E—NANAVEa—TFTa VT 612

(1998. 9. 18)

Data Transfer Evaluation of Optimistic Data Consistency Model

Masahiro Kurodat, Ryoji Onot, Takashi Watanabet, Tadanori Mizunot, Yoshiki Shimotsumat

Abstract

There are two basic data consistency schemes, pessimistic consistency and optimistic consistency, with respect to

data consistency and data availability. The optimistic consistency model is suitable for high latency wireless

networks. This paper describes data versioning and its access control scheme to reduce data transfer for data

synchronization, discuss how to reduce the data transfer size for synchronization. We evaluate the data size reduction

by generating arithmetic formulas in each optimizing technique and confirm that the formulas are tolerable in
determining the data size of large scale mobile data sharing system. Lastly, we recognize that two parameters to
define access domain showed the flexibility of system configuration and effectiveness in data synchronization.

1. Introduction
The advance of the mobile computing infrastructure

enables “‘anytime, anywhere” global information services.

We have proposed an optimistic data consistency model
[4,5,13] to ensure data consistency and data availability
in a wide area and at most times, that enables users to
access data in wireless networks, intranets, and Internet.

This model needs following four key requirements for
supporting wide-area mobile network computing:
® Building an infrastructure which offers data

consistency and data availability in any network;
® Supporting disconnected operations;
® Supporting data replication;
® Reducing wide-area communication costs;

So far, two basic schemes, pessimistic consistency[1]
and optimistic consistency[2-3], have been established
with respect to data consistency and data availability.
The scheme for pessimistic consistency is not suitable

client . secondary server

infrastructure core

secondary server

fig.1 architecture

f Shizuoka University
. Tt Mitsubishi Electric Corporation

for disconnected operations because this scheme all the
time requires consistent. The traditional optimistic
consistency scheme, such as those deployed in Coda[2]
and Ficus{3], were basically aimed to offer data
consistency and availability for devices using reliable
and low latency networks, such as LAN. Also these
schemes were targeted to Unix file systems and no
features for data versioning and data synchronization
controls.

This paper focuses on the reduction of
communication costs in the four key requirements. We
need to minimize the amount of data to exchange among
all the devices and servers involved in data
synchronization. We describe how to reduce data
transfer and evaluate their effectiveness. In the
evaluation, we assume a pattern of mobile data access,
calculate the total data to exchange among mobile
terminals and a primary server, and measure the total
data transferred. We also propose an access domain
scheme for data versioning to reduce the data transfer
dynamically for adjusting to various kind of access
model, such as a client-server system and a data

collaboration system.

2. Data Consistency Architecture

The data consistency model is based on the Mobile
Network Computer Reference Specification (MNCRS).
The part of its goal is the standardization of -data
synchronization interface[6]. In this model, mobile
terminals and servers in a network have a replica of some

data, exchange its data versions, and converge to its
consistent data,

As with MNCRS, our model is implemented using
Java[7]. Therefore all descriptions in the rest of the
paper will use Java’s terminology. A SyncStore is a
container which stores and maintains data. Data are
represented by Synchronizable objects which are Java
Serializable objects. The methods pu#()/get() are used to
store/rétrieve Java objects from the containers. Each
object is defined as a subclass of either Reconcilable or
Diffable, which are both a subclass of Synchronizable. A
Reconcilable object compares its time stamp with that of
the objcct having the same identification number in the
peer SyncStore and replaces the original object with the
other object if the original time stamp is older. A
Diffable object compares its 7ime stamp with that of the
object in the peer and apply the log data in the other
object to the original bbject.

2.1. Data Synchronization Method

Followings are the data synchronization methods for
Reconcilable and Diffable objects.

(1) Data Replica Transfer (DRT) method

During data synchronization between two SyncStores,
this method exchanges an object in a SyncStore with the
other object coming from its peer SyncStore and also
having the same object identification number (object ID).
This method is used for Reconcilable objects and
suitable for systems in which each update influences all
the data in an object. This method consumes little CPU
time.)

(2) Differential Data Transfer (DDT) method

This method assumes version vectors (VV’s) to

detect concurrent update conflicts, first proposed by

Reconcilable Object Diffable Object

L
(6) apply changes '

to backend server

(6) apply changes
to backend server

) ACIT;
&

i@ Object

(8) send Diff

'(8) send Object
fig.2 data flow in one synchronization cycle -

Parker, etc.[9], and update logs recording the changes of
data in the object.

This method, at first, compares the version vectors of
two SyncStores. According to the VV’s, It brings in only
the Differential part of an object from the other
SyncStore and applies the pait to the object. This method
is for Diffable objects and is fit for systems in which
each updates are local to data in an object or for
collaboration

systems sharing data among many

participants.

3. Data Transfer for Synchronization
This architecture compares two objects in SyncStores
on Different Java Virtual Machines, identifies the
Difference and updates both objects in SyncStores. ‘
3.1. Synchronization Flow
Synchronizers are the key components in bringing
any pair of SyncStores into consistent state. Assume
SyncStorel is trying to synchronize with SyncStore2 and
all the components bundled to SyncStore i(i=1,2) are
annotated as Synchronizer i, etc.The basic',ﬂow of a
typical synchronization is as follows:
® Synchronizer 1 sends SyncStore 1’s version
vector to Synchronizer 2. A version vector is a
data structure that is used to describe a
SyncStore’s current state.
® Synchronizer 2 receives the version vector from
Synchronizer 1, compares the two SyncStores’
version vectors, and figures out what are the
updates that are logged in SyncStore 2 but not
in SyncStore 1.)
® Synchronizer 2 sends the updates collected in
the previous step to Synchronizer | along with
the SyricStore 2’s version vector.
® Synchronizei 1 calls SyncStore 1's
applyUpdate() method for updates received in
order to reflect these updates to the SyncStore.
3.2. Version Vectors
A SyncStore keeps log data that. represent the
modifications to objects and consists of following
information; k
(1) Replica ID indicating a SyncStore at which logging
is performed.
(2) 'Vt having a virtual time in the SyncSrore at which
the log data is generated.

A version vector is a list of the elements of the form
(ssid; , vt}), where ssid; is the i-th Replica ID, and vi; is a
time stamp genrerated by the i-th SyncStore using a
virtual time defined in each SyncStore. When two
SyncSiores synchronize each other, the version vectors
are exchanged between the SyncStores. Using the VV’s
and update logs presented above, we can compute the
Difference of a SyncSiore from the other, detect
concurrent update conflicts, and reduce the amount of
logged updates.

3.3. Access domain

When information in a SyncStore is shared among
users working in a network, the size of version vectors
will become large even if some SyncStores are not
updated so often. Mobile users may sometimes share the
same data and update it concurrently at Different
SyncStores. Or users communicate only with its server to
retrieve data in the server SyncStore.

Data access should be flexible enough to adjust to
various kind of data usage and also be minimun in size to
transfer data between SyncStores. We introducé an
access domain mechanism to restrict updates of version
vectors which belongs to the same access domain.

4. Data Transfer Optimization

As for the data transfer reduction during data
synchronization, there is no simple answer for it. We will
discuss following three approaches for data reduction.
(1) Data simplification in application layer

Applications only know how to simplify data to send
to the other side. There is no unique method in this layer,
but some encoding/decoding mechanisms are popular to
reduce the data size for exchanging between two
SyncStores.

ion among izers. access (o SyncStores, access 10 objects.

0

[x]

is prohibited x data filtering
7 aceess o 'W‘Synchmnim

SyncStore | SyncStore T SyncStore R

SyncStore T

is probibited . g
e e | o SR e s g |
R s e

fig.4 access domain

(2) Data reduction in data object layer

Data Replica Transfer (DRT) method and Differential
Data Transfer (DDT) method have Different data
Differential Data Transfer
methad, especially, can reduce data transfer by an access
domain of VV’s. Also the data reduction in this layer
depends on the storage form of objects. Java object

reduction mechanisms.

serialization is the mechanism to keep an object self-
contained and is used for object transfer between
SyncStores. Object serialization has also a function to
hook user defined Java extemnalization function. This
function will reduce object information in a serialized
object.

(3) Data stream compression in data transfer layer
technique is to use compress()/
decompress() functions to send/receive data between the

The simple
Synchronizers.

5. Data Transfer Evaluation Model

As a data transfer reduction model, we assume mobile
professionals working outside - of an office and
maintaining data on the mobile terminals. They visit
customer sites and check equipment at the sites. They
sometimes share the same data by replication and update
them concurrently at different sites. Or they only
communicate with servers in their office and refer to the
latest data.

Figure 5 shows following two cases:
(1)A mobile professional belongs to an access domain
and communicates only with a server. The data access
does not assume ‘any interactions with other
professionals. (2)Or mobile professionals belong to the
same access domain and update the data that others in
the same domain are looking at.

inffastructure core

infrastructure core

ORI s e
/.\

mobile terminal A mobile tenninal Z

primanylgerver

ottt (T S iy)

'

P P e

(1) the case where cach domain contains.
aly one lerminal.

(@) the sase where each domain contsins
one or nigw lerminals.

i B
fig.5 structure of version vector in each evaluation models

Assuming these situations, we will, first, discuss DRT
and DDT methods and lead to arithmetic formulas for
estimation of data transfer size during a synchronization
cycle using the data transfer optimization described
above. Next, we will compare the estimated data with the
measured data to confirm that the arithmetic formulas are
appropriate for the data size estimation. Lastly, we will
discuss about an application to a large-scale mobile
network system.

The experimental system has three mobile terminals
and one server. We also assume that each mobile
terminal synchronizes with the server, not with other
mobile terminals directly. The reason is that wireless
communication system communicates with others via an
access point.

5.1. Evaluation Parameter
Followings are the definitions of parameters used in
the data transfer estimation.
(1) Number of terminals : n[unit]
(2) Data size per each update;
(a) Original worksheet : dyrigin [Bytes]
(b) Encoded worksheet : dencoueq [Bytes]
(c) Customer-code table: d . [Bytes]
(d) Mobileworker-code table: dp.[Bytes]
(3) Frequency of data update;
(a) Worksheet update: A {times/hour]
(b) Customer-code table update:
A cus[times/hour]
(4) Worker-code table update:
A per[times/hour]
Data size in data synchronization;
(a) Original data: S5[Bytes)
(b) Encoded data: S,,oq.4[Bytes]

Assume t hours has passed after the last data
synchronization, the average update log is 1t, and the
number of sites involved in data synchronization is n
[units]. The data size of data synchronization will be
followings.

(5) Sorigin= dorign 4 0t
(6) Sencoded™ (dencodea A + deys A st dpcr A per nt
5.2. Evaluation Data

The worksheet table described below shows the data
used for the evaluation. As for encoding/decoding, two
name-code transformation tables are used for customer
names and mobile worker names.

Suppose that an worksheet is updated twice per hour,
a customer code or a worker code is updated 0.1 times
per hour, and synchronize with the server 0.25 times per
hour in average, updates will become followings.
(7) Worksheet update: 8 records/synchronization
(8) Customer/Worker code table update:
0.4 records/synchronization
As for update of a data object, we assume that “Begin
date”, “Customer code”, and “Worker code” are updated
at the first time and second time “Finish date” and
“Check item” are modified. The average size of each
update is as follows.
(9) Size of average data update:
Qupdaie = {(4+4+4)+(4+32)}/2 = 24[Bytes]
5.3. Object Serialization
The data
serialization for sending data objects to the other

synchronization utilizes Java object

SyncStore. The serialization is a mechanism to embed
object information into a serializable object to make it
self-contained.

When we estimate the data transfer size, we need the
size of application data and also the object information
automatically serialized by Java. But Java also has an
interface to define application specific serialization,
named Externalization, to reduce the object size. We will
use Externalization to minimize data for
synchronization.

(1) The average size of the object information for a
serialized log object, denoted as C, is 422 bytes,
whereas the average size of an externalized log
object, denoted as C,’ , is 162 bytes as shown in
Figure 6.

Table.! structure of evaluation data -
Coded Size

Items Size(bytes)

Identification
number

Begin date

Finish date

Customer name

Worker name 32 4
Check items 32

Total 108 52

(2) The size of object information for a version vector,
denoted as Cy(n), which depends on the number of
mobile terminals joined in data synchronization , is
2n+91 bytes.

6. Evaluation of synchronization method

There are two synchronization methods. One is Data
Replica Transfer method (DRT), the other is Differential
Data Transfer method (DDT). In this section, we will
estimate the amount of data in both DRT and DDT
methods based on the following assumptions.
(1) 128 bytes data per record
(2) 24 bytes data for an update
(3) 5 updates per one terminal per an hour
(4) One synchronization per an hour

The total data transfer is shown in Figure 7. The
graph indicates that DDT is much efficient than DRT
under the above conditions. Comparing to DRT, DDT
shows that the more the number of mobile terminals
increases, the less the amount of data is.
7. Evaluation of Differential Data
Transfer method

We will discuss data optimization techniques in the
three software layers defined in the section 4.
(1) Data simplification in application layer

The optimization in this layer depends on the nature
of applications and there is no generally acceptable
technique but encoding/decoding. We will use only
encoding/decoding in this layer.

There are two cases in this evaluation.

(a) Use worksheet with customer/worker names

(b) Use worksheet with encoded customer/worker

names
LogPacket : melco.datasync.LogPacket
data object representing diff Log: mel}co.datasync,tLog
LogPacket UpdateLog: melco.datasync.UpdateLog
Timestamp: melco.datasync.TimeStamp
Syncldid syncId: javax,datasync.syncId
serializable: java.io.Serializable
UpdateLog statusReportDiff: evaluate.StatusReportdiff

Int ssid

type sizeperiiem number datasize
[Byk I

stiream
refererce 1o an object

PR SR |

ject
class defnition for object
field

B’L'Bo-u-:.g

field whose Iyps is object
Fied whose Iype is array
reference lo an array

e ermano

Semo

array
cless definiion for array

TOTAL

3

The names of classes/fields used in a LogPacket consist of 246 characters (246 bytes).
Therefore. data size added by Serialization is

176+ 246 = 422 [Bytes]
per an LogPacket.

fig.6 example of data size of an object

(2) Data reduction in data object layer

This layer has two methods for data reduction. One is
to minimize version vectors by setting up access
domains, the other one is to pack data using
Externalization,

We introduced an access domain to restrict data
sharing among mobile terminals and their server.
Followings are the cases for evaluation.

(a) Not to use access domains

(b) Apply an access domain to mobile terminals and

their server and not to have version vectors of
mobile terminals not belong to the access domain.

(c) Apply an access domain to mobile terminals and

their server and not to include any elements in a
version vector that represent mobile terminals
outside of the access domain.

As for data compaction, we will use Externalization
in representing an object. There are two cases described
below.

(a) Use standard Java object serialization

(b) Use Externalization for application data objects,

Differential
management objects.
(3) Data reduction in data stream layer
We will use simple compress/uncompress functions

objects, and synchronization

for data stream between two Synchronizers.
7.1. Estimation of Data Size for Synchronization

We will assume following data to generate arithmetic
formulas for each data transfer optimization.

(a) Transfer data size depcoged’ (=57bytes) :Add to
dencoded a0 Object identification(=4bytes) and a status
flag(=1byte) that represents which fields in the
application data are modified.

amount of data transterred in one synchronization cycle

123456789101 2O MISITINN0N RNAWBB AN

the number of terminals

fig.7 Reconcilable vs. Diffable

(b) Transfer data size of one update d,puy. (=29bytes):
Add o d,pa. an object identification (=4bytes) and
a status flag(lbyte) that represents which fields in
the application data are modified.

(c) Version vector size for data exchange d,,’ (=36(t¢rm
+ DY) dyy=12(nerm + 1)? is the size of a V'V,

The data exchange transfers 3 times d,, between two
SyncStores as shown in Figure 8. The size d,, is the
muitiplication of the number of mobile
terminals+server and Replica ID (4bytes) +
Vi(8bytes).

(d) Time stamp for version management d,(=12bytes):
Replica ID(4bytes)+ Vi(8bytes)

(e) Additional data for data transfer protocol dpe
(=64n,,y+172bytes): As showen in Figure8, the
data transfer protocol exchanges
configuration data, VV's, Start/Continue/Stop data
packet headers. The sum is 8 A npt+172. In the

SyncStore

model, it becomes 64n,,+172bytes.

Followings are the data sizes for all the data
exchanges of one synchronization between two
SyncStores. S,y represents the size with no application

level encoding, whereas S, encode is With the encoding.

Sapl = (dencoded"" dts) A Diemt+ dy' + dpro(c n
= (57+12) X 8 X ey X 1436(Merm+1)?
+ 640 m+172
= 36N> + 688 Nyery + 208
Sapl-encode= (dupdate +dis+deys A custdper S per) A Nyermt
+dy +praro 2)
= (29+1240+0) X 8 X Nerm X 1436(Mpermt 1)
+ 64n,,,+172

= 360 erm” + 464 Mo + 208
The arithmetic formulas represent application data

configuration data

version vector o

version vector
" ugdates’

version vector

updates

fig.8 " data synchronization protocol

and object management data and do not include any
additional serialization data. We will add the serialized
data C;=422 and Cy(nypm)=2nm+91 to the above
formulas to estimate real data exchange between

SyncStores.
S’ = SaptCi X 8 X Ry X 14+ C (Mg} X 3 3)
=36N e + 4070 Dy + 481
Saprencode” = Sapl-encodeC1 X 8 X Mygrm X 14+Co(Myerm) X 3
(4)
= 36T e +38461 oy +48 1

Formulas (3) and (4) are used for estimating data
simplification in the application layer.

Next is the Data object layer. The access domain

is a candidate to reduce VV’s for synchronization.

We can define an access domain which consists
of a mobile terminal and a server. In this configurat
ion, only VV’s which have the terminal and the ser
ver are exchanged. Suppose the number of mobile t
erminals involved in an access domain is Npemper , ¢
he VV’s have ngm +! elements with npemper +1 V
Vs,

We need an access domain name(=9bytes) for ea
ch VV. Each mobile terminal has 9 bytes and its se
rver Mgomain DYLES.

The data d,,.gomain cOnsists of VV’s transferred fr
om mobile terminals to the server (Dmemwer+1) and al
| the VV’s in the server sent to mobile terminals.
And totally 3 VV’s are exchanged between SyncSior
es.

yv-domain= {1 2(Nerm+) (Nmembert1)

+9(N member+Ndomain) } X 2
+12(0 0+ 1)+ 9 mempert Nomain)
= 120,00 (24D ermper+5 T) heerm
+ 420 pembert27 Ngomaint 36 ‘

And add the additional data for Object serialization
Co(Nmemper)= 2Nmempert 9K
=dyvdomaint 3 (2Nmempert 91)
= 12Ngem H 24N mempert 59 ierm

+ 460 member+27 Ngomaint 309

s
dvv-domnin

Scncodc«iomain’
= (dencode +distdeus A custper A pertCi) A Mpgrt
+ dvv-domain' + dpmlo ’
= (29+12+422) X8 Xy X |
+120, e (240 e+ 59) Ny
+46N nembert27 Ngomaint 309 + 640 +172

= 120 +(2 40 emier+ 3827 Myesr
+ 460 embert2 7 Ngomaint 481

Suppose data 'exchanged are generated by mobile
terminals in an access domain, VV’s need only
information in the access domain. This means that n, .,
in the above formula can be replaced by nyemper-

Sencode-domain = 36N member-+387 3N membert2 Tgomain+48 |

When we use this formula in a client/server model,
which means that Npemper=1 and Nyomain=Neerm, the data
transfer rate becomes below.

Scncadedomain" = 27N 4omain+4390

This indicates that the time complexity is not
O(Myers’) but O(nemy) and the total transfer data increases
in proportion to the number of mobile terminals.

Next, we will apply Externalization to the time stamp
object and to the log object, but notto VV’s.

Sdomain-extem = Sapl—emodc+(cl "+5) A Dyermt+CoNierm) X 3
= 36N +1806n,cmt481

Lastly, Data compression is used for data stream
between Synchronizers. We can improve about 20% in
size.

7.2. Comparison of Estimated Data Transfer and
Measured Data Transfer

Table.2 shows the data size estimation and measured
data regarding each optimization. The table lists up
result for 3 mobile terminals case for simplicity. The data
sizes of Estimation and Measurement are close each
other and the Differences are between the range of 2 and
8%. This result indicates that the arithmetic formulas
follow the real transferred data and that the formulas can
be used to evaluate for large wireless data sharing system
which consists of more than 100 mobile terminals and is
Difficult to build for the measurement.

7.3. Estimation for Large Data Sharing Systems

We will apply arithmetic formulas shown in Table.3
to large scale data sharing systems.

When the number of mobile terminals involved in the
data sharing is less than 10, the data exchanged is small
and the additional data which represent serialized objects
are larger than the original data. In this small sharing
environment, Extemalization and the data stream
compression are effective in data reduction (fig.9).

But, the number of terminals increases up to 100
terminals, the access domain scheme to reduce VV's
size becomes effective in data sharing (fig.10). If the

number of mobile terminals increases more than 100, the
time complexity of Version Vectors O(n?) will be the
dominant factor of data transfer size (fig.11).

Based on these considerations, we can say that the
following two.parameters that dynamically change the
size of VV’s are important for transfer data reduction of
large-scaie data sharing systems.

(1) The number of mobile terminals participated in an
access domain: Nypemper

(2)The number of access domains: Nyomain

Table.2 comparison of estimation and measured data

(1) @) 3)) (5) | (6)
13015 | 12616
Appli- Encoding 12343 | 13288 | -5.3
cation .
Data VV reduc- | 12269 | 12658 | --0.3-| (*)
object tion
Externali- 6223 6616 | 47.6 | 40-
zation 50%
cut
Data Compress 9113 | 27.8 | 20-
stream ‘ 30%
~ lcut
(1)Layer, (2)Optimization, (3)Estimation,
(4)Measurement, (5)Ratio %, (6)Result
(*) no reduction
Table.3 formulas
Optimization | Arithmetic formulas for | Comments
data transfer
Original 36n°+4070n+481
Application - | 36n’+3846n+481
encoding
Version 120°+(24m+3827)n+46m | MiNpmper,
Vector +27d+481 ‘ d:Nyomin
\a% 120%43878n+527 m=1,d=n
reduction(1)
vV 36m’+3873m+27d m=n
reduction(2) | +481
External- 36n%+1806n+481
ization
Data (36n%+3846n+481) X 0.8
compression o s

8. Conclusions

We have evaluated the data transfer optimizations for
the data synchronization of optimistic data consistency
model. We have also estimated the data size reduction by
generating arithmetic formulas in each optimizing
technique, measured the amount of data reduction in
each case, and confirmed that the formulas are tolerable
in determining the data size of large scale mobile data
sharing system. Lastly,
parameters to define access domain showed the
flexibility of system configuration and effectiveness in

we recognized that two

data synchronization.

Acknowledgements

We sincerely appreciate all the MNCRS working
group members for their achievements in making a de
fact standard for-data synchronization. We also would
like to give our thanks to Mr. Hiroshi Sakurada for his
valuable suggestion for the measurement system design.

References

[1] C.H. Papadimitrio, The Serializability of Concurrent
Database Updates, Joumnal of the ACM, 26(4), October
1979.

[2] -Mahadev Satyanarayanan, et al, Coda : A highly
Available File System for a Distributed Workstation
Environment, IEEE Transaction on Computers, 39(4),
April 1990.

[3] Richard G.Guy, et al, Implementation of the Ficus
Replicated File System, USENIX Conference
Proceedings, USENIX, June 1990.

[4] * Luosheng Peng, et al,- A Starstructured Data
Consistency Model for Wide-area Mobile Network
Computing, SICON'98, July 1998. .

[5] Luosheng Peng, et al, Using Version Vectors in th
Star-structured Data Consistency Model, Principles of
Distributed Computing (PODC), June 1998.

[6] . Mobile network computer reference specification,
hitp://www.mncrs.org

[71 James Gosling, et al, The Java Language Specification,
Adison-Wesley, Menlo Park, California, August 1996

[8] David Ratner, et al, Dynamic Version Vector
Maintenance, Technical Report CSD-970022,
University of Califomia, Los Angeles, June 1997.

[9] D. Scott Parker, et al, Detection of Mutual Inconsistency
in Distributed Systems, IEEE transactions on Software
_Engineering, 9(3), May 1983.

[10] PeterReiher, et al, Resolving File Conflicts in Ficus File
System, USENIX Conference Proceedings, USENIX,
June 1994.

[11] Calton Py, et al, Regeneration of Replicated Objects: A

Technique and Its Eden Implementation, IEEE
transactions of Software Engineering, 14(7), July 1988.
[12) Susan B. Davidson, et al, Consistency in Partitioned
Networks, Computing Surveys, 17(3), September 1985.
[13] Masahiro Kuroda, et al, Optimistic Data Consistency
Model and its Application for Database Management,
DICOMO "98, IPSJ, June 1998.

data [KB]

+ the number of terminals”

fig.9 amount of data in one synchronization cycle (1 to 10 terminals)

the number of terminals

fig.10 amount of data in one synchronization cycle (10 to 100 terminals)

400000
350000
0000
280000

200000

data (KB}

152000

100000

50000

o 0 20 0. 40 S0 6w 100
the number of terminals

fig.11 amount of data in one synchronization cycle (100 to 1000 terminals)

