HEEA HRAEES FREE
IPS] SIG Technical Reports

2007—CSEC—38 (32)
2007/7./20

Tews HIZ & 5 WEP |[Zxi3 2 EEIERBRICETHHEE

ME BT OB ER

KK e

£ HH FHA BR'

TR RERERTEHER
T657-8501 fel R F ATdR X /SR -BET 1-1
I MF KRR B AR MR
T657-8501 Fefl M iR XA 6 BT 1-1

E-mail:

T ozasa@stu.kobe-u.ac.jp, {kuwakado,mmorii} @kobe-u.ac.jp,

I {y.fujikwa,ohigashi}@stu.kobe-u.ac.jp

HHEL 20074, Tews i Klein IZ K 5 WEP IZ5H4 2 REHEKBF Fidb Uiz RHELIBEL, 40,000 47y
h DEBENZ & T 50%, 85,000 /37 v OBBANZ Lo T ISUORBRETEL S Lic. ZF T, Tews b O
EERL, LoD Ruw Ay y FOBRRIKE > THRI BEROBMLBONE FEFRREBT 5.

¥—U—F WEP, RE#KE, RC4

A Study on the Tews-Weinmann-Pyshkin Attack against WEP
Yuko OZASA', Yoshiaki FUJIKAWA®, Toshihiro OHIGASHI’,
Hidenori KUWAKADO',and Masakatu MORII'

T Graduate School of Engineering, Kobe University,
1-1Rokkodai, Nada-ku, Kobe-shi, Hyogo, 657-8501 Japan.
1 Guraduate School of Science and Technology, Kobe University,
1-1Rokkodai, Nada-ku, Kobe-shi, Hyogo, 657-8501 Japan.

E-mail:

T ozasa@stu.kobe-u.ac.jp, {kuwakado,mmorii} @kobe-u.ac.jp,

1 {y.fujikwa,ohigashi} @stu.kobe-u.ac.jp

Abstract Tews, Weinmann, and Phshkin have shown a key recovery attack against WEP (the TWP attack), which is the
modification of Klein's key recovery attack against RC4. The TWP attack allows an attacker to recover a 104-bit secret key
from 40,000 captured packets with probability 0.5 and from 85,000 captured packets with probability 0.95. In this paper, we
improve the probability of recovering the key when the number of captured packets is less, efficiently. For example, if 10,000
packets are captured, then the probability of recovering it is three times as large as than that of the TWP attack. If 20,000
packets are done, then it is twice as large as than that of the TWP attack. Our attack can find the secret key in a few seconds.

Keyword WEP, key recovery attack, RC4

1. Introduction

WEP[1] is a protocol for securing wireless LANs
(WLANs). WEP stands for "Wired Equivalent Privacy"
which means it should provide the level of protection a
wired LAN has. WEP uses the RC4 stream cipher[2] to
encrypt data which is transmitted over the air, using
usually a single secret key (called a WEP key) of a length

of 40 or 104 bits. A 104-bit WEP key is used with a 24-bit
IV. The 1V is a public value changed in each packet, and
it is used for a part of the session key.

In 2001 Fluhrer, Mantin, and Shamir[3] published an
analysis of the RC4. Some time later, it was shown that
this attack can be applied to WEP and the secret key can
be recovered from about 4,000,000 to 6,000,000 captured
packets. In 2004 a hacker named KoreK[4] improved the

-225 -

attack: the complexity of recovering a 104-bit secret key
was reduced to 500,000 to 2,000,000 captured packets. In
2005, Klein[5] presented another analysis of the RC4.
Klein showed that there are more correlations between the
RC4 keystream and the secret key than the ones found by
Fluhrer, Mantin, and Shamir which can additionally be
used to break WEP in WEP like usage modes.

Tews, Weinmann, and Pyshkin[6] extened Klein's attack
and optimized it for WEP. We call this attack the TWP
attack. Using the TWP attack, it is possible to recover a
104-bit WEP key with probability 50% using just 40,000
captured packets. For 60,000 captured data packets, the
success probability is about 80% and for 85,000 data
packets about 95%. The same attack can be used for 40-
bit keys too with higher success probability.

We extend the TWP attack. We focus on the attack in
small amount of packets, about 10,000 captured packets.
Using our attack, it is possible to recover a 104-bit WEP
key three times the number using 10,000 captured packets
and twice the number using 20,000 captured packets than
the TWP attack.

The structure of the paper is as follows: In Section 2 we
explain WEP, in Section 3 we introduce the notation, in
Section 4 we present a summary of the TWP attack
against WEP, in Section 5 we specialize the TWP Attack
to WEP, and describes extension of the attack, in Section

6 we gives experimental results.

2. WEP
2.1. Generation of the session key

In WEP, a secret key K’ is pre-shared between an access
point and a mobile node. The length of K’ is ether 40-bit
or 104-bit. A session key K is gencrated according to
K=IV||K’, where IV is 24-bit IV and || is concatenation
The IV is transmitted plain text and changed for cvery
packet. In this paper, we discuss the case the length of X’
is 104 bits.

The encryption of WEP is done by the RC4 algorithm
with K. So, we introduce the RC4 algorithm in next
session to explain how the RC4 algorithm is used in WEP.

2.2. RC4

We follow the description of RC4 as given in [2]. RC4
comprises the Key Scheduling Algorithm (KSA) and the
Pseudo-Random Generation Algorithm (PRGA). The
initial state is made by the session key K in the KSA. A

keystream is generated from the initial state in the PRGA.
The plaintext is XOR-ed with the keystream to obtain the
ciphertext.

2.2.1. Key scheduling algorithm

In the KSA the initial state of RC4 at time ¢ consists of a
permutation table §:=S8:{x] where x=0,1,...256, S: is
initialized So[x]=x. Two 8-bit word pointers i and j: at
time ¢ are used, and these are initialized fo=jo=0. In the
KSA, following Eqgs. (1), (2), and (3) is executed at time
t=1,2,...256.

Ji = Uiy + 8,404]+ KT, mod16]) mod 256, 1))
S:-I[jn] i=i,

S1=480.] i=Ji, 3]
Sali] i=ig L,

i, =(i_, +1) mod256. 3

In WEP, K[0], K[1] and K[2] are the IV entries and
K[y)(»=0,1,...,15) are the session keys.

2.2.2. Psendo random generation algorithm

The initial state of RC4 at time ¢ in the PRGA consists
of permutation S¢'=8'[x] (x=0,1,...255). So’ is initialized
to So’[x]=S2s6[x]). Two 8-bit word pointers i’ and j¢’ at
time ¢ are used, and these are initialized fo’=jo’=0. Let Z:
denote the output 8-bit word of RC4 at time ¢. Then, the
next state and output functions of RC4 for every ¢ are
defined as follow:

i'=(i_,"+1)moed256, @

J'= (a8 ' ' ymod256, ©)
Sa'Uili=i’,

S'li1=1 8"l 1=/ ©
S,_,'[i,] i.’tiy "j1'9

Z,=S,"((5,'i,'1+ S, 'V, Tymod256 . ™

3. The TWP attack against WEP

Tews, Weinmann, and Pyshkin extend Klein's attack
against RC4 and optimize it for usage against WEP. This
attack is straightforward to Klein’s attack. First we
introduce Klein’s attack, and next we introduce how they
extended Klein’s attack against WEP in this section,

-226-

3.1. Klein’s attack against WEP

Suppose w key streams were generated by RC4 using
packet keys with a fixed root key and different
initialization vectors. Denote by K« =(Ku[0],...,Ku[m]) =
(IV)Rx) the u-th packet key and by Za = (Z4[0],...,Zu[m -
1]) the first m bytes of the wu-th key stream, where
1<u<w. Assume that an attacker knows the pairs
(IVu,Zu) , we shall refer to them as samples , and tries to
find R&.

If the first # bytes of a packet key are known, then the
internal permutation Si-z and the index j at the (i — 1)th
step of the RC4 key setup algorithm can be found. We
have

K[i}=(j — J, — SliD)mod256,
J, =(i—Z,)mod256, ®)

3.2, Extension to multiple key bytes

With Klein’s attack, it is possible to iteratively compute
all secret key bytes if enough samples are available. This
iterative approach has a significant disadvantage: In this
case the key sircams and IVs need to be saved and
processed for every key byte. Additionally correcting
falsely guessed key byte is expensive, because the
computations for all key bytes following K[i] needs to be
repeated if K[i] was incorrect. They extend the attack
such that is it possible to
independently of each other and thus make efficient use

compute key bytes
of the attack possible by using key ranking techniques.
Klein's attack is based on the the fact that Eq. (8) shows.

Ji+1 may be written as ji +Si[i]+K[i]. By replacing ji+1 in
Eq. (8), there is an approximation for X[i] + K[i + 1]:

K[i]+ KTi+1]= j,., — j, - ST~ S[i +1]. ©)

By repeatedly replacing ji+, there is an approximation for
K[3)+K[4]+...+K[3+i]. Because we are mostly interested
in K[3]+K[4)+...+K[3+i{]=Rs[0]+Rs[1]+...+Ri[i] in a WEP
scenario, we will use the symbol A: for this sum. A
depends on the key bytes K[3] to K[i — 1].By replacing
them with S3, there is an approximation of 4/, which only
depends on K[0] to K[2].

A =K[3)+ K[4)+..+ KTi)= iy — s — 2., S} (10)

3.3. Key ranking

If only a low number of samples is available, the correct
value for A1 is not always the most voted one in the table
but tends to be one of the most voted. Instead of
collecting more samples, they use another method for
finding the correct key. It is got from just generating a
key stream using an [V and a guessed key, and comparing
it with the collected one. If the method used for key
stream recovery did not always guess the key stream right,
the correct value just needs to match a certain fraction of
some key streams. For every key byte K[i], they define a
set Mi of possible values 41 might have. At the beginning,
Mi is only initialized with the top voted value for Ai from
the table. Until the correct key is found, they look for an
entry for 4: in all tables having a minimum distance to the
top voted entry in table /. They then add 4i to M and test
all keys which can now be constructed from the sets M
that have not been tested previously.

3.4. Handling strong keys

For Eq. (10), s is assumed to be a approximation of S3+i.
This assumption is wrong for a fraction of the keyspace.
They call these keys strong keys. For these keys, the
value for ji+3 is most times taken by j in a iteration before
i + 3 and after 3. This results in S[j+3] being swapped
with an unknown value, depending on the previous key
bytes and the IV. In iteration i + 3, this value instead of
S83[ji+3] is now swapped with S[i]. More formally, let Rk
be a key and Rs[i] a key byte of Rx. Ri[i] is a strong key
byte, if there is an integer I={1,...,i} where

> (RA[K]+3+k)mod256=0. ()

A key Rx is a strong key, if at least one of its key bytes is
a strong key byte. On the contrary, key bytes that are not
strong key bytes are called normal key bytes and keys in
which not a single strong key byte occurs are called
normal keys. Assuming that S is still the identity
permutation, the value 0 will be added to j+3 from
iteration / + 3 to / + 3, making j++3 taking his previous
value jr+3. This results in the probability of that 4/ has a
correct value close to 0 and Prob(A:takes correct value) is
very close to 1/m. An alternative way must be used to
determine the correct value for this key byte.

The approach can be devided into two steps:

1. Find out which key bytes are strong key bytes by

-227-

using the Eq. (11).
2. Find the correct values for these key bytes.
Assuming that Rx[i] is a strong key byte and all values for
Ri[0],...,Rs[i — 1] are known, Ri[i] is calculated from the
following equation , which can made from Eq. (11).

RH]=[-3-i-Y (RKK]+3+k)]mod256. (12)

Because there at most i possible values for [, it is possible
to try every possible value for | and restrict Ra[i] to at
most i possible values. Instead of taking possible values
for 4: from the top voted value in the table for key byte #,
the table can be ignored. The values calculated with Eq.
(12) for Ra[i] can be used and it is possible to assume that
Ai + Ra[i] was top voted in the table. Possible values for
Ai for all assumed to be normal key bytes are still taken
from the top voted values in their tables.

4. Our attack on WEP

The key recovery of the TWP attack is much effective at
the attack using over 40,000 captured packets, but using
under 40,000 captured packets, its performance falls
considerably. Usually, the performance of the key
recovery attack using several thousands to 10,000 of
captured packets is interested. So we focuse on the key
recovery attack using about several thousands of packets,
extend the TWP attack more effectively and improved the
performance of the attack.

The basic attack is straightforward. Initially, we
extended the TWP attack described in Section 3.2 and
3.3. We may recover a 104-bit WEP key by using half
amount of captured packets Tews-Weinmann-Pyshkin used
in their attack.

4.1. Extention to more key bytes

In the TWP attack, the only information of the keystream
in 16 bytes from head of a packet is used. We propose an
attack which we can use the information of the keystream
in over 17 bytes from head of a packet. Using our attack,
we can recover a WEP key using less number of captured
packets. Concretely we enhanced the value where 4/ can
be taken Ais,A1,...,424. This method may increase the
probability for the event that 4: calculated in Eq. (10)
takes correct value twice as that of the TWP attack.

Calculating Ais,417,.... 424 by using Eq. (10), we can
obtain A4ss from them. Then, add this 415 to the vote for
key ranking described in Section 3.3, we may obtain
almost twice the data packets Tews, Weinmann and
Pyshkin can obtain. Our approach can be divided in two
cases:

Case 1. Using the value of 4i (i=16,17,18)

The value Ais can be obtained from Ais to Ais by
calculating from Eq. (10) and the following equations:

K[16]=K]0], KT17]= KT1], KT18]=K[2]. a3

Where [V:(K[0],K[1],K[2]), too. So we have

A~ KT16]= 44~ KT0] (=16),
As=14,-K116]-KUIT|=4,-KI0]-K[l] _ (i=17),
A~ KT16]~ KT17) - KT18] = 4, - K101~ KT~ K12]
(i=18).
a4

We add these values of Ais to the vote for key ranking
described in Section 3.3, and then we recover a 104 bit
WEP key at the same way to the TWP key recovery attack.
Using this method, we may use the packets four times
more than the TWP attack.

Case 2. Using the value of 4: (i=19, 20,..., 24)

When Ais is obtained, we can obtain A3, A4,..., 48 from
calculation of A19,420,...,424 by calculating from Eqs.(8)
and (13). For example, we have

4y = Ay — A — K[16]- K[17]- K[18]
=As-As—KIO]-KU]-K2] (=19), (15
A, = Ay — 45— K[16]- K[17] - KT18]
=y~ A4s—KIO]-KT]-K[2] (i=20). (1)
Ars is able to obtain by the Case 1 attack, but when the
number of captured packets is smaller, the probability of
obtaining correct Ais in Case 1 attack becomes smaller.
And more, A15is able to obtain by examining all patterns
for 2% candidates of Aus too, although the probability of
that A1s takes correct value is larger, this examining costs

-228 -

more time to obtain Ais. When we obtained Ais, then we
recover a 104-bits WEP key by the same attack to the
TWP attack described in Section 4. Using the Case 2
attack, we may use the packets four times more than the
TWP attack. Though we can use over A2s to A33 in the
same way, the probability of recovering the WEP key is
lower in use when we have experimented.

5. Experimental results

We wrote an implementation using the parallelized
computation described in Section 3.2 and 4, and the error
correction methods described in Section 3.3 and 3.4. To
compare the performance between TWP and our attack,
we implement both attacks and perform the simulation
experiments. We focus on the attack in small data packets,
so we define the number of packets:10,000, 20,000,
40,000, and 80,000 in the experiments.

Table 1 and 2 show the experimental results of the TWP
attack and our attack when the number of test is 100,000,
1,000,000. It is clear that we improve the probability of
recovering a 104-bit WEP key when the number of
captured packets is under 40,000. According to Table |
and 2, we confirmed that the probability of recovering the
WEP key using our attack is improved.

At the result of the Case 1 attack when 10,000 packets
are captured, the probability is twice as large as than that
of the TWP attack. At the same situation, the Case 2
attack is more effective than the TWP attack and the Case
1 attack. Especially, the probability of recovering a
104-bit WEP key by the Case 2 attack is three times as
large as than that by the TWP attack. At the results of
these experiments, we can confirm that our attack is more
effective than the TWP attack when the captured packets
is less.

Table.1. Experimental results when the number of tests is
100,000.

Number of The TWP attack | Our attack(Casel) [Our attackiCase2)

capturedpackets | Number of secoverd key | Nunber ofiecovad key | Number of recoverd key
20,000 4.440 8740 9.830
40.000 30,163 38,780 39.483
80,000 93,172 95,653 96,433

Table.2. Experimental results when the number of tests is
1,000,000.

Number of The TWP attack | Our attack{Case1) | Our attack(Case 2)
captured packets Nunber of recovard key | Nooder of secoverd key | Nianber of ecovaad key
10,000 5 12 15

6. Conclusion

We focused on the key recovery attack using about
several thousands of packets, and extend the TWP attack
more effectively and improved the performance of the
attack using the smaller amount of packets. Using our
attack, it is possible to recover a 104 bit WEP key three
times the number using 10,000 captured packets and twice
the number using 20,000 captured packets than the TWP
attack. Our attack against WEP is much effective to the
key recovery attack using the smaller amount of packets
than the TWP attack is.

References

[1] IEEE Computer Society, “Wireless LAN medium
access control (MAC) and physical layer (PHY)
specifications”, IEEE Std 802.11, 1999.

[2] B. Schaeier, Applied Cryptography, Wiley, New
York, 1996

[3] S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses
in the key scheduling algorithm of RC4”, Proc.
SAC2001, Lecture Notes in Computer Science,
vol.2259, pp.1-24, Springer-Verlag, 2001.

[4] KoreK, http://www.netstumbler.org/
showthread.php?t=12489.
[5] A. Klein, “Attacks on the RC4 stream cipher.

submitted to Designs”, Codes and Cryptography,
2007.

[6] E. Tews, R. Weinmann, and A. Pyshkin, “Breaking
104 bit WEP in less than 60 seconds”, Cryptology
ePrint, available at http://eprint.iacr.org/2007/120.pdf

-229-

