HEEA ERAEES ERE 2004—MBL—29 (31)
IPSJ SIG Technical Report 2004,/5/14

Responding to Duplicate ACKs after a Timeout in TCP

Motoharu MIYAKE

Multimedia Laboratories, NTT DoCoMo, Inc.,
3-5 Hikarinooka, Yokosuka, Kanagawa, 236-8536, Japan
Tel: +81-46-840-3310, Fax: +81-46-840-3788
E-mail: miyake@mml.yrp.nttdocomo.co.jp

Abstract In a case of handovers or expiration of auto repeat request (ARQ) retransmission in mo-
bile communications, a fast timeout algorithm allows new segment transmission using the fast recovery
algorithm as duplicate ACKs following a timeout are implicit segment loss information. However, it is
not well handle the retransmitted segment that caused by the retransmission timeout (RTO), and leads
to the 2nd RTO. Then, this paper proposes an algorithm based on a loss retransmission algorithm. The
proposed algorithm suggests careful retransmission against an oversight of a loss of first unacknowledged
segment which was retransmitted by the timeout. The results using ns2 simulator show that the proposed
algorithm can avoid 2nd RTO and throughput degradation more effectively than the conventional TCP.
Key words: TCP, Fast timeout, Loss retransmission, RTO, Mobile Communications

B A LT T b Dduplicate ACK BIERIE~D TCP thERE
=% ik
NTT RaE =/LAF A5 1 THER
T239-8536 #%%)I| R #RAET DK 3-5

Tel: 046-840-3310, FAX: 046-840-3788
E-mail: miyake@mml.yrp.nttdocomo.co.jp

HoEL fast timeout 7T Y X AL, BEBEMEEL TCP F—4BETONY N ——% ARQ
(Auto repeat request) KEETRICEENBEIND ¥ A 57U MED duplicate ACK E[&EIZR LT, fast
recovery 7V Y X LADEAEFEELTSH. LML, BEFA L7 Y+ (RTO: Retransmission TimeOut)
WWEDREENIZE T A MOr RIIR LT, (€D TCP LFEHMRIC 2 EH® RTO RRAEL, A v
RS A X 2BRN/NS LT LE S BEARAETD. 22 THARBTIE, RTO ICHFEWEEEINIEEE S
A hD v RitE %5863 5 loss retransmission 7/ =) A LRREL, LEL 2 EBOIALLTY %
E#ES 5. ns2 BAW Y Ialb—varicd, BRETAITY XLAOFFIZ L > THRD TCP LY &%)
ERRT—FEENRTREL RD L EHALMICTS.

F*—"— K: TCP, Fast timeout, Loss retransmission, %% 1 57 7 k, BEE(E

1 Introduction communication standards, respectively. Both use
the radio link control (RLC) protocol, a selective
Many communication bearers transfer data as repeat and sliding window auto repeat request
TCP streams. In the case of Internet access over (ARQ) scheme [1]. The ARQ mechanism can
wireless links, such as cellular phones, many more provide a packet service that offers a negligibly
research issues remain to be resolved before a truly small probability of undetected error due to the
effective service can be realized. use of RLC frame retransmission [2]. However,
Wideband code division multiple access the delay jitter caused by error recovery can lead
(WCDMA) and general packet radio service to an unexpected increase in round trip time
(GPRS) are well known 3G and 2.5G mobile

—175—

研究会Temp
テキストボックス

(RTT). In this event, the TCP sender experiences
a retransmission timeout (RTO) because it has no
information about the wireless conditions.

Several algorithm have been proposed to avoid
costly retransmission timeouts. The Eifel algo-
rithm (3] and the forward RTO recovery (F-RTO)
algorithm [4] provide spurious timeout (STO) de-
tection [5].
sion ambiguity problem; the sender experiences un-

STO occurs due to the retransmis-

necessary go-back-N retransmission and through-
put degradation caused by false congestion con-
trol [6]. These algorithms monitor an acceptable
ACK’s timestamp or a series of acknowledgments
to avoid the retransmission ambiguity problem.

In a case of failure of link layer transmission for
some period of time or for some number of pack-
ets in a base station (BS), ARQ may give up the
retransmission attempt which leads to the loss of a
TCP segment [2]. Thus, the first unacknowledged
segment is discarded, and the receiver acknowledges
a series of the next arrived segments as duplicate
ACKs. Moreover, handovers in mobile communica-
tions can cause the arrival of duplicate ACKs after
a timeout [7]. As a result, these STO detection al-
gorithms, such as the Eifel and F-RTO, only work
as conventional TCP [8].

To extend the conventional TCP function, the
fast timeout algorithm [9] uses the duplicate ACKs
raised after a timeout as implicit segment loss infor-
mation. It transmits new segments allowed by the
value of new congestion window upon the arrival
of the duplicate ACKs, even if the sender times
out. However, it is not well handle the retrans-
mitted segment that caused by the retransmission

timeout (RTO), and leads to the 2nd RTO.

Then, this paper proposes an algorithm based on
the loss retransmission algorithm [10]. The pro-
posed algorithm establishes efficient retransmission
against the failure to identify the loss of the first un-
acknowledged segment that was retransmitted due
to timeout. Moreover, it needs only small modi-
fication of the sender side TCP, so they can sup-
port existing receiver side equipment, such as PCs,
PDAs, and Internet access cellular phones with-
out any modification. ns2 simulations show that
the proposed algorithms can avoid this throughput
degradation more effectively than the conventional

TCP.

2 Related works

Several algorithms have been proposed to avoid
the effects of costly retransmission timeout (3], [4].
The Eifel algorithm [3] with the TCP timestamp
option can identify if the acknowledgment is in re-
sponse to the original segment or the retransmitted
segment. The timestamp option is standardized
as RFC1323 and is implemented in most operat-
ing systems. Only the sender need implement the
Eifel algorithm. If a sender running the Eifel algo-
rithm detects STO, it reverts to the cwnd and the
ssthresh to avoid unnecessary retransmission and
throughput degradation. Moreover, it can adjust
parameters for setting the RTO, to prevent more
RTO events.

Sarolahti proposed the F-RTO algorithm [4]. It
sends two new segments in response to the first ac-
ceptable ACK, and monitors the response as part of
STO detection. If it receives the second acknowl-
edgment as a series of acknowledgments, it posits
an STO event and reverts to the original cwnd and
ssthresh as in the Eifel algorithm. Implementing
the F-RTO algorithm needs only sender side modi-
fication; no TCP options or receiver side modifica-
tions are needed.

If the segment loss is generated by handover or
expiration of ARQ retransmission, the sender re-
ceives duplicate ACKs following a timeout. All of
the above STO detection algorithms provide only
conventional TCP responses (i.e. keep the slow
start phase and transmit nothing until an accept-
able ACK arrives) [8], [11]. To extend the conven-
tional TCP function so that it can handle timeout,
the fast timeout algorithm [9] uses the duplicate
ACKSs raised after a timeout as implicit segment loss
information. It allows the sender to directly switch
from the slow start algorithm to the fast recovery
algorithm. It then transmits new segments allowed
by the value of new congestion window upon the
arrival of the duplicate ACKs, even if the sender
times out. However, it has no function to detect an
oversight of a loss of first unacknowledged segment
which was retransmitted by a timeout.

In order to strengthen TCP against segment loss,

— 176 —

Lin and Kung originally proposed a loss retransmis-
sion algorithm using TCP’s ACK-clock [10]. It re-
transmits the first unacknowledged segment if the
number of duplicate ACKs under the fast retrans-
mit /recovery phase reaches the number of outstand-
ing segments plus DupThresh. In the case of a re-
transmission timeout, the sender is not well handled
in a conventional TCP using the loss retransmis-
sion algorithm, because it can only receive a lim-
ited number of the duplicate ACKs in response to
Thus, the loss of the
retransmitted segment raised by the retransmission

the outstanding segments.

timeout leads to exponential backoff with the small-
est values of cwnd and ssthresh. As a result, the
sender needs additional time to recover the conges-
tion window size. which leads to severe throughput
degradation.

3 Proposed loss retransmis-
sion algorithm after a time-
out

To avoid the above worst case, the fast timeout
algorithm [9] enables the retransmitted segment loss
to be confirmed using the number of outstanding
segments and duplicate ACKs.

Figure 1 shows the proposed loss retransmis-
sion algorithm in collaboration with the fast time-
out algorithm. If the number of duplicate ACKs,
dupacks, equals the number of outstanding seg-
ments when loss recovery started, FlightSize, plus
DupThresh, the sender retransmits the first unac-
knowledged segment immediately. It clearly shows
that the duplicate ACKs represent not only the
response of the original segment, but also the re-
sponse of the next transmitted segment by the fast
recovery algorithm. Note that DupThresh in step
(7) is a conservative response to out-of-order seg-
ments. After that, the sender just waits for an ac-
ceptable ACK while sending the next new segment
in response to the duplicate ACK. As a result, the
sender can avoid the exponential backoff caused by
failure to identify retransmitted segment loss, and
increases the probability of segment retransmission
without entering costly retransmission timeout.

The proposed loss retransmission algorithm may
not work well in all cases of lost outstanding seg-

Step (1) RTO timer expires:
Store SND.HIGH (highest sequence number),
FlightSize (the number of outstanding segments),
cwnd_prev cwnd, and
ssthresh_prev - ssthresh
Retransmit the 1st unacknowledged segment

Step (2) Wait for the arrival of either an acceptable or a
duplicate ACK:
Update the variable dupacks and proceed to step (3)

Step (3) If an acceptable ACK has arrived
then proceed to step (DONE),
else if dupacks < DupThresh
then return to step (2),
else (dupacks equals DupThresh)
proceed to step (4).

Step (4) Resume transmission from the top
Suppress the fast retransmit, and set
SND.NXT « SND.MAX

Step (5) Make the RTT estimation more conservative:
Set
SRTT «+ 2 x SRTT,
recalculate the RTO, and restart retransmission timer.

Step (6) Leave slow start and move to fast recovery algo-
rithm:

Set the parameters as follows:

ssthresh «+ max(cwnd_prev/2, 2 x SMSS)

cwnd « ssthresh + SMSS x DupThresh

Step (7) If the sender is satisfied with the condition
dupacks == FlightSize + DupThresh
then retransmit the first unacknowledged segment,
else waits for acceptable ACK while sending the next
new segment in response to duplicate ACK.

Step (DONE) Leave the loss retransmission and fast time-
out algorithms

Figure 1: Proposed loss retransmission algorithm

ments or acknowledgments. In these case, the
sender will retransmit the first unacknowledged seg-
ment later than the desired timing. In order to
avoid this situation, the proposed algorithm can use
the SACK option. If the connection between sender
and receiver permits the SACK option. the right
edge in the SACK block or the score-board in the
sender can show the correct timing clearly without
resorting to any heuristics.

Figure 2 shows the proposed loss retransmission
algorithm with SACK option. The difference from
the previous basic loss retransmission algorithm is
only the evaluation performed in step (7). If the
right edge in a SACK block advances the value

—177—

研究会Temp
テキストボックス

SND.HIGH, the sender retransmits the first unac-
knowledged segment immediately. After that, the
sender waits for an acceptable ACK while sending

the next new segment in response to a duplicate
ACK.

Step (7) If the SACK block reports as follows:
Right edge in SACK block > SND.HIGH
then transmit the first unacknowledged segment again,
else transmit the next new segment by the duplicate
ACK arrival.

Figure 2: The loss retransmission algorithm with
SACK option

Figure 3 illustrates the relationship between the
SND.HIGH and the right edge in a SACK block in
a sender-side time-sequence graph. The X-axis and
Y-axis plot the time and the sequence number, re-
spectively. Symbols “R” and “S” show the retrans-
mitted segment and the SACK block in duplicate
ACK, respectively. In Fig. 3, the beginning of the
six outstanding segments is lost, and the retrans-
mitted segment raised by RTO is lost again. Next,
the duplicate ACK with the SACK block arrives
at the sender. The right edge in the SACK block
advances the value SND.HIGH, when the sender re-
ceives the 6th duplicate ACK. The sender then re-
transmits the first unacknowledged segment imme-
diately. In this case, there is no outstanding seg-
ment or acknowledgment loss, so that the sender
using the SACK enhanced algorithm retransmits
the first unacknowledged segment using the same
timing as the basic loss retransmission algorithm.

sequence number

SNDHIGH

SND.UNA- - - ~

time

Figure 3: 2nd RTO segment retransmission using
SACK option

4 Performance evaluation

This paper examined both the time-sequence and
the sender state variables in the face of duplicate
ACKs arrival following a timeout and retransmitted
segment loss.

4.1 Simulation model

In this paper, we implement the fast timeout
and proposed loss retransmission algorithms in the
ns2 simulator (ns-2.26) developed in the VINT
project [12], and evaluate them using a communi-
cation model based on Fig. 4. The TCP sender in
the wired network communicates with the receiver
in the wireless network over a WCDMA protocol.

Wireless Wired
network network
~1
Receiver Mobile Base Sender
station station

Figure 4: System model

Figure 5 shows the topology used in our exper-
iments. The sender is connected to the BS via a
10 Mbps wired link with 20 ms delay, and the re-
ceiver is connected to the BS via a 384 kbps wire-
less link with 500 ms delay. The TCP segments are
The
BS has enough queue depth and does not drop any

transmitted from the sender to the receiver.

original outstanding segments.

384kbps 10Mbps
Receiver 500ms BS 20ms gender
ACK TCP segment

] — «— [1]

Figure 5: Simulation model

4.2 Proposed loss retransmission al-
gorithm evaluation

Figure 6 shows the conventional TCP’s time-
sequence graph and sender state valuables for the

— 178 —

fast timeout algorithm. In Fig. 6 (a), the sender
faced the retransmitted segment that caused by the
RTO at 9:00:10.7. The conventional TCP has no
function that can handle the arrival of the dupli-
cate ACKs after a timeout without the next seg-
ment transmission using the fast timeout algorithm
until the 2nd RTO. Accordingly, it has to wait a
long time, from 9:00:10.7 to 9:00:15.4, following
the exponential backoff algorithm. According to
RFC2581, the ssthresh is set as

ssthresh ¢« max(cwnd/2,2)
= 2’

so the sender enters the congestion avoidance phase
directly when the sender receives the acceptable
ACK at 9:00:16.6. Figure 6 (b) shows the sender
state variables, cwnd and ssthresh. The ssthresh
is set to 2 at 9:00:15.4, the sender transmits a lim-
ited number of segments after that. As a result, the
sender also degrades the throughput.

In contrast, Fig. 7 shows the time-sequence graph
and sender state valuables for the proposed algo-
It is shown that the sender detects the
retransmitted segment loss by examining the 25th
duplicate ACK at 9:00:14.7, and it retransmits the
unacknowledged segment immediately. Next, the

rithms.

sender waits for an acceptable ACK while send-
ing the next new segment in response to the du-
plicate ACK. Thus, the sender switches from the
fast timeout algorithm to congestion avoidance and
transmits a series of segments. In this case, the
sender holds one half of the previous cwnd value at
9:00:16.6, see in Fig. 7 (b). This allows it to achieve
better throughput than conventional TCP.

Figure 8 shows the time-sequence graph for the
proposed loss retransmission algorithm with SACK
option under the multiple segment loss; the re-
transmitted segment is also lost at 9:00:10.7. It is
shown that the proposed algorithm can retransmit
the unacknowledged segment since the right edge of
the SACK block in the sender advances the value
SND.HIGH at 9:00:14.5. Moreover, the sender re-
transmits it at the correct timing even if some out-
standing segments are lost. As a result. a sender
using the proposed algorithms holds one half of
the previous cwnd value and so avoids unnecessary
throughput degradation.

sequence number 0.0.0.0:0_==>_0.0.0.3:0 (time sequence graph)

360000

200000

Fast recovery by fast timeout

100000

Retransmitted segment
/ Z byRTO & ncnm::koﬂ'

| byRTO exponental backoff

/ etransmitted segment
[E timeout
0
09:00:00 09:00:10 09:00:20 09:00:3:
time
(a) Time-sequence graph
segment
0.0.0.0:0_==>_0.0.0.3:0 (cwnd and ssthresh graph)
x ssthresh
40
30
20 il backoff
Acgeptable ACK
10 amval
3rd duplicate /
ACK arrival hl—[_r,_
0
09:00:10 09:00:15 09:00:20
time

(b) Sender state variables, cwnd and ssthresh

Figure 6: The TCP’s time-sequence and sender
state variables for the fast timeout algorithm

5 Conclusions

This paper proposed the loss retransmission algo-
rithm for duplicate ACK arrival following a time-
out. The proposed algorithm allows careful retrans-
mission against failure to identify the first unac-
knowledged segment loss. Simulation results yield
the following conclusion:

1. A sender using the proposed algorithms can
overcome the loss of a retransmitted segment
due to RTO.

2. A sender using the proposed algorithms holds
one half of the previous cwnd value and so
avoids unnecessary throughput degradation
even if duplicate ACKs arrive following a time-
out and the retransmitted segment is lost.

—179—

研究会Temp
テキストボックス

sequence number 0.0.0.0:0_==>_0.0.0.3:0 (time sequence graph)

300000

200000 Fast recovery by fast timeout

100060

09:00:10 09:00:20 £9:00:3t
time
(a) Time-sequence graph
segment 0.0.0.0:0_==>_0.0.0.3:0 (cwnd and ssthresh graph)
x ssthresh

loss retransmission

30

Acceptable ACK armival

S——
10
_3rd duplicate ACK arrival
0
09:00:10 09:00:15 09:00:2
time

(b) Sender state variables, cwnd and ssthresh

Figure 7: The TCP’s time-sequence and sender
state variables for the proposed algorithms

Acknowledgment

The authors would like to thank Reiner Ludwig and
Daikichi Osuga for several useful discussions and
comments.

References

[1] H. Inamura, G. Montenegro, R. Ludwig, A.
Gurtov, F. Khafizov, “TCP over Second (2.5G)
and Third (3G) Generation Wireless Networks,”
RFC3481, February 2003.

[2] 3GPP, “3G TS 25.322 v.3.5.0,” RLC Protocol
Specification, 2000.

[3] R. Ludwig and M. Meyer, “The Eifel Detection
Algorithm for TCP,” RFC3522, April 2003.

[4] P. Sarolahti and M. Kojo, “F-RTO: A TCP
RTO Recovery Algorithm for Avoiding Unneces-
sary Retransmissions,” draft-sarolahti-tsvwg-tcp-
frto-04.txt, June 2003.

sequence number g 4 0:0_—>_0.0.0.3:0 (time sequ

Fast recovery by fast timeout

uence graph)

140000

120000

100000

80000 ||I & R!cﬁmm
!) ‘
60000 !;l @Hmn Sl
s ‘I ‘_‘_HJ \Rmmdgggmtyﬁmwut
09:00:10 09:00:15 02:90:2

Figure 8: The proposed TCP’s time-sequence graph
(SACK)

[5] M. Miyake, H. Inamura and O. Takahashi, “TCP
Enhancement using Spurious Timeout Detection
and Congestion Window Control Algorithm,” 8th
International Workshop on MoMuC 2003, October
2003.

[6] R. Ludwig and R. H. Katz, “The Eifel Algorithm:
Marking TCP Robust Against Spurious Retrans-
mission,” SIGCOMM Computer Communication
Review, vol. 30, no. 1, January 2000.

[7] A. Gurtov, M. Passoja, O. Aalto, and M. Raitola,
“Multilayer Protocol Tracing in a GPRS Network,”
in In Proceedings of the IEEE Vehicular Technology
Conference (VTC’02), September 2002.

[8] E. Blanton and M. Allman, “Using TCP DSACKs
and SCTP Duplicate TSNs to Detect Spurious

Retransmissions,” draft-blanton-dsack-use-02.txt,
October 2002.
[9] R. Ludwig, “Responding to Fast Timeouts

in TCP,” draft-ludwig-tsvwg-tcp-fast-timeouts-
00.txt, July 2002.

D. Lin and H. T. Kung, “TCP Fast Recovery
Strategies: Analysis and Improvements,” in In
Proceedings of IEEE INFOCOM 98, March 1998.

J.C.R. Bennett, C. Partridge, and N. Shectman,
“Packet Reordering is Not Pathological Network
Behavior,” IEEE/ACM Transactions on Network-
ing, vol. 7, no. 6, December 1999.

K. Fall and K. Varadhan, “ns Note and documen-

tation,” The VINT Project (UC Berkeley, LBL,
USC/ISI, and Xeroz PARC), December 2003.

(10]

11]

(12]

— 180 —

研究会Temp
テキストボックス

