £ 1280, n £ 100,
E = 27, the curves when Cp < Cg are denoted other
than the triangular marks and (¢, 4,B) = (3,3,0). Be-
sides, (t, A, B) = (3,3,0) has an impossible combination of
g(F). Since KF' % K(x), only the cases [KF' ?(z)] =
H:lx a; = 27 are considered.
We should avoid to use such Co2 curves in cryptosystems
having parameters with triangular marks.

4.2.2 Cy43 Curves

Consider a Cy3 curve such that K(C)/K(x) is a tame
= deg.(d(f)) =

= {p € Pg() | p is ramified in K(C)/K(z)} £e+1=10,
t:=#U",0L(R) £ - #R < - 10. Therefore m 2 {10].

Similar to 3.2, we obtain
1— +1
( elp )>

oF) = ~JJa+ %H
i=1 i=1
(31)

(32)

Galois extension. Similarly, € 9. Since

2

PEUT, oL (R

> ol 51 (%t— 1) +1.

By substituting the lower bound of g(F) by (32) and
9(K(C)) = 3 into (24) (25), we obtained.

Conditions The extent such that Cp < Cc
(1) h £160,n < 100 t=221
(2) h £320,n £ 100 t=25
(3) h £640,n <100 t =31
(4) h £1280,n £ 100 t=233

Thus we found that Cp < Cg when t = 33 under the above
conditions.

Next consider ¢ £ 32. Similarly, by substituting the
value of g(F) by (31) and g(K(C)) = 3 into (24) (25),
we can obtain curves such that Cp > Cg for t < 32,

= log, (qg(K(C))") < 1280, n £ 100 (since the table re-
quires larger space, it is omitted here).
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Appendix

Cg2 Curves when Cp > Cg

EWAAAA_AA_AAA_A_A_A_A_AAAAA_AAAAAA_A_A_AA_A_A_A_A_

m ol |S]o|e|e|[o|w|w|n|a]~|o|o|~|olw|w|ola|mlow|wjon|a|~|O]a| ]S

< |zo|~[=[=]<]=]e|=]=]=]|a]z]2]=]c]~]|=|=|2[z]=]|z|=|2|2]|2|2|2]2]|=]2

N NN N R BB B EEEEE EEE EEEBEE RN EEE
En.uAA_A_AA_AA_A_AA_A_A_AA_A_A_AAA_AA_AAA_AA_AA_A_AA_A_A_A_A_
m al=lolalo|clo|lvlw|lo|al~|o|S|a|lo|r|olw|wlo|a|[~|o[Z]|S|aje|~jolw]|ioja)~
< 67801234567890123456789w0123456789m
I Y i e e e Y Y Y S B B B E B B B E E B E e EE R R R R R R R R
mOOAOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
mA_A_A_OOOA_A_OOOOOOOOOOOOOOOOOOOOOOOOOOO
=lalalalalalalalalalala|a|<|a|OjO|O]<|a]|a|<|O]O|O|O]O|O|O|<|O|O|O|O|O|O
EWA_A_AA_A_A_A_A_AAA_AAAAAA_AAAA_AA_AA_AAA_A_AA_AA_A_A_
m wlal=|<w]lo]|al~|lojvlw|o|lal~|clo|wv|w|o|a]l~jolrlojwv|w|o|al~|ololn]o]|w]F|m
< 01201234012345012345601234567012345

1= MR MNEFIERIEE R ER I ED R EE EE EE R R B S D 0 el L Bl B el Bl B

a
i=

t = # U]

0 oL(R) i.e. the total number of places p € P

K(=z)

ramified in KF'/K(z)

A : the total number of places p € Pz, such that e(p) = 3

<n,%a |9 a@ >

<m

E : the value of possible H:"_:

1)

A:Cp>Cg

B : the total number of places p € ]P?(z) such that e(p) =9
a;
1

O:Cp<Cqc



