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Abstract This article discusses the provable security of a hash function using & block cipher. It assumes the con-
struction using the Matyas-Meyer-Oseas (MMO) scheme for the compression funetion and the Merkle-Damgérd with
a permutation (MDP) for the domain extension transform. It is shown that this kind of hash function, MDP-MMOQ, is
indifferentiable from the variable-input-length random oracle in the ideal cipher model. It is also shown that HMAC
using MDP-MMO is & pseudorandom function if the underlying block cipher is a pseudorandom permutation under
the related-key attack with respect to a2 permutation used in MDP. Actually, the latter result also assumes that the
following function ig a pseudorandom bit generator: (Ery (K @ opad} & K @ opad)||{Eyv (K @ ipad) & K @ ipad),
where E is the underlying block cipher, IV is the fixed initial value of MDP-MMOQ, and opad and ipad are the
binary strings used in HMAC. This assumption still seems reasonable for actual block ciphers, though it cannot he
implied by the psendorandomness of E as a block cipher. The results of this article imply that the security of a hash
function may be reduced to the security of the underlying block cipher to more extent with the MMO compression
function than with the Davies-Meyer {DM) compression function, though the DM scheme is implicitly used by the
widely used hash functions such as SHA-1 and MDS5.
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. input length., This component function is called a compres-
1. Introduction 'p gt . P . ) I?

sion function. A domain-extension transform is also specified
1.1 Background which describes how to apply the compression function to a
A hash function is one of the most important primitives in given input of variable length.

cryptography. It normally consists of & function with fixed The methods to construct a compression function are clas-

-221-



sified in two classes: dedicated methods and those using
& block cipher. Compression functions of well-known hash
functions such ag SHA-1/256 are constructed with the ded-
icated methode. However, they are also regarded as Davies-
Meyer functions using dedicated block ciphers known as
SHACAIL-1/2.

1.2 Contribution

The topic of this article is to reduce the security of a
hash function to the security of the underlying block ci-
pher. It assumes the construction using the Matyas-Meyer-
Oseas (MMO) scheme [12] for the compression function and
the Merkle-Damgérd with a permutation (MDP) (8] for the
domain extension transform. This kind of hash function is
called MDP-MMQ in this article. A message padding scheme
with the MD-strengthening is also assumed for MDP-MMQ.

This article mainly discusses two security properiies
of MDP-MMOQ: indifferentiability from the variable-input-
length {VIL) random oracle and pseudorandomness of
HMAC 2], {10] using MDP-MMQ. Collision-resistance is also
mentioned briefly. These results implies that the security
of an iterated hash function may be reduced to the se
curity of the underlying block cipher to more extent with
the MMO compression function than with the Davies-Meyer
(DM) compression function.

It is shown that MDP-MMO is indifferentiable from the
VIL random orecle in the ideal cipher model. This work is
motivated by the recent work of Gong et al, |7]. They claimed
that hash functions indifferentiable from the VIL random or-
acle in the ideal cipher model can be constructed using the
MMO compression function and the domain extension trans-
forms in [6]. The contribution of the current article is to re-
construct the proof using the game playing technique. Alsc,
notice that they did not consider MDP for domain extension.

Indifferentiability of an iterated hash function is often dis-
cussed on the assumption that the underlying compression
function ig a random oracle with fixed input length. Tak-
ing the structure of compression functions of widely used
hash functions into consideration, it is not satisfactory. For
example, DM and MMO compression functions are not in-
differentiable from the fixed-input-length (FIL) random ora-
clef6l, (11]).

It is also shown that HMAC using MDP-MMO is & psen-
dorandom function (PRF) if the underlying block cipher is
& psendorandom permutation (PRP) under the related-key
attack with respect to a permutation used in MDP. Actu-
ally, this result also requires that the following function is a
pseudorandom bit generator (PRBG):

(Eyv (K @opad)® K Dopad)||(Erv (K @ipad) @K dipad) ,

where E is the underlying block cipher, IV is the fixed ini-

tial value of MDP-MMO, and oped and ipad are the binary
strings used in HMAC. It does not seem difficult to design a
block cipher with which the function shown above is PRBG,
though it cannot be implied by the pseudorandomness of
as a block cipher. It is because any adversary has no control
over I'V, ipad and opad.

It can be said that the pseudorandomness of HMAC us-
ing MDP-MMO is almost reduced to the pseudorandomness
of the underlying block cipher. Intuitively, it is because the
chaining variables are fed into the block cipher via the key
input and they are not disclosed to adversaries. On the other
hand, if the Davies-Meyer compression function is used, then
it is difficult to obtain the similar result. For this type of
compression function, instead of the chaining variables, the
message blocks are fed into the block cipher via the key in-
put. They are selected and controlled fully by adversaries.

1.3 Related Work

Prenesl et al. (15] presented a model of compression func-
tions using a block cipher. It is called the PGV model and,
for example, it includes DM and MMO compression func-
tiona,

Coron et al. [6] first discussed the indifferentiability of hash
functions from the VIL random oracle. They presented four
domain extension transforms: the Merkle-Damgird (MD)
transform with prefix-free encoding, the MD transform drop-
ping some ocutput bits, and NMAC/HMAC-like transforms.
Then, they showed that hash functions using them are in-
differentiable from the VIL random oracle if the underlying
compresgion functions are FIL random oracles. Moreover,
they showed that hash functions using them and the DM
compression function are indifferentiable from the VIL ran-
dom oracle in the ideal cipher model.

Chang et al.[5] discussed the indifferentiability of hash
functions from the VIL random oracle in the ideal cipher
model.
block cipher in the PGV model (15] and the MD transform
with prefix-free encoding for domain extension. They showed

They assumed the compression functions using a

that the hash functions using 16 compression functions in the
PGV model are indifferentiable from the VIL random oracle
in the ideal cipher model. They also showed that the hash
function using the MMO compression function is differen-
tiable from the VIL random oracle.

On the other hand, as mentioned before, Gong, Lai and
Chen claimed that it is possible to construct hash functions
indifferentiable from the VIL random oracle in the ideal ci-
pher model even with the MMQ compression function [7].

Hirose, Park and Yun (8] proposed the MDP domain exten-
sion transform, and showed that a hash function using MDP
and the DM compression function is indifferentiable from the
VIL random oracle in the ideal cipher mode!. Ferguson had
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originally suggested an example of the MDP transform [9].

HMAC was first proposed by Bellare, Canetti and
Krawczyk [2]. It was also shown in the same paper that
HMAC is a PRF if the underlying compression function is a
PRF with two keying strategies and the iterated hash func-
tion is weakly collision-resistant. Bellare proved that HMAC
is & PRF under the sole assumption that the underlying com-
pression function is a PRF with two keying atrategies [1].

1.4 Organization

This article is organized as follows. Some notations and
definitions are given in Section 2.. The definition of MDP-
MMO is given in Section 3.. Section 4. is devoted to the
indifferentiabitity of MDP-MMO from the VIL random ora-
cle in the idesl cipher modet. The security of HMAC using
MDP-MMO as a PRF is discussed in Section 5..

2. Definitions

2.1 Notation

Let Func{Dam, Rng} be the set of all functions from Dom
to Ang, and Perm{Dom} be the set of all permutations on
Dem.

Lets & 8 represent that an element s is selected from the
set S under the uniform distribution.

2.2 Pseudorandom Bit Generator

Let g be a function such that g : {0,1}" — {0, 1}, where
n < I. Let A be a probabilistic algorithm which outputs 0
or 1 for a given input in {0,1}!. The prbg-advantage of A
against g is defined as follows:

AQVE™H(4) = |Pr{A(g(k)) = 1]k % {0,1)"] -
PriA(s)=1]s & {0,1}]] ,

where the probabilities are taken over the coin tosses by A
and the uniform distributions on {0,1}" and {0,1}. g is
called a pseudorandom bit generator (PRBG) if AdvE™5(4)
is negligible for any efficient A.

2.3 Pseudorandom Function

Let f: Key x Dom — Rng be a keved function or a func-
tion family. f(k, ) is often denoted by fi(-). Let A be a
probabilistic algorithm which has oracle access to a function
from Dem to Rng. A first asks elements in Dom and ob-
tains the corresponding elements in Rng with respect to the
function, and then outputs 0 or 1. The pri-advantage of A
against [ is defined as follows:

AdvE(A) = [PriAfc = 11k & Key) -
Pria® =1|p& Func(Dorn, Rag)]| ,

whete the probabilities are taken over the coin tosses by A
and the uniform distributions on Key and Func{Dom, Rng).

J is called a pseudorandom function (PRF) if Adv5™(A) is
negligible for any efficient A.

Let p: Key x Dom — Dom be a keyed permutation or
& permutation family. The prp-advantage of A against p is
defined similarly:

AdvEP(A) = [Pe{A™* = 1|k & Key) —
PriA” =1]p & Perm{Dem)|| ,

where the probabilities are taken over the coin tosses by 4
and the uniform distributions on Key and Perm{Dom). p is
called a pseudorandom permutation (PRP) if AdvE™(A) is
negligible for any efficient A.
2.4 Pseudorandom Function under Related-Key
Attack
Pseudorandom functions under related-key attacks are
first formalized by Bellare and Kohno[3]. In this article,
we only consider a related-key attack with respect to a per-
mutation m as in {8]. We will refer to this type of related-key
attack as the sr-related-key attack and formalize in the fol-
lowing way. Let A be a probabilistic algorithm which has
oracle access to a pair of functions from Dom to Bng. The
pri-rka-advantage of A agginst f under the w-related-key at-
tack is given by

AdvETHe(A) = [Priafefroo = 1)k & Key) -
Pr[4*" = 1|p,g & Func(Dom, Rng)]| ,

where the probabilities are taken over the coin tosses by A4
and the uniform distributions on Key and Func(Dom, Rng).
f is called a m-RKA-secure PRF if AdvE""™(4) is negligible
for any efficient A.

For a permutation, the prp-rka-advantage of an adversary
and the 7-RKA-secure PRP can also be defined similarly.

2.5 Computationally Almoest Universal Function

Family

Computationally almost universal function families are for-
malized by Bellare in(1]. Let f: Key x Dom — Rng be &
function family, Let A be a probabilistic algorithm which
takes no inputs and produces a pair of elements in Dom.
The au-advantage of A against f is defined as follows:

Ad\"}“(A} = Pr[fk(Ml) = fk(Mz) AM, # M|
(M, Ma) — ANk & Key) |
where the probabilities are taken over the coin tosses by 4
and the uniform distribution on Key. f is called a com-

putationally almost universal function family if Advii(A4) is
negligible for any efficient A.
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2.6 Indifferentiability

The notion of indifferentiahility is introduced by Maurer et
al. [13] as a generalized notion of indistinguishability. Then,
it is tailored to security analysis of hash functions by Coron
et al.[6].

Let € be an algorithm with oracle access to an ideal prim-
itive . In the setting of this article, ' is an algorithm to
construct a hash function using F with fixed input length.
Let H be the VIL random oracle and & be a simulator which
has oracle access to . 5™ tries to behave like F in order to
convince an adversary that 2 is CF. Let A be an adversary
with sccess to two oracles. The indiff-advantage of A against

C with respect to § is given by
AdvBYE(4) = [Pr{a®"F = 1) - A" = 1|

where the probabilities are taken over the coin tosses by 4,
¢ and & and the distributions of ideal primitives. €% is said
0 be indifferentiable from H if there exists a simulator §*
such that AdviEST(A) is negligible for any efficient A.

2.7 Ideal Cipher Model

A block cipher with block length n and key length x is
called an (», ) block cipher. Let E : {0,1}" x {0,1}" —
{0,1}" be an (n, &) block cipher, Then, E(K,-) = Ex(-)isa
permutation for every K € {0,1}". An (n, &) block cipher £
is called an ideal cipher if Ef is a truly random permutation
for every K.

The lazy evaluation of an ideal cipher is described as fol-
lows. The encryption oracle E receives a pair of a key and &
plaintext as a query, and returns a randomly selected cipher-
text. On the other hand, the decryption oracle D receives
a pair of a key and & ciphertext as a query, and returns a
randomiy selected plaintext. The oracles E and D share a
table of triplets of keys, plaintexts and ciphertexts, which
are produced by the queries and the corresponding replies.
Referring to the table, they select a reply to & new query

under the restriction that Ex is a permutation for every X.

3. MDP with MMO Compression Func-
tion

We denote concatenation of sequences by ||. For sequences
M1, Ma, ..., M, we often denote M| M3z - - - || M simply by
Ml M2 s Mk-

Let B ={0,1}". Let Bt = U, B* and BE* = UL, B'.

Let £ : Bx B — B be an (n,n) block cipher. The Matyas-
Meyer-Qseas (MMOQ) compression function(14) F: Bx B —
B with E is defined as follows: F(s,z) = E,(z) @<, where g
is a chaining variable and z is a message block.

The MDP transform [8] of F with a permutation m is de-
noted by F2 : Bx BT — B and defined as follows: For s € B
and MMz - - My (M{ e B},

(1) s=s,

(2) & =F(S,‘_1,M§) forl é%s k- 1,

(3} ax = F(n{se_1), Mp),

(4} F(a, MiM;-- M) < 5.
The following padding function pad : {0,1}* — UZ. B is
also prepared:

pad(M) = M| L0%\bin(}M]) ,

where

¢ ¢ is the minimum non-negative integer such that
[Mj+£=0 (mod n),

e  bin(|M]) is the (n — 1}-bit binary representation of

Now, MDP-MMO is a scheme to construct a hash function
using & block cipher ¥ : Bx B — B, a permutation 7 : B — B
and an initial value IV € B defined as follows:

MDP-MMO[E, =, IV](M} & F2(IV,pad(M)) .

A diagram of MDP-MMOQ is shown in Figure 1.

i o R e e

Fig. 1 MDP-MMO[E,x, IV}(M). pad(M) = My Mz -+ - M.

4. Security of MDP-MMO

4.1 Collision Resistance

It is easy to see that MDP-MMO[E,m, I'V] is collision-
resistant (CR} if its compression function is CR, that is, it
is difficult to compute & pair of distinct (S, X) and (8, X)
such that Es(X} @& X = Eg(X') & X’ for the underlying
block cipher E. The pseudorandomness of a block cipher
cannot imply the property. It is easy to find & counterex-
ample. However, it seems still reasonable to assume that a
well-designed block cipher such as AES has this property.

The CR of MDP-MMO can also be proved in the ideal
cipher model using the technique by Black et al. in[4].

4.2 Indifferentiability from Random Oracle

In this section, we show that MDP-MMO[E,r, I'V] is in-
differentiable from the VIL random oracle in the ideal cipher
model. The following theorer states the indifferentiability of
MDP-MMO in the ideal cipher model. The proof is omitted
due to page limitation.

Theorem 1 Let E be on (n,n} block cipher. Let m be a
permutation and Py be the set of ita fired points. Let A
be an adversary that asks el most gy queries to the VIL
oracle, gr, queries to the FIL encryption oracle and gy,
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Let | be the mari-
mum number of message blacks in a VIL query. Suppose that

queries to the FIL decryption oracle.

lgv +qr, +grp £ 2771, Then, in the ideal cipher model,

IndIff
AdVMDP MMO, 55,5 (A)

< Tlqv +ar, +arp) +5Ugv +gre)arp — ab,
= 2n+l

+ 2Uqv{qr, +qrp)
2n~1 = 3{lgv + g, +qrp ) — | Prl

+ {41P: 1 +5) (lgv + gr; +qrp) +21grp
an+1 *

where the simulators Sg and Sp are given in Figure 2. Sg
is ¢ simulator for the encryption oracle, and Sp for the de-
cryption oracle. Sp makes at most gr, queries and runs in
time Olqr,.(ge, +qrg)). Sp makes al most qv, queries and
runs in time Q{gry, (gr; + GF5)).

For Theorem 1, suppose that 7 has no fixed points. Also
suppose that lgy +¢r, +qrp, £ 277, lgv 2 1, gr, 2 1, and
grp 2 1. Then, a looser but simpler bound is obtained:

n lgv + grs + qrp)°
AdvitiEiumo, s, 50 (A) £ Uav + v + aro). g?—a o)

Se and 8p simulate the ideal cipher using lazy evaluation.
In Figure 2, P(s) and C(s) represent the set of plaintexts and
that of ciphertexts, respectively, which are available for the
reply to the current query with the key s. Both of them are
initially {0,1}", and their elements are deleted one by one
as the simulation proceeds.

Let (si,%4,1n) be the triplet determined by the i-th
query of the adversary and the corresponding answer, where
E,;(z:) = yi. Thus, for the MMO compression function, s,
is a chaining variable, and z; is a message block. The triplets
naturally defines a graph which initially consists of a single
node labeled by the initial value 7V and grows as the simu-
lation proceeds. {s;, 2., ) adds two nodes labeled by s, and
2z = x4 @ 1, and an edge tabeled by z, from 8, to 2. The
additions avoid duplication of nodes with the same labels.

The simulators use two sets V and 7. V keeps all the
labels of the nodes with outgoing edge(s) in the graph. T
keeps all the labels of the nodes reachable from the node la-
beled by IV following the paths. The procedure getnode(s)
returns the sequence of labels of the edges on the path from
the node labeled by IV to the node labeled by 4.

The simulators select a reply not simply from C(s) or P(s)
but from C(s) \ Sbaa or P{s) \ Suea- It prevents most of the
events which make the simulators fail. For example, since
{y¥lz®y € T} C 8o, every node in 7 has a unique path
from the node labeled by V. Thus, M is uniquely identified
at the lines 204 and 304.

The most critical work of the simulators is to reply to the

decryption query related to the final invocation of the com-
pression function in MDP-MMO[E, 7, IV](M) for some M.
Let (s,2) be the query to Sp. In order to reply to (s,x)
properly, the simulator Sp has to ask M to the VIL ran-
dom oracle H and return H{M) @ z. Owing to the padding
scheme pad, there exist only two possibilities for M, AM®
and M, which correspond to the message blocks M fed to
the compression functions before the permutation 7. Thus,

Sp can accomplish the work.
5. Security of HMAC Using MDP-MMO

In this section, we discuss the pseudorandomness of HMAC
using the MDP-MMO hash function (HMAC-MDP-MMO),
This function is defined as follows:

HMAC|E, m, IV](K, M) =
H{(K & opad)|| H{(K & ipad)||M)) ,

where H is MDP-MMO[E, 7, IV| and K is a secret key. A
diagram of HMAC-MDP-MMQO ia given in Figure 3. Let us
call H{(K & ipad)|-) inner hashing and H{(K & opad)|-)
outer hashing,

The proof is similar to the one given by Bellare in[1].

Fig. 3 HMAC{E,#n, IV)(K,M). E is an (n,n) block cipher.
Kip = K @ ipad and Ko = K @ opad. pad{Hip||M) =
KapMy -~ M.

First, the compression function construction is considered.
The following lemma says that the MMQO compression func-
tion ls & PRF when keyed via the chaining variable if the
underlying block cipher is a PRP under the chosen plain-
text attack up to the birthday bound. The proof is easy and
omitted.

Lemma 1 Let £ be an (n,n) block cipher and F be g func-
tion such thel Fr(z) = Ex(z)® .

® Let Ar be a prf-cdversary ageinst F which runs in
time al most L and asks ot most ¢ queries. Then, there exists
a prp-adversary Ag against E such that

r o -1
AdVE"(Ar) < Advi(Ag) + TEZD

where Ag Tuns in fime at most t + O(g) and asks af most g
gueries.
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Initialize: Interface D(s, z):

100: V@ 300: If 5 € T then

108 T — {IV} 301:  Dalx} & P(8) \ Sona
102: Pls) — {0,1}" 302: T — TU(Ds(z) Bz}
103: C{s) — {0,1}" 363: else If 7~!(s} € T then

304: M — getnode(n—1{a))

Interfaco £(s, z): 305:  Af = = H{M®) @ Ib(M(®}) then

200: If 8 € T then 308: D,(x) — (M)

201: Ea(z) & C(s) \ Soaa 307 elsa If z = H(M)) @ (M) then
202: T~ TU{ESz)dz} 308: D,(z) « (MUY

203: else if m—1{s) € 7 then 309: else

204. M — getnode(r~(s)) 310: Dy(x) & Pa) \ {I(MO), 1b{ar{D}}
205 If z € {1b(M D)), (M)} then 311 alse

206: if = = {b{M () then a2 Du(2) L P(s)

207 Ee(z) — H(M©)) @ Ih(M ©))

313 Ve— VU {s}

208: alse

m Chwwenuny LTI E
210 If E,{z) ¢ C(s) then 316: return D,(z)

211 return fail

212: else

213 Ey(z) & C(s)

214: else

215 Elx) & Cla)

218: V «— VU {a}

217: P(s) — P{a) \ {z}
218: C(s) — C(8) \ {Ea{z)}
21%: raturn E,(z)

Fig. 2 Pseudocode for the simulators Sg and Sp. Spae = {ply € {0,1}" Az dy €
VYUT U~ (VUTIun(T)U Pp}. pad{M©) = M|I(M®), and pad{M{})) =
MM, M = MOY10f (0 £ £ £ n ~2) and (M) = 0f|bin(| M)
X = MO and (M) = 1bin(|MO]).
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® Lel m be a permulation. Let Ay r be a prf-rka-
adversary againsi F' with respect to 7w which rung in lime

at most t and asks at most g queries. Then, there exists a

prp-rko-adversary Ay g against E with respect to w such that

x glg—1
AdvE (AL p) € AdVEE™ (AL e (2n+1 ),

where Ax g runs in time at most ¢ + O(q) and asks et most

q queries.

The following lemma is on the inner hashing. It says that,
if the compression function F' is a m-RKA secure PRF, then
the MDP composition of F' and s is computationally almaost
universal. The proof is omitted due to page limitation.

Lemma 2 Lei F: {0,1}" x {0,1}" — {0, 1}* be o function
family, and let Apo be an ou-adversary against Fy. Sup-
pose that Are oulpuls two messages with at most £, and &>
blocks, respectively.

Ax r againsi F with respect to m such that

Then, there ezists a prf-rka-adversary

AdV (Apa) < (fl + 4y — 1) Advpff rkn(Ar.F) +

where Ay, r runs in time at most O((€,+&)Tr) and makes at
most 2 queries. Tr represents the time reguired fo compute
F.

Lemmsa 2 requires & m-RKA secure compression function,
However, the assumption does not seem severe since adver-
saries are allowed to make only at most 2 queries to the
aracles.

The following lemma is on the outer hashing. It says that,
if the compression function is a PRF, then the outer-hashing
function is also a PRF, The proof is omitted.

Lemma 3 Let F: {0,1}* x {0,1}" — {0,1}" be a func-
tion family. Let £ : {0,1}x {0,1}™ — {0,1}" be a function
Sfamily defined by

FR3(K, X) = F(r(F(K, X)), 1|jbin{x + n))

where K € {0,1}* and X € {0,1}". Let Ap: be a prf
adversary against FZ that runs in time at most ¢ and makes
af most q queries. Then, there exist prf-adversaries Ar and
Ay against F' such that

AdvE (Apa) € AdvP'(Ar) + g AdvET(AF) |

where Ap runs in time al most t + O(qTr) and mokes at
most g queries, and AR runs in time t + O(qTs) and makes
at most | query. Ty represents the time required to compute
F.

The following lemma is Lemma 3.2 in[1].
R{(Ko,

It says that
G(K1,-)) is a PRF if h(F,, ) is a PRF and G(K\,) is

computationally almost universal, where K, and K, are se-
cret keys chosen uniformly and independently of each other.

Lemma 4 (Lemma 3.2 in[1]) Leth: {0,1}*x{0,1}" —
{0,1}* and G : {0,1}" x D — {0,1}" be function fam-
ilies. Let hG : {0,1}*T" x D — [0,1}* be defined by
hG(Ko|| K1, M) = h(K,, G{K,, M)) for K, € {0,1}¥, K €
{0,1}" and M € D. Let Anc be o prf-adversary against hG
that runs in time at most ¢ and makes at most q (Z 2) queries
each of whose lengths is at mest d. Then, there exisi a prf-
adversery Ay agoinst h and an au-adversary Ag against G
such that

AdvPE (Ang) £ AdvE(4,) + TE ) "(‘*‘ aa=1) s gymiag)

where Ay, runs in time af most { and makes et most g queries,
and Ag runs in time O(Te(d)) ond the two messages it out-
puts have length at most d. To(d) is the time to compuie G
on a d-bit input.

The following theorem is on the pseudorandomness of the
NMAC-like function made from HMACIE, =, IV](X,-) by re-
placing the first calls of the compression function in inner
and outer hashing with two secret keys chosen uniformly and
independently of each other. The theorem states that the se-
curity of the function as a PRF is reduced to the security of
the underlying block cipher as a PRP under the related-key
attack with respect to m. It directly follows from Lemmas 1
through 4.

Theorem 2 Let B = {0,1}" and E be an (n,n} block
cipher. Let F : Bx B — B be a function such that
Fi(z) = Ex(z)®z. Let F2F® : B x BY — B be defined by
FRER (K| Ky, M) = E2K,, F2 (K1, M) for Ko, K\, € B and
M e B". Let Apgp: be a prf-adversery against F2F? that
runs in time at most t and makes at most q{2 2) gqueries
each of which has ot most £ blocks. Then, there exist prp-
adversaries Ap and A’s against E and a prp-rka-adversary

A, £ against E with respect to n such that

Adv?] ro(Apape) € AdVE®(Ar) + g AdvEP(4])
2
+ 2 AV (Ar ) + —mszi}“' ;

where Ap runs in lime at most t + O(gTe) and makes at
most g queries, AL runs in time at most t + O{qTe) and
makes at most 1 query, and Ax r runs in time O(€Te) and
makes at most £ queries. Ty represents the time reguired fo
compute E.

The following lernma says that, even if the secret key of
a PRF is replaced by the output of & PRBG, the resulting
function rernaing o PRF. The proof is easy and omitted.
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Lemma b Let g : {0,1}* — {0,1}" be a function and
G : {01} xD — {0,1}" be e funciion family. Let
Gg: {0,1}" x D — {0,1}" be a function family defined by
Gg(K, M) = G(g(K), M) for K € {0,1}" and M € D. Let
Agy be a prf-adversary against Gg that rung in time ol most ¢
and makes at most q gueries of length at most d. Then, ihere
ezist ¢ prig-adversary A, ogainst g and a prf-adversary Ag
against G such that

AdvET(Ac,) € AdvE™8(4,) + AdvET(Ag) |

where A, Tuns in time at most t + O(9Ta(d)), and Ag runs
in lime ¢ and makes al most q queries of length ot most d.

Now, we can obtain the result on the pssudorandomness
of HMAC-MDP-MMO simply by combining Theorem 2 and
Lemma 3.

Corollary 1 Let E be an (n,n) block cipher. Let ggp :
{0,1}" — {0,11*" be a function such that ge(K) =
(Erv(Kop) & Kop)[[{ Erv (K1p) ® Kip), where Koy = K G opad
and Ky, = K @ ipad. Lel A be e prf-adversary against
HMAC[E, =, IV] that runs in time ot most ¢t and makes at
most g(2 2) queries each of which has at most € blocks.
Then, there exist prp-adversaries Ag and Az against E, a
prp-rka-adversary A- g against E with respect to m and a
prbg-adversary A, such that

Advf{ﬁ.ﬂc[s.n,:w(*‘” £ Ad"ap:zbz(Ags) + AdvEP{Ag) +

(2¢ + q*

gAVEP(AF) + £q* AdVEE ™ (Ar p) + 12

where A, rung in time of mosi t + O(g€Te), Ag runs in
time at most t + O(qTs) and makes at most g queries, A
runs in lime af most £ + O(qTz) and makes af most 1 query,
and A g runs in time O{Tx) end makes at most 2 queries.

Actually, we have not completely reduced the security of
HMAC-MDP-MMO as a PRF to the security of the under-
lying block cipher a8 & PRP under the related-key attack
with respect to w. It is easy to see that the function gg in
Corollary 1 may not be a PRBG in general even if £ is &
PRP. However, it does not seem so difficult to design a block
cipher E such that gg is a PRBG. This is because IV is a
fixed initial value chosen by the designer of the hash function
and the block cipher. Furthermore, ipad and opad are fixed
sequences given by HMAC. Any adversary has no coatrol

over them.
Acknowledgements

The authors would like to thank Dr. Yoshida and Dr.
Ideguchi at Hitachi, Ltd. and Prof. Ohta and Dr. Wang at
The University of Electro-Communications for their valuable

discussions and comments on this research. This research
was supported by the National Institute of Information and
Communications Technology, Japan.

References

[1] M. Bellare. New proofs for NMAC and HMAC: Security
without collision-resistance. In CRYPTO 2006 Proceedings,
Lecture Naotes in Computer Science {117, pages 602-619,
2006. The full version is “Cryptology ePrint Archive: Re-
port 2008/043" at http://eprint.lacr.org/.

[2] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash func-
tions for message authentication. In CRYPTO '86 Proceed-
ings, Lecture Notes in Computer Science 1109, pages 1-15,
1958,

{3] M. Bellare and T. Kohno. A theoretical treatment of
related-key attacks: RKA-PRPs, RKA-PRFs, and appli-
catlons. In EUROCRYPT 2008 Proceedings, Lecture Notes
in Computer Seience 2656, pages 491-508, 2003.

[4) J. Black, P. Rogaway, and ‘T. Shrimpton. Black-box anal-
ysis of the block-cipher-based hash-function constructions
from PGV. In CRYPTO 2002 Proceedings, Lecture Notes
in Camputer Science 2442, pages 320-335, 2002,

(5] D.Cbang, 8. Les, M. Nandi, and M. Yung. Indifferentiable
security analysis of popular hash function with prefix-free
padding. In ASIACRYPT 2006 Proceedings, Lecture Notes
in Computer Science {284, pages 283--208, 2006.

[6] J-8. Coron, Y. Dedis, C. Malinaud, and P. Puniya. Merkle-
Damgérd revisited: How to construct a hash function. In
CRYPTO 8005 Proceedings, Lecture Notes in Computer
Science 3681, pages 430448, 2005.

I7] Z. Goeng, X. Lai, and K. Chen. A synthetic indiffer-
entiability analysts of some block-cipher-based hash func-
tions. Cryptology ePrint Archive, Report 2007/465, 2007.
htp:/foprint.iacr.org/.

(8} S. Hirose, J. H. Park, and A. Yun. A simple variant of
the Merkle-Damgard scheme with a8 permutation. In ASI-
ACRYPT 2007 Proceedings, Lecture Notes in Computer
Science {838, pages 113-129, 2007,

[9] J. Kelsey. A comment on draft FIPS 180-2, Public Com-
ments on the Draft Federal Information Processing Stan-
dard (FIPS) Draft FIPS 180-2, Secure Hash Standard
(SHS), 2001. http://carc.nist.gov/CryptoToolkit/sha/
dfips-180-2-commental.pdf.

[10) H. Krawceyk, M. Bellare, and R. Canetti. HMAC: Keyed-
hashing for messnge authenticatlon. Network Working
Group RFC 2104, 1997,

[11] H. Kuwalado and M. Morii. Compression functions suitable
for the multi-property-preserving transform. Cryptology
ePrint Archive, Report 2007/302, 2007. bttp://eprint.
lacr.org/.

{12] 5. M. Matyas, C. H. Meyer, and J. Oseas. Generat-
ing strong one-way functions with cryptograpbic algorithm.
IBM Technical Disclosure Bulletin, 27:6655-5659, 1985,

{13] U. M. Maurer, R. Renner, and C. Holenstein. Indifferentia-
bility, impossibility results on reductions, and applications
to the random oracle methodology. In Proceedings of the
First Theory of Cryptography Conference (TCC °04), Lec-
ture Notes in Computer Science 2051, pages 21-308, 2004.

[14] A. J. Menezea, P. C. van Oarschot, and S. A. Vanstone.
Handbaok of Applied Cryptography. CRC Press, 1095,

[16] B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions
based on block ciphers: A synthetlc approach. In CRYPTO
'9% Proceedings, Lecture Notes in Computer Science 773,
pages 368-378, 1004.

-228-



