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Abstract In this paper we discuss on a method for improving the security of the previously proposed KMN
PKC [1] where two pairs of ciphertext-subsidiary ciphertext and also error-correcting codes are used. In order to
improve the security, a new method is proposed. We show that our improved version of KMN PKC is secure against
low-density attack. We also discuss the security of KMN PKC from the information theoretical point of view. We
finally present two chellenge problems on KMN PKC.
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Concerning knapsack-type PKC, the various interesting

1. Introduction
schemes have been proposed. In 1978, the first knapsack-

Various important studies have bean made of the Public-
Key Cryptosystem (FKC). The security of the PKC’s pro-
posed so far, in most cases, depends on the difficulty of dis-
crete logarithm problem or factoring problem. For this rea-
son, it is desired to investigate another classes of PKC's that
do not rely on the difficulty of those two problems,

type PKC was proposed by Merkle and Hellman [2]. We
shall refer to this scheme as MH PKC.

Unfortunately MH PKC was broken by Shamir {3], [4] and
the Low-Density Attack(LDA) [5]~[7]. Although MH PKC
was broken, the MH PKC is very simple and interesting. For
this reason, it has been long studied and has been revised by

-1-



many researchers [8]~[10].

Recently, for revising the security of MH PKC, Kobayashi
proposed & new knapsack scheme over Gaussian integer
ring over the super-increasing sequence [11]. Unfortunately,
this scheme was broken [12], [13].
Sakamoto proposed an improved version of the scheme [14].

Later on, Hayashi and

However, the improved scheme was proved not sufficiently
secure as shown in [15].

Recently present authors presented & new class of knap-
sack cryptosystem on the basis of MH PKC, referred to as
KMN PKC|[1]. In KMN PKC two independent message se-
quences are jointly encoded to four ciphertexts. Namely each
message is encoded to a different ciphertext. Two of the four
ciphertexts are disturbed by random errors that would im-
prove the security of KMN PKC.

In this paper, we further investigate the security of KMN
PKC and improve it. We also present two classes of challenge
problems.

In the following, for essy understanding, we shall first
present three classes of insecure schemes, Insecure Schemes I,
I and II!. We then present a revised secure scheme, KMN
PKC.

2. Security of KMN PKC [1]

In this section, we describe the principle of KMN PKC
using insecure schemes referred to as Insecure Schemes I, 11
and III[1).

2.1 Rate and density

Let ug define the rate A and the density D} as followa:

__ size of messages (in bits)
size of ciphertext (in bits)’

(1)

total size of messages and

D subsidiary mesaages {in bits) )
- total size of ciphertexts (in bits) (2)

2.2 Insecure Scheme I

[Key generation)
Let the super-increasing sequence be

01,82,...,8N. (3

Let us generate the following random sequence under the
condition that the relation a; = &, + d; holds:

E=(bl1gﬂn---|sl\')l (4)
d=(di,ds,...,dn). (5)

A toy example is shown in Table 1.
It shouid be reminded that two sequences bandd seem,
at least superficially, random sequences.

Letting & be defined as & = &bi, we then have b =
{b1,ba,...,bn) and & = (&1, 8a,...,0n), where &, = sgn(b;)

Table 1 Example |

3 a5 ]e6l7]s
1 2| 4] 8 [16]32[64]128
54 [—60|-18]-20] 70| 67
66 {—4]-50] 68 [ 34 [ 52 [-6] 61 |

-
-
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and agn(-) are the signum functions.

In a similar manner as b, letting d; be defined as d, = £.d,,
we then have d = (di,da,...,dn) and € = (g1,€3,...,ex).
where £; = sgn(a).

Let us consider the following modular transformation :

5 = bywp mod ny, (6)
hy = dywa mod ng, (n

where we assume that the relations n, > Eff__l b, ng >
E‘N:l d; and ged{ws, np) = ged{wg, n4) = 1 hold. Let us de-

ﬁnegandhasg=(gl,gg,...,g~)andh= (hhhﬂs“'vhNJ-

Secret key : a,g, &,wb,wd, Np, Tid
Public key : 8,¢e,8.h

[Encryption]
The following ciphertexts Ch and Cy are now constructed
for a message vector m = (my,ma,...,my) € {0,1}" :

N

Cb = Zmldlgn (8)
=1
N

Cy = Y mueihs. (9)

i=1
2.3 S8ecurity consideration on Insecure Scheme I
Vulnerability of Insecure Scheme I is due to the fact that
the same message sequence m is encrypted to two different
ciphertexts C and Cy. Namely this scheme can be broken

with the LDA by using the following matrix:
! 9

“-'4\6191 —AE;hl

—Adzgr  —Aezh:
B = . . .
O 1 —-Xngn —Xenhy
-1/2 -1/2 ACy ACy
2.4 Insecure Scheme II
[Key generation]

Another modular transformations are performed on b, and

d, as:
§i = bty mod i, (10}
R, = dii0z mod 7. {11)

Letting § = (§1,5a,..-,9~) and i = (ky, ha,..., in) be de-
fined in a similar manner as g and h, we have the following



set of keys.

Secret key : a,s, E, Wy, Wd , Wh, Wd, b, Ny, T8, Tig
Public key : 4,¢,g, k.5, k

[Encryption]
For two independent message vectors m® = (m{®, m® .
mi) and m@ = (m{®, m{®, .. ., mi?) the following clpher-
texts:
N
G =3 m{ g, (12)
1=1
N
Ca = Zm&d)ﬁh" (13)
i=1
are constructed.
New punctured sequences ™ = (@M, 7, . . &l

and mtd = ("(d) mgd), e ,'r'ﬁsg)) are now constructed from

the messages my and myg as

= _m® 4@ (14)
and

"(d) =m® mgd’. {15)

Itis easy to see that four message sequences m'?, m® m(")

and 72® are different each other.
Besides the ciphertexts given by Eqs.(12) and (13}, the fol-
lowing subsidiary ciphertexts, C, and €, are constructed:

N
G =Y aleg,

i=

{18)

which is used for the decoding of m!? in cooperation with
Cy. In a similar manner, 8‘; which is used for the decoding
of m® in cooperation with Cy is given by

&: = ~(d)E{h,‘. (17)

M=
|

i

1

The ciphertexts for the message sequences m® and m®
are Cy and Cy respectively. The subsidiary messages m®

and '@

are encrypted to Cy and Cu respectively. The in-
formation rate, R, is thus given by 1/2.

2.5 Security consideration on Insecure Scheme I1
N,

can be

If we replace message 7" by —m® (i =1,2,...
then —m{® = 'r'ﬁ(d) holds. i
obtained simply by —m "

We have the following relations:

Namely message 77

N
Cy = E(ﬁgg,‘)m?),

i=1

N
=Y (eshi)m{?,

i=1

N N
Co+Cs = =3 (5 — eihiym® + 3 (63 — b )m{?,

i=1 =1
— — N - N _
Co=-Ca = — 2(5@5 + Echg)msb) + Z(fsﬁi + Eihi)msd].
i=1 i=1

Scherne II is thus broken with the LDA by using the matrix

., of Eq.{18).

2.8 Insecure Scheme IIT
[Key generation)

Secret key : a,E,E, Wa, Wy, Wy, Ve, Np, Rd, Np, id
Public key : 8, ¢, 9, k.5, k, ECC

[Encryption}

Let us encode the message m‘® to a code word of an error-
correcting code which will be denoted as m{t,... The i-th
component mg_,,(]:.c mfb), will be denoted as mfbe}cc The
m{®) . with error will be denoted as @{®)_. It should be
noted that the error-correcting code would be more desir-
able to be a non-linear type code such as the Preparata code
rather than a linear code [16].

In the followings, for simplicity, we assume that only m
iz encoded 0 an error-correcting code. We also agsume that a
random error is added only on the location where the relation
mfb) = mﬁd’ = 0 holds. A generalization to the case where
both m'® and m® are encoded to an error-correcting code
and the error is added on the location where m?‘J = mEd) =1
holds is atraightforward.

We also assume that mi® = m{® holds with probability
1/2 for given messages.

Step I: Choose t locations Iy, 1o, ... (&)

e in mpaa.

Step 2: At the £ locations, add t errors as
me=0 — @A.=1, (i=f,b,...,k). (19)

Btep 3: According to the additions of ¢ errors in mf,f}?c,
modify the i-th element of m(® ag
AN =0 - AmP=1,

(i =lila,... 1)

2.7 Security consideration on Scheme III

(20)

Letting the error vector be e = (e1,e3,...,ex), we have

the following relations:

m® = m&;)cc +e,
= —mlo +m®,
D = Mm@, —m@ e

Consequently, we have

N

N
Gy = 3 (Sigdmll. + 3 (Ggi)es,

=1 i=1

N
Cd = Z(s;h‘)msd’

i=1



1 0O 0 A(&151 — £1h1) A6 +erha)
=My aw 0 NoNTn —enhn)  Mlndn +enhn)
By = _ ~ _ - (18)
0 —Aeih =151 —e1h1) —A(B151 +e1h1)
O 1 ] —denhy  —M@EnTv —enhn) —MSn@n +enhy)
-1/2 —-1/2 MG ACa NGy +Ca) Ny ~ Ca)
1 O —Mg 0 Mg — e1ha) M5 +510)
—AdngN 0 MENTN ~enhn}  MonEn +enhN)
Q —Ae1hy —A(J[§1 - 51h1) —)\(61‘9-1 + E]_-El)
By = - : . o (21)
4] —Aenhn  ~MénGw —enhn) —Méndn + ENhN)
—Adign 0 =Je1hy r\.ElTu
1 —Magn 0 —AE‘NTLN )\ENEN
—-1/2 “1/2 G Ay MG +Ca) MGy - 02)
— N N ~ here that I{w,) = K@) = I = I{m) = Ig) = I(&
&+ T = Z(éfgi —E;h-‘)m‘ +E(5i§i —eih,-)mm {wy) : {uss) () (7iv) (g:) (.'G's)
= i i holds for a sufficiently large N, where I{z) denotes the size
N of  (in bit).
Z(E{hi)eig From Eqgs.(22} and {23), we obtain
i=1
—_ N minQ: = AeunGi + Frws — 5. (24)
Cp—Cy = Z( i+ e k)Mt + Z(a, B + b)m!® s 4

i=1

- E(S:ht)ex

i=1

i=1

We thus see that the Scheme III proves to be insecure against
the LDA. Namely, Scheme III is broken with the LDA by us-
ing the matrix of Fq.(21).

3. Discussions

From Eqgs.(6), (7), (10) and (11) we see that these mes-
sages m® m@ m® and W'Y are performed by mutually
unrelated modular transformations. For this reason we can
conclude that the attack on public keys for Scheme I through
III for disclosing secret keys can be circumvented. We shall
show this in the followings.

Eqs.(6) and (10} can be represented as

by = np@h + g1 (22)
and
bl = RaQ: -+ G, (23)

respectively, where ¢}y and {, are the quotients. We sssume
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From Eq.(24), we see that the following relation also holds :

Qi1 = FswsGet1 + Forrtws — gia1 . (25)
From Eqgs.(24) and (25) we have
(Founth + Fiws — giitn)Qir1 =
(FrwsQer1 + Firs — Fip1 W) Qs (28)
From Eq.{26} we have
Wpwp(Qi — Qit1) = Forrwp@i — Gig110p0Q;
— FewsQis1 — giti Qi (27)

From Eq.{27), we see that the following relation also holds

fawn{Qitz — Qiss) = FirawnGito — giraWsllita

= GerowpQhis — Gir2tiplhiea  (28)

From Eqs.(27) and (28) we see that the following relation
holds :

gils + Hli + g Do + §s+1f=‘+1 + giv2liqa+
Fitalise + givalive + Grrales = 0, (29)



where [',1; and T'\y; ( =1,2,3) are certain integers.
When we assume that J{b,) = ~/[bita|, it is easy to see that
the size of ['; and I'; can be given by

I = KT 2 Ha) + 3. (30)
For example, when I{b,) = 40
(1) ~ I{g,) 2 120(bit), (31)

sufficiently large value, yielding invulnerability against the
LDA on the public key.

4. Improvement of Security

We shall improve the security of Schemes 1 through III by
slightly modifying the part of public key.

Although the proposed method can be applied to all the
Schemes | through III, we can explain only one case where
the method is applied to Scheme 1.

4.1 Modified Scheme I

[Key generation]

Let us modify the first J symbols of super-increasing
sequence as @ = (0,0,...,0,a741,8542,...,an5), where
(GJ+1,G2,...

Let us generate the following random sequence under the
condition that the relation a; = b; + d; holds:

2N} is a super-increasing sequence.

b= (bl,bm---lbi\')n (32)
d = {di,ds,...,dn). (33)
A toy example is shown in Table 2, where wy = 179,

ny = 479, wa = 307 and ny = 457, It should be reminded
that two sequences b and d seem, at least superficially, ran-
dom sequences.

Let us define g and h as g = (g1,92,...,gn} and h =

(A1, hs,...,hn). Let us consider the following modular
transformation:
gi = wyb, mod ny, (34)
hi = wgd; mod ng, (35)

where we assume that the relations ny > 7 b, ng >
TN, |d] and ged(ws, ms) = ged(wg, ng) = 1 hold®.

Secret key : a,b,d, wp, we, Ny, ng
Public key : g,h,J, N,V

[Encryption]
When encrypting a message, the message vector m is also
modified as

m = (v, ve,..., 00, M1, Maga,. .., ma), (36)

(1) t 1t should be noted that the modular transformation over Gaus-
sian integer ring can be also used.

where we let the original message be m = (my41, myva, ...,
my) € FY~7 and v; is a randomly generated element whose
size ls given as V' {bits). It should be noted that this scheme
is knapsack PKC when V = 1.

In m/', v,’s are the random noisy elements independent of
message symbols. However from the standpoint of attacking
KMN PKC, these elements v, v, ..., v; cannot be distin-
guished from message symbols m 4y, Mg, ..., my when
the ciphertext is given. In other words, from the standpoint
of attacking on KMN PKC, these noisy elements look like
message sequences. We thus refer to m’ as noise-disturbed
message.

The following ciphertexts C, and € are now constructed

for a message vector m’ :

N

Gy = ) mig., (37)
=1
N

Ca =Y mh. {38)
i=1

[Decryption]

Let the intermediate messages M, and My be defined as
follows:

N
My =3 mby, {39)
=1
and
N
My = Z mid;, {40)
i=1
respectively.

The My can be decoded as
My = Cowy'  (mod ny), {41}
where M, satisfies

S uEMLY b {42)

<0 by >0
In a similar manner, My can be decoded as
Ms=Cowi' (mad ny), (43)

where My satisfies

ZiiéMdézd.- (44)

d; <o d; >0

We then obtain the conventional Merkle-Hellman type in-
termediate message as

M = My + My

N
Z mi(bi + di)
=1

N
= Z migi. {45)
i=1



Table 2 Toy Example of Modified Scheme I (J =8, N = 16)

il 1 2 3 4 & [ 6 7 8 9 | 10| i1 | 12 | 13 | 14 | 16| 16
ai 0 Y] 0 0 0 0 0 0 1 2 4 8 16 | 32 | 64 [ 128
b|—-18| 30 |~10|—-16|-1| 22 | 11 | 6 | -85 54 (—~60(—-18|-20( 70 | 67
d 18 |-30(| 10 | 16 1 (-22|-11}-6| 66 |~4|-50) 68 | 34 [ 52 | —6 [ 61
g| 131|101 | 126 | 10 |[300| 106 | 53 [116( 340 | 116 | 86 | 277 | 131 | 252 | 78 | 18
hl 42 | 387 [ 328 | 342 (307 | 101 | 279 443 | 154 [ 143 | 188 | 311 | 384 | 428 | 443 | 447

From M the original message sequence m = (my41, Mtz
..., my) can be decoded according to the conventional
method.

In the following, M will be also referred to as intermediate
message.

4.2 Generalized Version of Modified Scheme I

Let us modify the first J symbola of super-increasing se-
quence as ry,¥2,...,7f, 0J+1, 8743, . ., 0N, Where the size of
r; be L-bit random integers and 75 € ay41.

In a similar manner, let us modify the first J symbols of
b and d given by Eqs.(32) and (33) so that b, and d, may
satisfy b +di = r, for i = 1,2,...,J, where |b;] € n, and
|d¢| & Na-

4.3 BSecurity consideration on Modified Scheme I

If the density d is low, the message sequence m' is can be
disclosed with the LDA by using the matrix By by a simi-
tar discussion on Insecurs Scheme I. However, it is easy to
see that the density can be made very large. Thus we can
conclude that KMN PKC is secure against LDA.

The density D is given by
totel size of noise-disturbed messages (in bits)( 16)

tatal size of ciphertexts (in bits)
_ Vi+N-J (47)
2x (2V+ L+ N —J 4 2logy J + logy N)
For example, for J = 127, N = 1024, L = 64 and V = 64,
the density DD is given by D =~ 2.2446.

Taking account of very high density of KMN PKC, we can
conclude that our proposed scheme can be secure against
LDA.

Although the details of doing 8o are omitted, we can show

D

that the proposed method of the improvement of the security
can be also applied on Schemes II and I1L

5. Conclusion

In this paper we discussed the security on KMN PKC. In
KMN PKC, two independent messages and two subsidiary
messages that can be considered mutually independent are
encrypted to four different ciphertexts. Two independent
messages are encoded to error-correcting codes to improve
the security of the proposed scheme. We have shown that
the using of random noisy symbols vy, vs, ..., v; besides
message symbols w41, Migs, - .., My is able to improve

the security of KMN PKC.

The density of the
cantly large and the rate R is given by 0.4 < R < 0.5. It
seems that KMN PKC can be sufficiently secure against the
LDA for sufficiently large n.

The method of the improvement of security can be applied

proposed scheme can be made signifi-

for the various classes of knapsack type cryptosystems. We
shall report on these problems in near future.
Finally in this paper, as one of the most important moti-

vations of the present paper, we present two challenge prob-

n

lems'”’. We sincerely wish these problems be challenged.

We are thankful for the support of SCOPE.
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Appendix

1. Security Consideration

In the followings let us denote the conditional entropy of
Y when X is known by H(Y'|X)}. In the following, we assume
that the message components are equally likely.

In Insecure Scheme I the following relation evidently holds:

H(m for Cu|m for C4) =

H{m for Calm for Cp) =0. (A1)
In Insecure Scheme 11 the following relation holds:
Him® @) = H(mDim®)
= H(m")
= H{m'), (A-2)
HERO RS = HEEO YD) = 0. (A-3)

Above relations seemns to make both Insecure Schemes I and
11 vulnerable to the LDA.

On the other band the following relations hold in KMN
PKC.

We assume here that both m® and m!? are encoded to

etror-correcting codes capable of correcting £/2 errors.

by (d b
H(mbholmbee) = HmEoimile

= H(m‘é%-c
= H(mEde), (A-4)
HmEholmt) = "5 bits], (A5)
HED R = HEFEO D)
= log, ("{2) [bits|. (A6)
For example, for N = 1024,t = 20,
HmNm®) = 118.4(bit), (A7)

yielding sufficiently large value.

‘We thus see that mesange mg)cc,mgg:c,ﬁ“’) and

&
are mutually independent from the practical point of view.
2. Challenge Problem
Find the message ™ m € {0,1}" 7 from the given public

key g, h and the given ciphertext Cp, Ch.

(3) : Other solutions excopt the true message rn can not bo accept-
able. The true m can be checked by the Message-Digest algorithm 5
(MD5) function ag

[Public Key]
g = ( 83007806339, 106039230857, 80840034635, 76664356352,
16234470562, 19485652205, 70412062280, 45921481352,
101148367520, 103274032874, 37752538345, 21661476260,
82715772887, 85085644161, 68426855857, 89282397566,
81133377249, 517401106, 76858124111, 48020952837,
00151625168, 29610831784, 37586661761, 66496365872,
92763601747, 58690683429, 99504083744, 89836353155,
107850802214, 16195888347, 22704213887, 69700828137,
82013612783, 17488404420, 75122875204, 42568462748,
106088605700, 84843622785 ),
h = ( 77473861512, 55216464845, 98645474267, 54114013261,
84033665181, 72081626100, 100160848496, 67108339213,
85715533215, 33034585741, 22781526796, 72826469870,
57200251719, 22482514295, 99999332175, 69440528770,
1508463677, 92396563150, 94185020416, 80700925639,
31018594811, 58102511108, 64001491594, 1777526785,
80730415384, 84777722668, 64000435480, 20645071547,
92724173801, 10313816931, 49259880635, 9789631814,
51198713488, 54241183918, 59641767947, 40526538859,
21021283264, 53317796018 ),
N=138,/J=6,V =14

[Ciphertext)
C, = 48256381768409598,
), = 5510085979575511.

MD5("m") = eSeBafid707e27aB4a910b76cd lcabeb.

usage: mdSsum ~string=m’ (for Linux)

usage: md5 -5 m' (for Mac OS5 X)

For oxample, you should type “mdbsum -—string=101010..." when
m = (1,0,1,0,1,0,...).



