SN =7 =27
(1995. 7.

A—F 4 3 —vary 7 ak A FMIES WM T IV—TT £ 7 Dl

RBAK, BNHEEADE
NTTY 7 b v = 7 Wt

WM REEY AF AORINZBOTIEE, I V=T AUNBY AT AONLER 2 R -3
DT, A—=YELUIN—TOHRIHBPRRAEROETIV - BGIZE D BEDIRETH
Dr#EAD, AFNTIR, WK L—Ty 70O HRIBVWTaA—F 1t 5—Yay
T AEFNERAL A >VTHET S,

Coordination Process Model - based Design
for Synchronous Group Task Support System

Eiji KUWANA, Keitaro HORIKAWA
NTT Software Laboratories,
NTT

E-mail: {kuwana, horikawa |@slab.ntt.jp
3-9-11 Midori-cho Musashino-shi Tokyo, 180 JAPAN

It is widely recognized that collaborative intellectual work, such as problem solving,
decision making and coordination, is a critical part of organization management. Because
a user plays a central role in the cooperative system to support teamwork, the way the user
interact with the system, and the way the users interact with each other through the
collaborative system is a crucial part of the system design process. In other words, it is
very important to design according to a model and a theory of group communication and
collaboration.

In this paper, we describe a design approach based on the coordination process
model and show an actual design and prototype system for supporting real-time group

13—1
20)

tasks. We also discuss the effectiveness of this approach.

1. Introduction

Computers and computer networks are
considered to be key technologies for supporting
cooperative work. The relationship between
cooperative work and technology has been studied
and reviewed in many research areas, including
Computer Supported Collaborative Work (CSCW)
[e.g., Greif88, Greenberg91], and organizational
science [Applegate91] aiming to achieve design
systems that support cooperative activity. Because
users play the central role in a cooperative system,
the way the users interact with the system and the
way the users interact with each other through the
system is the crucial part of the design processes.

Traditional system designs were based on (1)
technology-driven design, (2) rational design, (3)
intuitive design, and (4) analogical design
{Olson91]. However, these design approaches do
not mainly consider user tasks and capabilities.
We think that it is important to understand the

_1__

relationships between users and systems and the
relationship between users, and we should apply
our understanding and theories to the design of
the system.

For the collaboration and coordination model,
there are some frameworks and models such as
Dix’s CSCW Framework [Dix93], McGrath’s group
task circumplex [McGrath84], and Malone’s
coordination process model {Malone 91, 94]. We
examined the human collaboration model-based
design approach to developing a computer
supported collaboration system. We applied
Malone's coordination process model of groups for
system design to evaluate new practical design
approaches, and developed a prototype system
based on the model for supporting synchronous
group tasks. In this paper, we describe a design
approach for a synchronous computer supported
cooperative system.

2. Design approach and design model for a
cooperative work support system

Considering the central role of users in a
cooperative system, we think that system design
should be based on a collaboration and
coordination theory and a model, when developing
groupware systems to support cooperative work.
We explain why in detail and present a concrete
approach in the following.

2.1 Traditional design approaches

Existing systems have mainly been developed
intuitively, or with very specific applications in
mind. There are various design approaches. The
traditional design approaches can be classified as
follows [Olson91].

(1) Technology-driven design

System design is based on an existing
fundamental technology.
(2) Rational Design

Design is based on prescription and on tradition.
(3) Intuitive Design

Design is based on the designers’ intuition.

(4) Analogical Design

Designers develop a system that is similar to
some non-electronic system the user is familiar
with.

These design approaches have been used in
many areas, such as mechanical system design
and traditional information system design.

In human and computer interaction (HCI),
however, the user plays a central role in the
system, so a more recent approach called user-
centered design has been proposed and studied.
Olson et al. define user-centered system design as
(1) regarding participation, observation, and
analysis of users at work, (2) utilizing relevant
aspects of theory for users, and (3) iteratively
designing and testing the system with user
involvement [Olson91].

We think that the user-centered design
approach is appropriate not only for HCI systems
but also for collaboration support systems, because
a group and users perform central roles in the
collaboration support system. Among the models
related to groups (for example, McGrath’s model
and Malone’s Model), we think that Malone’s
coordination process model and theory is most
relevant to the design of collaboration support
system and we apply its theory for a real-time
groupware system design, because Malone’s model
is based on a human collaboration and
coordination process-oriented viewpoints rather
than on collaboration and coordination task types.
In later sub sections, we review Malone’s
coordination process model and show how we
applied it.

2.2 Coordination process model

When we design a groupware system to support
collaboration, we need a good theoretical
framework that explains human communication
and collaboration as we mentioned in section 1.
Malone [Malone91, 94] proposed the coordination
process model (Figure 1) in which workers adjust
and work collaboratively according to the following
four-layered model.

(1) Perception of common object

When we do cooperative work, we see same
physical objects.
(2) Communication

By means of a common language and exchange
of messages, we communicate with each other.

(3) Collaboration (e.g., group decision making)

While we communicate with each other, we take
collaborative actions to accomplish shared and
common goals. For instance, in a design meeting
about a software system, we discuss design issues,
propose alternatives, and evaluate them.

(4) Coordination

When we do collaborative work, we sometimes
come across conflicts such as evaluation and
decision conflicts within the group. In that case,
we need a coordination process to resolve the
conflict.

Collaboration and coordination processes involve
processes other than conventional formal
information and data communication. We think
that this model means that upper-layer processes
such as coordination and collaboration need a
concrete establishment of the lower processes such
as perception of the common object and
communication process. In other words, when we
provide a collaboration support system, we must
carefully consider lower-laver orocesses support.

rayer Process l Element
- roal.action,actor,
4 Coordination i&nlcr(‘iepcndcncy
aborali goal.action.actor,
2 C(_)]I_dh\)muop alternative,cvaluation
J (Dccision Making) choice
5 Communication ‘SCHFICF,I'CCCIVCI',
2 message,language
Perception of bi
| Common Objects actor,object

Figure. 1 Coordination Process Model (Malone)

3. Functionality model based on the
coordination process model

In this section, we describe a functionality model
of collaboration support systems designed on the
basis of Malone's Coordination Process model.

3.1 Functionality model

As a functionality model for a cooperative work
support system, we use the Groupware
Functionality Model (GFM) [Olson93]. This is a
functionality model for synchronous cooperative
work support systems such as a real-time group
writing task. The goal of GFM is to provide some
order to the range of collaborative system
functions, and in the course of doing so provide
guidance to both the designer and user of such
systems.

GFM consists of four function divisions (task
activities, interface activities, session activities,
and environment activities) for cooperative work
support.

When we work on a team, there is a shared work
space that contains data objects on which the
group is working, e.g., a proposal, a drawing of a
widget, or minutes of a meeting. Activities related
to these data objects are called task activities,
because they are directly related to the group’s
task.

Interface activities provide group interface
functions for group work support; they are not
directly related to operations on data. Examples of
interface activities are a various group awareness'
(control joint attention), customization of a user
environment, and view control of shared objects.

In the design of collaboratibn systems,
separating data objects from view objects (e.g.,
interface objects) provides many benefits. First,
one can have more than one interface object for the
data object. This is important when considering a
shared workspace for multiple users. Second, it
would permit the interface objects to differ among
users, allowing them to customize the interface
object not only in its physical characteristics (e.g.,
window size) but also in the data object’s
representation (e.g., pie chart versus x-y
coordinate graph).

When a group convenes to work through the
collaborative system, activities are needed for
formulating the session, creating the shared
workspaces or invoking other task-oriented
activities, coordinating the members’ activity. For
example, when the shared workspace is formed,
the authorization of participants should be
checked. The functionality of session management
is defined as session activities.

' Awareness

A work situation wherein people are cognizant of one
another existence, knowing, for instance who the others are
and what they are doing, but do not engage in any
particular communication or collaborative-work activities.

The last functional area is the relationship
between the groupware system and its
environment. There are two possible interfaces
that a collaborative system may have with its
environment: (1) an interface between the shared
workspace(s) that it manages and group members’
personal workspace(s) and (2) an interface
between itself and the real "world." Environment
activities support these interfaces.

As we stated above, GFM provides the
functionality (i.e., “what” functionality) that
should be provided for real time collaboration and
coordination tasks. However, in developing a
collaborative work support system based on GFM,
real design tasks are not easy, because we must
carefully consider the way ("how") to implement
functionality.

We think that some sort of theoretical
framework (e.g., the coordination process model)
for human collaboration will give guidelines for
"how" to implement functionality. In the next
section, we present a coordination process-based
functionality model for the design of real-time
collaboration support systems.

3.2 Coordination process-based functionality
model.

A collaboration support system has a range of
task-oriented functions that will often overlap
with the functions found in single user-
applications. Of course, in the design of systems
there are interactions between the group functions
and task functions that often are the major
determinants of design decisions.

As we explained in section 3.1, GFM provides a
clear explanation of the functionality model even
though there is no clear distinction between group
functions and task functions. Malone's
coordination process model provides some sense of
task functions for collaborative work. Thus, we
think that an assignment of groupware
functionality onto the coordination process model
makes a good implementation guide for the
collaboration support system. Figure 2 shows the
coordination process-based functionality model. In

Groupware
Functionality Model

Process] | Functionality
Coordination Session
Task depended Aclivities
. . Functions
Collaboration Environiment
(Decision Making) Activities
o Interface Activety Manoge
Communication Annotation/ Awareness Seasinn
. v Set
Perception of Interface Activity Sonsion
Convmuon QObjects Update Control o
Figure. 2 Functionality Maodel based on Coordination Pracess Aexic)

the following subsections, we describe the
assignments of groupware functionality for the
development of the collaborative information
system.

3.2.1 Supporting perception of common
objects

In collaborative work such as meetings, the
efficiency of communication among participants
depends on the media used. Discussions using
documents such as reports, memos, models,
blueprints, or video are usually more effective than
entirely conversation-based ones.

In the perception of the common object layer of
the coordination process model, object operations
in a task activity are provided by delivering the
same display data to all other participants, known
as WYSIWIS (What you see is what I see), and
applying the following functions: update control,
filter control, format control, window attributes in
interface activity of the groupware functionality
model.

3.2.2 Communication process support

(1) Support for sharing discussion focusing
information

Discussion focus represents who is the
speaker, where he (or she) is now on the shared
object, and the part of the subject to which he (or
she) is giving attention. Therefore a discussion
with focus information provided is easier to follow.
This corresponds to control joint attention and
navigation of interface activity in the functionality
model. These functions are usually provided by a
tele-pointer or multiple cursors and provide the
participants, with information (what we call
awareness) of who is in attendance, and where the
current discussion focus is, and so on.

(2) Support for sharing annotation messages

Writing annotations (comments, opinions and
questions) on some part of a document is a
common occurrence in ordinary group work. This
function corresponds to annotation of task activity.
It has the advantages of allowing supplementary
explanations, organization of discussion, and
promoting common understanding among
participants. Annotation message functions should
have flexible user interfaces similar to a ordinary
drawing tool.

However, making the user interfaces too flexible
and primitive is less advantageous in terms of
quick communications, because such a primitive
interface requires a number of command steps to
write an annotation. Therefore, we analyzed

typical user comment patterns. Then we
categorized the typical patterns and constructed
an annotation model as a tupple <region, link,
message> in order to reduce the number of
command steps.

Figure 3 shows the annotation model, how
annotations are represented, and example of
annotation symbols (e.g., regions, links, messages
and directions of links). Beforehand participants
can select a couple of symbols and attributes for
annotation regions, links, and messages. When
writing an annotation, a participant specifies the
region to annotate and the position for writing a
message by pointing with the mouse. Then pre-
selected symbols for region and message are
displayed. Then the selected link symbols are
connected between the two areas. After that the
mouse cursor goes to the message position and the
status changes to waiting for text input.
Participants can thus omit redundant operations
and make quick annotations by this automatic
annotation function, which treats regions, links,
and messages together and provides them as a
single annotation object.

— Annotation General Form-——--
[» region

message | |

—__Annotation Parts_. ~
region__ __link__ message
— —

! D text
O |
—Zy

N A

l

)

- - /1

! marker | 1T = T
|undcrline| {1} | stamp
i nall
attributeﬁ attribute— attribute~

direction

line thickness|| line thickness] | transparent

broken line, broken line ffmt J
size
- _J
N

/ \arrow line
Direction of Link:

(a
~ | » & %‘ .
b] ion < IS
f i \d L1

Figure. 3 Annotation object and representation

(3) Support for group decision making and
coordination

Functions for group decision making and
cooperation support are very different from ones
for group tasks. For example, in the case of group
design work, such functions as evaluation of
design solutions or coordination of conflicting
solutions should be supported individually. For
example, design rationale and argument
structure-based tools will be used for decision
making and coordination tasks for software design.
However, it is very hard to support all decision
making and coordination functions within a single
model of functionality, because a decision making
process depends on areas of tasks (e.g., software
design decision vs. business decision). Therefore
these functions are treated as individually
provided upon common functions for (1) and (2).

(4) Support for other functions

Session Activity and Environment Activity in
the functionality model are management
capabilities that create and maintain the states for
(1) and (2). Therefore they are also related to all
process layers and they are just the same as the
ability for managing all process layers in a manner
similar to OSI network management. In session
management, all functions in session activity, such
as support for participants to join or leave the
session midway, are realized by managing user
information.

4. Implementation of a prototype system

On the basis of the model described in section 3,
we developed a shared application system that
runs in UNIX and X-window environments. This
tool allows users to share various kinds of single-
user applications simultaneously. In this section,
we describe the implementations based on the
functionality model.

4.1 Implementation of the mechanism for
sharing discussion subjects

According to the functionality model concerned
with the sharing of discussion subjects, the
mechanism for sharing discussion subject should
be implemented as follows.

The system allows discussion subjects to be
shared even if they are represented in different
information media. That is, any document can be
shared by the mechanism. We introduce functions
for sharing any application program by
delivering all the application program I/O data.
That is to say sharing multimedia (text, graphics
and video) applications, as the discussion subject,

provide a great effect like "an eye finds more truth
than two ears". Therefore, we think that this
mechanism improves communication efficiency.
This means, as a result, the mechanism lets us
expand the range of subject media (e.g., from
traditional text to video data as shared objects)
corresponding to the perception of the common
object layer of Malone’s coordination process model.
Another effect of the ability to share any
application is that each user can use an
application he (or she) is familiar with even in
groupwork. This helps to provide a the seamless
interface between individual work and group work.

4.2 Implementation of communication
support

(1) Support for sharing discussion focus

According to the functionality model concerned
with the sharing of the discussion focus (i.e.,
awareness) , the mechanism for sharing discussion
focus should be implemented as follows.

Our system allows sharing of user pointing
actions related to the discussion subject. Therefore,
we introduce functions that realize multiple mouse
cursors so that each user can use their own cursor
and display it on everyone’s windows at any time
during the session. The system traces the positions
of each participants' cursors and delivers them to
other participants and then displays them on each
participant’s screen. In order to identify who and
where the participants are, each cursor's shape
and color is unique and the cursor icon has the
participant's name and their host machine name.
These mouse cursors are displayed on a shared
application window as well as on a shared
transparent window.

(2) Support for sharing annotation messages

According to the functionality model concerned
with the sharing of annotation messages (i.e.,
annotation) , the mechanism for sharing
annotation messages should be implemented as
follows.

The system should provide a function set that
allows all users to write messages relating to the
shared discussion subject. Therefore, we introduce
functions that provide transparent windows on the
shared window to show the discussion subject.
Shared application windows are directly overlaid
with transparent windows to allow annotation
messages corresponding to various parts of the
documents to be shared.

Participants can write annotations directly on
the application running in real-time rather than
by using snapshot operations. We also implement
a multiple layer architecture of transparent

windows in which one transparent window is
prepared for each participant. Therefore, each
participant can write annotation messages on
their own layer concurrently and independently of
others.

4.3 Support for group decision making and
cooperation

Because the function for supporting group
decision making and coordination depends on
group tasks, we think that this function should be
provided individually by the domain-dependent
shared applications.

Figure 4 shows screen images of the prototype
system. In this picture, a drawing tool is shared by
a couple of participants. Each participant has
his/her own telepointer. While sharing various
kinds of tools, participants send and receive
communication and collaboration support
information such as annotation information.

[Figure 4] Screen image of the protype sytstem

5. Discussion

In this section we discuss the validity and
advantages of the system design approach based
on the coordination process model, proposed in this
paper. We found the following advantages in
constructing a collaborative task support system:
(1) Function set arrangement and selection are
easier when designing new mechanisms, because
the required functions corresponding to each layer
in a hierarchical process model are clearly
categorized in the functionality model. Comparison
with functions of other similar systems is also
easier.

(2) Navigation knowledge about system design
from existing functionality models is available
when we design new systems, because GFM and
existing functionality models are regarded as a
kind of design guidance information set. Such
guidance information is allowed in the GFM in the
form of function assignment to some layer of the
coordination process model.

(3) We can design the system to have higher
overall system performance by selecting
alternative functions or by enhancing these
functions in lower layers. Strengthening
functions in lower layers usually improves the
performance of functions in higher layers. Using
the hierarchical functionality models may help to
select and tune such functions.

6. Conclusion

In this paper we proposed a design approach
and describe how to apply it to an actual design. In
applying this approach we specified functionality
models originally based on Malone’s Coordination
Process Model and then applied the functionality
model to design and implement a system (i.e.,
transparent windows and application integrated
sharing system).

The result was easier functionality assignment
and implementation than in conventional
approaches. Future work will enhance its
approach and apply it to other systems for
supporting cooperative group work.

[References]

[Applegate91] L. Applegate, et al., Organizational
Computing: Definition and Issues, Journal of
Organizational Computing, Vol. 1, No.1, (1991)

[Dix93] A. Dix,"Computer Supported Cooperative Work: A
Framework", Design Issues in CSCW, pp.9-26, Springer-
Verlag,(1993)

[Greif88] 1. Greif (Ed.), Computer-Supported Cooperative
Work, Morgan Kaufmann, (1988)

[Greenberg91]} S. Greenberg (Ed.), Computer-supported
Cooperative Work and Groupware, Academic Press,
(1991)

[Ishikawa86] H. Ishikawa, Psychology of Meeting,
Chikuma-Book (1986) (In Japanese)

[Malone91] T. Malone. et al., Toward an Interdisciplinary
Theory of Coordination," MIT Technical report CCS
TR#120 (1991)

[Malone94] T. Malone, et al., The Interdisciplinary Study
of Coordination,"” ACM Computing Surveys, Vol.26, No.1,
March (1994)

[McGrath84] J.E. McGrath, "GROUPS: INTERACTION
AND PERFORMANCE", Prentice-Hall, (1984)

[Olson91] G. Olson, et al, "User-Centered Design of
Collaborative Technology," Journal of Organizational
Computing, Vol.1, No.1, (1991)

{Olson93] G. Olson, et al., Designing Software For A
Group’s Needs : A Functional Analysis of Synchronous
Groupware, in User Interface Software (Ed.) L. Bass
and P. Dewan, Wiley, (1993)

